

Excel 2010
Power Programming
with VBA

Microsoft
®

®

John Walkenbach

BONUS CD-ROM!
Includes valuable examples, a searchable PDF
of the book, and more

Excel® 2010
Power Programming

with VBA

by John Walkenbach

Excel® 2010 Power Programming with VBA

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-
6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley and the Wiley Publishing logo are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission.
Excel is a registered trademark of Microsoft Corporation in the United States and/or other countries. All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERI-
ALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES
OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES
NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE
MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRIT-
TEN AND WHEN IT IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2010923549

ISBN: 978-0-470-47535-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport

About the Author
John Walkenbach is author of more than 50 spreadsheet books and lives in southern Arizona.
Visit his Web site: http://spreadsheetpage.com.

Acquisitions, Editorial, and Media
Development

Project Editor: Kelly Ewing

Acquisitions Editor: Katie Mohr

Technical Editor: Todd Meister

Editorial Manager: Jodi Jensen

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project Manager:
Jenny Swisher

Media Development Associate Producer:
Douglas Kuhn

Media Development Quality Assurance:
Marilyn Hummel

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Composition Services
Project Coordinator: Katherine Crocker

Layout and Graphics: Carrie A. Cesavice,
Joyce Haughey, Jennifer Mayberry

Proofreaders: Laura L. Bowman,
John Greenough

Indexer: Broccoli Information Management

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher

Composition Services
Debbie Stailey, Director of Composition Services

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Contents at a Glance
Introduction . 1

Part I: Some Essential Background
Chapter 1: Excel 2010: Where It Came From . 11
Chapter 2: Excel in a Nutshell . 23
Chapter 3: Formula Tricks and Techniques . 53
Chapter 4: Understanding Excel Files . 77

Part II: Excel Application Development
Chapter 5: What Is a Spreadsheet Application? . 101
Chapter 6: Essentials of Spreadsheet Application Development . 111

Part III: Understanding Visual Basic for Applications
Chapter 7: Introducing Visual Basic for Applications .135
Chapter 8: VBA Programming Fundamentals .193
Chapter 9: Working with VBA Sub Procedures .241
Chapter 10: Creating Function Procedures .281
Chapter 11: VBA Programming Examples and Techniques . 325

Part IV: Working with UserForms
Chapter 12: Custom Dialog Box Alternatives . 399
Chapter 13: Introducing UserForms. 419
Chapter 14: UserForm Examples . 455
Chapter 15: Advanced UserForm Techniques . 493

Part V: Advanced Programming Techniques
Chapter 16: Developing Excel Utilities with VBA . 543
Chapter 17: Working with Pivot Tables . 565
Chapter 18: Working with Charts . 583
Chapter 19: Understanding Excel’s Events . 639
Chapter 20: Interacting with Other Applications . 677
Chapter 21: Creating and Using Add-Ins . 703

Part VI: Developing Applications
Chapter 22: Working with the Ribbon . 733
Chapter 23: Working with Shortcut Menus . 769
Chapter 24: Providing Help for Your Applications . 789
Chapter 25: Developing User-Oriented Applications . 809

vi

Part VII: Other Topics
Chapter 26: Compatibility Issues . 825
Chapter 27: Manipulating Files with VBA . 839
Chapter 28: Manipulating Visual Basic Components .871
Chapter 29: Understanding Class Modules . 895
Chapter 30: Working with Colors . 911
Chapter 31: Frequently Asked Questions about Excel Programming . 937

Part VIII: Appendixes
Appendix A: Excel Resources Online . 969
Appendix B: VBA Statements and Functions Reference. 977
Appendix C: VBA Error Codes . 985
Appendix D: What’s on the CD-ROM . 989

Index . 1007

End-User License Agreement . 1053

Table of Contents
Introduction . 1

Part I: Some Essential Background
Chapter 1: Excel 2010: Where It Came From . 11

A Brief History of Spreadsheets . 11
It all started with VisiCalc . 11
Lotus 1-2-3 . 12
Quattro Pro .14
Microsoft Excel . 15
Current Competition . 20

Why Excel Is Great for Developers . 20
Excel’s Role in Microsoft’s Strategy . 22

Chapter 2: Excel in a Nutshell . 23
Thinking in Terms of Objects . 23
Workbooks . 24

Worksheets . 24
Chart sheets . 26
XLM macro sheets . 26
Excel 5/95 dialog sheets . 28

Excel’s User Interface . 28
About the Ribbon . 28
Shortcut menus and the Mini Toolbar . 34
Dialog boxes . 35
Keyboard shortcuts . 36
Smart Tags . 36
Task pane . 36

Customizing the Display . 37
Data Entry . 38
Formulas, Functions, and Names . 38
Selecting Objects . 40
Formatting . 40
Protection Options . 42

Protecting formulas from being overwritten . 42
Protecting a workbook’s structure . 43
Applying password protection to a workbook. 43
Protecting VBA code with a password . 43

Charts . 44
Shapes and SmartArt . 45
Database Access . 46

Worksheet databases . 46
External databases . 47

viii

Internet Features . 47
Analysis Tools . 48
Add-Ins . 50
Macros and Programming . 50
File Format. 50
Excel’s Help System .51

Chapter 3: Formula Tricks and Techniques . 53
About Formulas . 53
Calculating Formulas . 54
Cell and Range References . 55

Why use references that aren’t relative? . 55
About R1C1 notation . 56
Referencing other sheets or workbooks . 57

Using Names . 58
Naming cells and ranges . 59
Applying names to existing references . 60
Intersecting names .61
Naming columns and rows .61
Scoping names .61
Naming constants . 62
Naming formulas . 63
Naming objects . 65

Formula Errors . 65
Array Formulas . 66

An array formula example . 66
An array formula calendar . 67
Array formula pros and cons . 68

Counting and Summing Techniques . 69
Counting formula examples . 70
Summing formula examples . 70
Other counting tools .71

Working with Dates and Times .71
Entering dates and times . 72
Using pre-1900 dates . 73

Creating Megaformulas . 74

Chapter 4: Understanding Excel Files. 77
Starting Excel . 77
File Types . 80

Excel file formats . 80
Text file formats .81
Database file formats .81
Other file formats . 82

Working with Template Files . 83
Viewing templates . 83
Creating templates . 84
Creating workbook templates . 86

ix

Inside an Excel File . 87
Dissecting a file . 87
Why is the file format important? .91

The OfficeUI File .91
The XLB File . 92
Add-In Files . 93
Excel Settings in the Registry . 94

About the Registry . 94
Excel’s settings . 95

Part II: Excel Application Development
Chapter 5: What Is a Spreadsheet Application? . 101

Spreadsheet Applications . 101
The Developer and the End-User . 102

Who are developers? What do they do? . 102
Classifying spreadsheet users . 104
The audience for spreadsheet applications . 104

Solving Problems with Excel . 105
Basic Spreadsheet Types . 106

Quick-and-dirty spreadsheets . 106
For-your-eyes-only spreadsheets. 107
Single-user applications . 107
Spaghetti applications . 107
Utility applications . 108
Add-ins that contain worksheet functions . 108
Single-block budgets . 109
What-if models . 109
Data storage and access spreadsheets . 109
Database front ends . 110
Turnkey applications . 110

Chapter 6: Essentials of Spreadsheet Application Development 111
Steps for Application Development . 111
Determining User Needs . 112
Planning an Application That Meets User Needs . 113
Determining the Most Appropriate User Interface . 115

Customizing the Ribbon . 118
Customizing shortcut menus . 118
Creating shortcut keys . 119
Creating custom dialog boxes . 119
Using ActiveX controls on a worksheet . 120
Executing the development effort .122

Concerning Yourself with the End User .122
Testing the application .122
Making the application bulletproof .124
Making the application aesthetically appealing and intuitive .126

x

Creating a user Help system .127
Documenting the development effort .128
Distributing the application to the user .128
Updating the application when necessary .129

Other Development Issues .129
The user’s installed version of Excel. 130
Language issues . 130
System speed . 130
Video modes . 131

Part III: Understanding Visual Basic for Applications
Chapter 7: Introducing Visual Basic for Applications . 135

Getting Some BASIC Background .135
Delving in to VBA .136

Object models .136
VBA versus XLM .136

Covering the Basics of VBA .137
Introducing the Visual Basic Editor . 140

Displaying Excel’s Developer tab . 141
Activating the VBE . 141
The VBE windows .142

Working with the Project Explorer .143
Adding a new VBA module . 144
Removing a VBA module .145
Exporting and importing objects .145

Working with Code Windows. .145
Minimizing and maximizing windows . 146
Storing VBA code . 146
Entering VBA code .147

Customizing the VBE Environment .153
Using the Editor tab .154
Using the Editor Format tab .156
Using the General tab .157
Using the Docking tab .158

The Macro Recorder .159
What the macro recorder actually records . 160
Relative or absolute recording? . 161
Recording options . 164
Cleaning up recorded macros .165

About Objects and Collections .167
The object hierarchy .167
About collections .168
Referring to objects .168

Properties and Methods . 169
Object properties. 169
Object methods . 170

xi

The Comment Object: A Case Study .172
Viewing Help for the Comment object .173
Properties of a Comment object .174
Methods of a Comment object .175
The Comments collection .175
About the Comment property .176
Objects within a Comment object .177
Determining whether a cell has a comment .178
Adding a new Comment object .179

Some Useful Application Properties . 180
Working with Range Objects .182

The Range property .182
The Cells property . 184
The Offset property .187

Things to Know about Objects .188
Essential concepts to remember .188
Learning more about objects and properties .189

Chapter 8: VBA Programming Fundamentals .193
VBA Language Elements: An Overview .193
Comments .195
Variables, Data Types, and Constants .197

Defining data types .198
Declaring variables . 201
Scoping variables . 203
Working with constants . 206
Working with strings . 209
Working with dates . 209

Assignment Statements . 210
Arrays .213

Declaring arrays .213
Declaring multidimensional arrays .214
Declaring dynamic arrays. .214

Object Variables .215
User-Defined Data Types .216
Built-in Functions .217
Manipulating Objects and Collections . 220

With-End With constructs . 220
For Each-Next constructs .221

Controlling Code Execution . 223
GoTo statements . 224
If-Then constructs . 224
Select Case constructs . 229
Looping blocks of instructions . 232

Chapter 9: Working with VBA Sub Procedures .241
About Procedures. .241

Declaring a Sub procedure . 242
Scoping a procedure . 243

xii

Executing Sub Procedures . 244
Executing a procedure with the Run Sub/UserForm command . 245
Executing a procedure from the Macro dialog box . 245
Executing a procedure with a Ctrl+shortcut key combination . 246
Executing a procedure from the Ribbon . 247
Executing a procedure from a customized shortcut menu . 247
Executing a procedure from another procedure . 248
Executing a procedure by clicking an object . 253
Executing a procedure when an event occurs . 254
Executing a procedure from the Immediate window . 254

Passing Arguments to Procedures . 255
Error-Handling Techniques . 259

Trapping errors . 259
Error-handling examples .261

A Realistic Example That Uses Sub Procedures . 264
The goal . 264
Project requirements . 264
What you know . 265
The approach . 265
What you need to know . 266
Some preliminary recording . 266
Initial setup . 268
Code writing . 269
Writing the Sort procedure . 270
More testing . 274
Fixing the problems . 275
Utility availability . 279
Evaluating the project . 279

Chapter 10: Creating Function Procedures .281
Sub Procedures versus Function Procedures .281
Why Create Custom Functions? . 282
An Introductory Function Example . 282

Using the function in a worksheet . 283
Using the function in a VBA procedure . 284
Analyzing the custom function . 285

Function Procedures . 287
A function’s scope . 288
Executing function procedures . 288

Function Arguments . 292
Function Examples . 293

Functions with no argument . 293
A function with one argument . 295
A function with two arguments . 298
A function with an array argument . 299
A function with optional arguments . 300
A function that returns a VBA array . 302

xiii

A function that returns an error value . 305
A function with an indefinite number of arguments . 307

Emulating Excel’s SUM function . 308
Extended Date Functions . 311
Debugging Functions .313
Dealing with the Insert Function Dialog Box .314

Using the MacroOptions method .315
Specifying a function category .317
Adding a function description manually .318

Using Add-ins to Store Custom Functions .319
Using the Windows API . 320

Windows API examples .321
Determining the Windows directory .321
Detecting the Shift key . 322
Learning more about API functions . 323

Chapter 11: VBA Programming Examples and Techniques . 325
Learning by Example . 325
Working with Ranges. 326

Copying a range . 326
Moving a range . 328
Copying a variably sized range . 328
Selecting or otherwise identifying various types of ranges . 330
Prompting for a cell value . 332
Entering a value in the next empty cell . 333
Pausing a macro to get a user-selected range . 334
Counting selected cells . 336
Determining the type of selected range . 337
Looping through a selected range efficiently . 339
Deleting all empty rows . 342
Duplicating rows a variable number of times . 342
Determining whether a range is contained in another range . 344
Determining a cell’s data type. 345
Reading and writing ranges . 346
A better way to write to a range . 347
Transferring one-dimensional arrays . 349
Transferring a range to a variant array . 349
Selecting cells by value . 350
Copying a noncontiguous range . 352

Working with Workbooks and Sheets . 353
Saving all workbooks . 354
Saving and closing all workbooks . 354
Hiding all but the selection . 354
Synchronizing worksheets . 356

VBA Techniques . 357
Toggling a Boolean property . 357
Determining the number of printed pages . 358

xiv

Displaying the date and time . 358
Getting a list of fonts . 360
Sorting an array . 362
Processing a series of files . 363

Some Useful Functions for Use in Your Code . 365
The FileExists function . 365
The FileNameOnly function . 365
The PathExists function . 366
The RangeNameExists function . 366
The SheetExists function . 368
The WorkbookIsOpen function . 368
Retrieving a value from a closed workbook . 368

Some Useful Worksheet Functions . 370
Returning cell formatting information . 370
A talking worksheet . 372
Displaying the date when a file was saved or printed . 372
Understanding object parents . 373
Counting cells between two values . 374
Determining the last non-empty cell in a column or row . 375
Does a string match a pattern? . 377
Extracting the nth element from a string . 378
Spelling out a number . 379
A multifunctional function . 380
The SheetOffset function .381
Returning the maximum value across all worksheets .381
Returning an array of nonduplicated random integers . 383
Randomizing a range . 384

Windows API Calls . 386
Determining file associations . 386
Determining disk drive information . 387
Determining default printer information . 388
Determining video display information . 389
Adding sound to your applications . 390
Reading from and writing to the Registry . 392

Part IV: Working with UserForms
Chapter 12: Custom Dialog Box Alternatives . 399

Before You Create That UserForm 399
Using an Input Box . 399

The VBA InputBox function .400
The Excel InputBox method . 402

The VBA MsgBox Function . 404
The Excel GetOpenFilename Method . 409
The Excel GetSaveAsFilename Method .412
Prompting for a Directory .413
Displaying Excel’s Built-In Dialog Boxes .413

xv

Displaying a Data Form . 416
Making the data form accessible . 416
Displaying a data form by using VBA . 418

Chapter 13: Introducing UserForms .419
How Excel Handles Custom Dialog Boxes . 419
Inserting a New UserForm . 420
Adding Controls to a UserForm .421
Toolbox Controls . 422

CheckBox . 423
ComboBox . 423
CommandButton . 423
Frame . 423
Image . 423
Label . 423
ListBox . 424
MultiPage . 424
OptionButton . 424
RefEdit . 424
ScrollBar . 424
SpinButton . 424
TabStrip . 425
TextBox . 425
ToggleButton . 426

Adjusting UserForm Controls . 426
Adjusting a Control’s Properties . 426

Using the Properties window . 428
Common properties . 429
Accommodating keyboard users . 430

Displaying a UserForm. 432
Displaying a modeless UserForm . 433
Displaying a UserForm based on a variable . 433
Loading a UserForm . 433
About event-handler procedures . 433

Closing a UserForm . 434
Creating a UserForm: An Example . 435

Creating the UserForm . 436
Writing code to display the dialog box . 438
Testing the dialog box . 439
Adding event-handler procedures . 440
Validating the data . 441
The finished dialog box . 442

Understanding UserForm Events . 442
Learning about events . 442
UserForm events . 443
SpinButton events . 444
Pairing a SpinButton with a TextBox . 446

Referencing UserForm Controls . 448

xvi

Customizing the Toolbox . 450
Adding new pages to the Toolbox . 450
Customizing or combining controls . 450
Adding new ActiveX controls .451

Creating UserForm Templates . 452
A UserForm Checklist . 453

Chapter 14: UserForm Examples . 455
Creating a UserForm “Menu” . 455

Using CommandButtons in a UserForm . 455
Using a ListBox in a UserForm . 456

Selecting Ranges from a UserForm . 457
Creating a Splash Screen. 459
Disabling a UserForm’s Close Button . 461
Changing a UserForm’s Size . 462
Zooming and Scrolling a Sheet from a UserForm . 464
ListBox Techniques . 466

Adding items to a ListBox control . 467
Determining the selected item in a ListBox . 472
Determining multiple selections in a ListBox . 472
Multiple lists in a single ListBox . 474
ListBox item transfer . 474
Moving items in a ListBox . 476
Working with multicolumn ListBox controls . 478
Using a ListBox to select worksheet rows . 480
Using a ListBox to activate a sheet . 482

Using the MultiPage Control in a UserForm . 485
Using an External Control . 486
Animating a Label . 489

Chapter 15: Advanced UserForm Techniques . 493
A Modeless Dialog Box . 493
Displaying a Progress Indicator . 497

Creating a stand-alone progress indicator . 498
Showing a progress indicator by using a MultiPage control . 502
Showing a progress indicator without using a MultiPage control . 505

Creating Wizards . 507
Setting up the MultiPage control for the wizard . 508
Adding the buttons to the wizard’s UserForm . 508
Programming the wizard’s buttons . 508
Programming dependencies in a wizard . 510
Performing the task with the wizard .512

Emulating the MsgBox Function .513
MsgBox emulation: MyMsgBox code .514
How the MyMsgBox function works .515
Using the MyMsgBox function .516

A UserForm with Movable Controls .517
A UserForm with No Title Bar .518

xvii

Simulating a Toolbar with a UserForm .519
A Resizable UserForm .521
Handling Multiple UserForm Controls with One Event Handler . 526
Selecting a Color in a UserForm . 529
Displaying a Chart in a UserForm .531

Saving a chart as a GIF file . 532
Changing the Image control Picture property . 532

Making a UserForm Semitransparent . 532
An Enhanced Data Form . 534

About the Enhanced Data Form . 536
Installing the Enhanced Data Form add-in . 537

A Puzzle on a UserForm . 537
Video Poker on a UserForm . 538

Part V: Advanced Programming Techniques
Chapter 16: Developing Excel Utilities with VBA . 543

About Excel Utilities . 543
Using VBA to Develop Utilities . 544
What Makes a Good Utility? . 545
Text Tools: The Anatomy of a Utility . 545

Background for Text Tools . 546
Project goals for Text Tools . 547
The Text Tools workbook. 547
How the Text Tools utility works . 548
The UserForm for the Text Tools utility . 548
The Module1 VBA module . 550
The UserForm1 code module . 552
Making the Text Tools utility efficient . 554
Saving the Text Tools utility settings . 555
Implementing Undo . 557
Displaying the Help file . 559
Adding the RibbonX code . 560
Post-mortem of the project . 562
Understand the Text Tools utility . 562

More about Excel Utilities . 563

Chapter 17: Working with Pivot Tables . 565
An Introductory Pivot Table Example . 565

Creating a pivot table . 566
Examining the recorded code for the pivot table . 568
Cleaning up the recorded pivot table code . 568

Creating a More Complex Pivot Table .571
The code that created the pivot table . 573
How the more complex pivot table works . 574

Creating Multiple Pivot Tables . 576
Creating a Reverse Pivot Table . 579

xviii

Chapter 18: Working with Charts . 583
Getting the Inside Scoop on Charts . 583

Chart locations . 584
The macro recorder and charts . 584
The Chart object model . 585

Creating an Embedded Chart . 586
Creating a Chart on a Chart Sheet . 588
Using VBA to Activate a Chart . 589
Moving a Chart . 590
Using VBA to Deactivate a Chart .591
Determining Whether a Chart Is Activated . 592
Deleting from the ChartObjects or Charts Collection. 593
Looping through All Charts . 594
Sizing and Aligning ChartObjects . 596
Exporting a Chart . 598

Exporting all graphics . 599
Changing the Data Used in a Chart .600

Changing chart data based on the active cell . 601
Using VBA to determine the ranges used in a chart . 603

Using VBA to Display Arbitrary Data Labels on a Chart . 606
Displaying a Chart in a UserForm . 609
Understanding Chart Events . 611

An example of using Chart events .612
Enabling events for an embedded chart .615
Example: Using Chart events with an embedded chart . 616

Discovering VBA Charting Tricks .618
Printing embedded charts on a full page . 619
Hiding series by hiding columns . 619
Creating unlinked charts .621
Displaying text with the MouseOver event . 622

Animating Charts . 625
Scrolling a chart . 626
Creating a hypocycloid chart . 628
Creating a “clock” chart . 629

Creating an Interactive Chart without VBA .631
Getting the data to create an interactive chart . 632
Creating the Option Button controls for an interactive chart . 632
Creating the city lists for the interactive chart . 632
Creating the interactive chart data range . 633
Creating the interactive chart . 634

Working with Sparkline Charts. 635

Chapter 19: Understanding Excel’s Events . 639
What You Should Know about Events . 639

Understanding event sequences. 640
Where to put event-handler procedures . 640
Disabling events . 642

xix

Entering event-handler code . 643
Event-handler procedures that use arguments . 644

Getting Acquainted with Workbook-Level Events . 646
The Open event . 647
The Activate event . 648
The SheetActivate event . 648
The NewSheet event . 649
The BeforeSave event. 649
The Deactivate event . 650
The BeforePrint event . 650
The BeforeClose event . 652

Examining Worksheet Events. 654
The Change event . 654
Monitoring a specific range for changes . 655
The SelectionChange event . 660
The BeforeDoubleClick event . 661
The BeforeRightClick event . 662

Checking Out Chart Events . 662
Monitoring with Application Events . 664

Enabling Application-level events . 666
Determining when a workbook is opened . 666
Monitoring Application-level events . 668

Using UserForm Events . 669
Accessing Events Not Associated with an Object . 670

The OnTime event . 670
The OnKey event . 672

Chapter 20: Interacting with Other Applications . 677
Starting an Application from Excel . 677

Using the VBA Shell function . 677
Using the Windows ShellExecute API function . 680

Activating an Application with Excel .681
Using AppActivate .681
Activating a Microsoft Office application . 682

Running Control Panel Dialog Boxes . 683
Using Automation in Excel . 684

Working with foreign objects using automation . 685
Early versus late binding . 685
A simple example of late binding . 688
Controlling Word from Excel . 689
Controlling Excel from another application . 692

Sending Personalized E-Mail via Outlook . 695
Sending E-Mail Attachments from Excel . 698
Using SendKeys . 701

Chapter 21: Creating and Using Add-Ins . 703
What Is an Add-In?. 703

Comparing an add-in with a standard workbook . 703
Why create add-ins? . 704

xx

Understanding Excel’s Add-In Manager . 706
Creating an Add-in . 707
An Add-In Example . 708

Adding descriptive information for the example add-in . 709
Creating an add-in . 710
Installing an add-in . 710
Testing the add-in .712
Distributing an add-in .712
Modifying an add-in .713

Comparing XLAM and XLSM Files .714
XLAM file VBA collection membership .714
Visibility of XLSM and XLAM files .715
Worksheets and chart sheets in XLSM and XLAM files .716
Accessing VBA procedures in an add-in .717

Manipulating Add-Ins with VBA .721
AddIn object properties . 722
Accessing an add-in as a workbook . 725
AddIn object events . 726

Optimizing the Performance of Add-ins. 726
Special Problems with Add-Ins . 727

Ensuring that an add-in is installed . 727
Referencing other files from an add-in . 729
Detecting the proper Excel version for your add-in . 730

Part VI: Developing Applications
Chapter 22: Working with the Ribbon . 733

Ribbon Basics . 733
Using VBA with the Ribbon . 737

Accessing a Ribbon control . 738
Working with the Ribbon . 740
Activating a tab . 742

Customizing the Ribbon . 743
A simple RibbonX example . 743
A simple Ribbon example, take 2 . 746
Another RibbonX example. .751
Ribbon controls demo . 754
A DynamicMenu Control Example .761
More on Ribbon customization . 763

Creating an Old-Style Toolbar . 764
Limitations of old-style toolbars in Excel 2010 . 765
Code to create a toolbar . 765

Chapter 23: Working with Shortcut Menus . 769
CommandBar Overview . 769

CommandBar types . 770
Listing shortcut menus . 770

xxi

Referring to CommandBars .771
Referring to controls in a CommandBar . 772
Properties of CommandBar controls . 773
Displaying all shortcut menu items . 774

Using VBA to Customize Shortcut Menus . 777
Resetting a shortcut menu . 777
Disabling a Shortcut Menu . 778
Disabling shortcut menu items . 778
Adding a new item to the Cell shortcut menu . 779
Adding a submenu to a shortcut menu .781

Shortcut Menus and Events . 783
Adding and deleting menus automatically . 784
Disabling or hiding shortcut menu items . 785
Creating a context-sensitive shortcut menu . 785

Chapter 24: Providing Help for Your Applications . 789
Help for Your Excel Applications . 789
Help Systems That Use Excel Components . 790

Using cell comments for help . 792
Using a text box for help . 793
Using a worksheet to display help text . 794
Displaying help in a UserForm . 795

Displaying Help in a Web Browser . 799
Using HTML files . 799
Using an MHTML file . 800

Using the HTML Help System . 801
Using the Help method to display HTML Help . 804

Associating a Help File with Your Application . 805
Associating a Help topic with a VBA function . 805

Chapter 25: Developing User-Oriented Applications . 809
What is a User-Oriented Application? . 809
the Loan Amortization Wizard . 809

Using the Loan Amortization Wizard . 810
The Loan Amortization Wizard workbook structure .812
How the Loan Amortization Wizard works .813
Potential enhancements for the Loan Amortization Wizard . 820

Application Development Concepts . 820

Part VII: Other Topics
Chapter 26: Compatibility Issues . 825

What Is Compatibility? . 825
Types of Compatibility Problems . 826
Avoid Using New Features . 827
But Will It Work on a Mac? . 828
Dealing with 64-bit Excel . 830

xxii

Creating an International Application .831
Multilanguage applications . 832
VBA language considerations . 834
Using local properties . 834
Identifying system settings . 834
Date and time settings . 837

Chapter 27: Manipulating Files with VBA . 839
Performing Common File Operations . 839

Using VBA file-related statements . 840
Using the FileSystemObject object . 845

Displaying Extended File Information . 848
Working with Text Files . 850

Opening a text file .851
Reading a text file . 852
Writing a text file . 852
Getting a file number . 852
Determining or setting the file position . 853
Statements for reading and writing . 853

Text File Manipulation Examples . 854
Importing data in a text file . 854
Exporting a range to a text file . 856
Importing a text file to a range . 857
Logging Excel usage . 858
Filtering a text file . 859
Exporting a range to HTML format . 859
Exporting a range to an XML file . 863

Zipping and Unzipping Files . 865
Zipping files . 865
Unzipping a File . 867

Working with ADO . 868

Chapter 28: Manipulating Visual Basic Components .871
Introducing the IDE .871
The IDE Object Model . 873

The VBProjects collection . 874
Displaying All Components in a VBA Project . 876
Listing All VBA Procedures in a Workbook . 877
Replacing a Module with an Updated Version . 879
Using VBA to Write VBA Code .881
Adding Controls to a UserForm at Design Time . 883

Design-time versus runtime UserForm manipulations . 884
Adding 100 CommandButtons at design time . 885

Creating UserForms Programmatically . 886
A simple runtime UserForm example . 887
A useful (but not so simple) dynamic UserForm example . 888

xxiii

Chapter 29: Understanding Class Modules . 895
What is a Class Module? . 895
Example: Creating a NumLock Class . 896

Inserting a class module . 897
Adding VBA code to the class module . 897
Using the NumLockClass class .900

More about Class Modules . 901
Programming properties of objects . 901
Programming methods for objects . 903
Class module events . 904

Example: A CSV File Class . 904
Class module–level variables for the CSVFileClass . 905
Property procedures for the CSVFileClass . 905
Method procedures for the CSVFileClass . 905
Using the CSVFileClass object . 907

Chapter 30: Working with Colors . 911
Specifying Colors . 911

The RGB color system .912
The HSL color system .913
Converting colors .913

Understanding Grayscale . 916
Converting colors to gray . 916
Viewing charts as grayscale .918

Experimenting with Colors . 919
Understanding Document Themes .921

About document themes .921
Understanding document theme colors .921
Displaying all theme colors . 925

Working with Shape Objects . 927
A shape’s background color . 928
Shapes and theme colors . 930
Shape examples . 932

Modifying Chart Colors . 933

Chapter 31: Frequently Asked Questions about Excel Programming 937
Getting the Scoop on FAQs . 937
General Excel Questions . 938
The Visual Basic Editor . 942
Procedures . 944
Functions . 948
Objects, Properties, Methods, and Events .951
UserForms . 959
Add-Ins . 962
User Interface . 964

xxiv

Part VIII: Appendixes
Appendix A: Excel Resources Online . 969

The Excel Help System . 969
Microsoft Technical Support . 969

Support options . 970
Microsoft Knowledge Base . 970
Microsoft Excel home page . 970
Microsoft Office home page . 970

Internet Newsgroups .971
Accessing newsgroups by using a newsreader .971
Accessing newsgroups by using a Web browser .971
Searching newsgroups . 972

Internet Web sites . 973
The Spreadsheet Page . 973
Daily Dose of Excel . 974
Jon Peltier’s Excel Page . 974
Pearson Software Consulting . 974
Contextures . 974
Pointy Haired Dilbert . 974
David McRitchie’s Excel Pages . 975
Mr. Excel . 975

Appendix B: VBA Statements and Functions Reference . 977
Invoking Excel functions in VBA instructions . 980

Appendix C: VBA Error Codes . 985

Appendix D: What’s on the CD-ROM . 989
System Requirements . 989
Using the CD . 989
Files and Software on the CD . 990

Applications . 990
eBook version of Excel 2010 Power Programming with VBA . 990
Sample files for Excel 2010 Power Programming with VBA . 990

Troubleshooting . 1005

Index . 1007

End-User License Agreement . 1053

1

INTRODUCTION

Welcome to Excel 2010 Power Programming with VBA. If your job involves developing Excel
workbooks that others will use — or if you simply want to get the most out of Excel — you’ve
come to the right place.

Topics Covered
This book focuses on Visual Basic for Applications (VBA), the programming language built into
Excel (and other applications that make up Microsoft Office). More specifically, it will show you
how to write programs that automate various tasks in Excel. This book covers everything from
recording simple macros through creating sophisticated user-oriented applications and utilities.

This book does not cover Microsoft Visual Studio Tools for Office (VSTO). VSTO is a relatively
new technology that uses Visual Basic .NET and Microsoft Visual C#. VSTO can also be used to
control Excel and other Microsoft Office applications.

What You Need to Know
This is not a book for beginning Excel users. If you have no experience with Excel, a better choice
might be my Excel 2010 Bible, which provides comprehensive coverage of all the features of
Excel. That book is meant for users of all levels.

To get the most out of this book, you should be a relatively experienced Excel user. I didn’t spend
much time writing basic how-to information. In fact, I assume that you know the following:

 How to create workbooks, insert sheets, save files, and so on

 How to navigate through a workbook

 How to use the Excel Ribbon user interface

 How to enter formulas

 How to use Excel’s worksheet functions

 How to name cells and ranges

 How to use basic Windows features, such as file management techniques and the
Clipboard

Introduction2

If you don’t know how to perform the preceding tasks, you could find some of this material over
your head, so consider yourself warned. If you’re an experienced spreadsheet user who hasn’t
used Excel 2010, Chapter 2 presents a brief overview of what this product offers.

What You Need to Have
To make the best use of this book, you need a copy of Excel 2010. Although most of the material
also applies to Excel 2003 and later versions, I assume that you’re using Excel 2010. Although
Excel 2007 and Excel 2010 are radically different from their predecessors, the VBA environment
hasn’t changed at all. If you plan to develop applications that will be used in earlier versions of
Excel, I strongly suggest that you don’t use Excel 2010 for your development work. Rather, use
the earliest version of Excel that the target audience will be using.

This book isn’t intended for any version of Excel for Macintosh. Any computer system that can
run Windows will suffice, but you’ll be much better off with a fast machine with plenty of mem-
ory. Excel is a large program, and using it on a slower system or a system with minimal memory
can be extremely frustrating.

I recommend using a high-resolution video driver (1280 × 1024 is adequate, and 1600 × 1200 is
even better). For optimal results, try a dual-monitor system and place Excel on one screen and
the Visual Basic Editor on the other. You’ll soon become spoiled.

To use the examples on the companion CD, you also need a CD-ROM drive.

Conventions in This Book
Take a minute to skim this section and learn some of the typographic conventions used through-
out this book.

Excel commands
Beginning with Excel 2007, the product features a brand-new “menu-less” user interface. In place
of a menu system, Excel uses a context-sensitive Ribbon system. The words along the top (such
as Insert, View, and so on) are known as tabs. Click a tab, and the Ribbon of icons displays the
commands that are most suited to the task at hand. Each icon has a name that is (usually) dis-
played next to or below the icon. The icons are arranged in groups, and the group name appears
below the icons.

The convention I use in this book is to indicate the tab name, followed by the group name, fol-
lowed by the icon name. So, for example, the command used to toggle word wrap within a cell is
indicated as:

Home➜Alignment➜Wrap Text

Introduction 3

Clicking the first tab, labeled File, takes you to a new screen called Backstage. The Backstage
window has commands along the left side of the window. To indicate Backstage commands, I use
the word File, followed by the command. For example, the following command displays the Excel
Options dialog box:

File➜Excel Options

Visual Basic Editor commands
The Visual Basic Editor is the window in which you work with your VBA code. The VB Editor uses
the traditional menu-and-toolbar interface. A command like the following means to click the
Tools menu and select the References menu item:

Tools➜References

Keyboard conventions
You need to use the keyboard to enter data. In addition, you can work with menus and dialog
boxes directly from the keyboard — a method that you might find easier if your hands are
already positioned over the keys.

Input
Input that you are supposed to type from the keyboard appears in boldface — for example, enter
=SUM(B2: B50) into cell B51.

More lengthy input usually appears on a separate line in a monospace font. For example, I might
instruct you to enter the following formula:

=VLOOKUP(StockNumber,PriceList,2)

VBA code
This book contains many snippets of VBA code, as well as complete procedure listings. Each list-
ing appears in a monospace font; each line of code occupies a separate line. (I copied these list-
ings directly from the VBA module and pasted them into my word processor.) To make the code
easier to read, I often use one or more tabs to create indentations. Indentation is optional, but it
does help to delineate statements that go together.

If a line of code doesn’t fit on a single line in this book, I use the standard VBA line continuation
sequence: At the end of a line, a space followed by an underscore character indicates that the line
of code extends to the next line. For example, the following two lines are a single code statement:

Introduction4

If Right(ActiveCell, 1) = “!” Then ActiveCell _
 = Left(ActiveCell, Len(ActiveCell) - 1)

You can enter this code either on two lines, exactly as shown, or on a single line without the
underscore character.

Functions, filenames, and named ranges
Excel’s worksheet functions appear in uppercase font, like so: “Enter a SUM formula in cell C20.”
VBA procedure names, properties, methods, and objects appear in monospace font: “Execute the
GetTotals procedure.” I often use mixed uppercase and lowercase letters to make these names
easier to read.

I also use the monospace font for filenames and named ranges in a worksheet — for example:
Open myfile.xlsm and select the range named data.

Mouse conventions
If you’re reading this book, you’re well versed in mouse usage. The mouse terminology I use is all
standard fare: pointing, clicking, right-clicking, dragging, and so on.

What the Icons Mean
Throughout the book, I use icons to call your attention to points that are particularly important:

I use this icon to indicate that the material discussed is new to Excel 2010.

I use Note icons to tell you that something is important — perhaps a concept that could
help you master the task at hand or something fundamental for understanding subse-
quent material.

Tip icons indicate a more efficient way of doing something or a technique that might
not be obvious.

These icons indicate that an example file is on the companion CD-ROM. (See “About
the Companion CD-ROM,” later in this Preface.) This CD holds many of the examples
that I show in the book.

Introduction 5

I use Caution icons when the operation that I’m describing can cause problems if you’re
not careful.

I use the Cross-Reference icon to refer you to other chapters that have more to say on
a subject.

How This Book Is Organized
The chapters of this book are grouped into eight main parts.

Part I: Some Essential Background
In this part, I set the stage for the rest of the book. Chapter 1 presents a brief history of spread-
sheets so that you can see how Excel fits into the big picture. In Chapter 2, I offer a conceptual
overview of Excel 2010 — quite useful for experienced spreadsheet users who are switching to
Excel. In Chapter 3, I cover the essentials of formulas, including some clever techniques that
might be new to you. Chapter 4 covers the ins and outs of the various files used and generated
by Excel.

Part II: Excel Application Development
This part consists of just two chapters. In Chapter 5, I broadly discuss the concept of a spread-
sheet application. Chapter 6 goes into more detail and covers the steps typically involved in a
spreadsheet application development project.

Part III: Understanding Visual Basic for Applications
Chapters 7 through 11 make up Part III, and these chapters include everything that you need to
know to learn VBA. In this part, I introduce you to VBA, provide programming fundamentals, and
detail how to develop VBA subroutines and functions. Chapter 11 contains many useful VBA
examples.

Part IV: Working with UserForms
The four chapters in this part cover custom dialog boxes (also known as UserForms). Chapter 12
presents some built-in alternatives to creating custom UserForms. Chapter 13 provides an intro-
duction to UserForms and the various controls that you can use. Chapters 14 and 15 present many
examples of custom dialog boxes, ranging from basic to advanced.

Introduction6

Part V: Advanced Programming Techniques
Part V covers additional techniques that are often considered advanced. The first three chapters
discuss how to develop utilities and how to use VBA to work with pivot tables and charts (includ-
ing the new Sparkline graphics). Chapter 19 covers event handling, which enables you to execute
procedures automatically when certain events occur. Chapter 20 discusses various techniques
that you can use to interact with other applications (such as Word). Chapter 21 concludes Part V
with an in-depth discussion of creating add-ins.

Part VI: Developing Applications
The chapters in Part VI deal with important elements of creating user-oriented applications.
Chapter 22 discusses how to modify the new Ribbon interface. Chapter 23 describes how to
modify Excel’s shortcut menus. Chapter 24 presents several different ways to provide online help
for your applications. In Chapter 25, I present some basic information about developing user-
oriented applications, and I describe such an application in detail.

Part VII: Other Topics
The six chapters in Part VII cover additional topics. Chapter 26 presents information regarding
compatibility. In Chapter 27, I discuss various ways to use VBA to work with files. In Chapter 28, I
explain how to use VBA to manipulate Visual Basic components such as UserForms and modules.
Chapter 29 covers the topic of class modules. Chapter 30 explains how to work with color in
Excel. I finish the part with a useful chapter that answers many common questions about Excel
programming.

Part VIII: Appendixes
Four appendixes round out the book. Appendix A contains useful information about Excel
resources online. Appendix B is a reference guide to all VBA’s keywords (statements and func-
tions). I explain VBA error codes in Appendix C, and Appendix D describes the files available on
the companion CD-ROM.

About the Companion CD-ROM
The inside back cover of this book contains a CD-ROM that holds many useful examples that I
discuss in the text. When I write about computer-related material, I emphasize learning by exam-
ple. I know that I learn more from a well-thought-out example than from reading a dozen pages
in a book. I assume that this is true for many other people. Consequently, I spent more time
developing the examples on the CD-ROM than I did writing chapters.

Introduction 7

The files on the companion CD-ROM aren’t compressed, so you can access them directly from
the CD.

Refer to Appendix D for a description of each file on the CD-ROM.

About the Power Utility Pak Offer
Toward the back of the book, you’ll find a coupon that you can redeem for a discounted copy of
my popular Power Utility Pak software. PUP is an award-winning collection of useful Excel utili-
ties and many new worksheet functions. I developed this package exclusively with VBA.

I think you’ll find this product useful in your day-to-day work with Excel. You can also purchase
the complete VBA source code for a nominal fee. Studying the code is an excellent way to pick
up some useful programming techniques.

You can take Power Utility Pak for a test drive by installing the 30-day trial version available at
my Web site:

http://spreadsheetpage.com

How to Use This Book
You can use this book any way that you please. If you choose to read it from cover to cover, be
my guest. But because I’m dealing with intermediate-to-advanced subject matter, the chapter
order is often immaterial. I suspect that most readers will skip around, picking up useful tidbits
here and there. If you’re faced with a challenging task, you might try the index first to see
whether the book specifically addresses your problem.

Reach Out
The publisher and I want your feedback. After you’ve had a chance to use this book, please take
a moment to visit the Wiley Publishing Web site to give us your comments. (Go to www.wiley.
com and then click the Contact Us link.) Please be honest in your evaluation. If you thought a par-
ticular chapter didn’t tell you enough, let us know. Of course, I would prefer to receive comments
like, “This is the best book I’ve ever read,” or “Thanks to this book, I was promoted and now make
$124,000 a year.”

www.wiley.com

Introduction8

I get at least a half dozen questions every day, via e-mail, from people who have read my books. I
appreciate the feedback. Unfortunately, I simply don’t have the time to reply to specific ques-
tions. Appendix A provides a good list of sources that can answer your questions.

I also invite you to visit my Web site, which contains lots of Excel-related material. The URL is

http://spreadsheetpage.com

PART I
Some Essential
Background
CHAPTER 1
Excel 2010: Where It Came From

CHAPTER 2
Excel in a Nutshell

CHAPTER 3
Formula Tricks and Techniques

CHAPTER 4
Understanding Excel’s Files

11

1
Excel 2010: Where It
Came From
In This Chapter

● Exploring the history of spreadsheets

● Discussing Excel’s evolution

● Analyzing why Excel is a good tool for developers

A Brief History of Spreadsheets
Most people tend to take spreadsheet software for granted. In fact, it may be hard to fathom, but
there really was a time when electronic spreadsheets weren’t available. Back then, people relied
instead on clumsy mainframes or calculators and spent hours doing what now takes minutes.

It all started with VisiCalc
The world’s first electronic spreadsheet, VisiCalc, was conjured up by Dan Bricklin and Bob
Frankston back in 1978, when personal computers were pretty much unheard of in the office
environment. VisiCalc was written for the Apple II computer, which was an interesting little
machine that is something of a toy by today’s standards. (But in its day, the Apple II kept me
mesmerized for days at a time.) VisiCalc essentially laid the foundation for future spreadsheets,
and you can still find its row-and-column-based layout and formula syntax in modern spread-
sheet products. VisiCalc caught on quickly, and many forward-looking companies purchased the
Apple II for the sole purpose of developing their budgets with VisiCalc. Consequently, VisiCalc is
often credited for much of the Apple II’s initial success.

In the meantime, another class of personal computers was evolving; these PCs ran the CP/M
operating system. A company called Sorcim developed SuperCalc, which was a spreadsheet that
also attracted a legion of followers.

Part I: Some Essential Background12

When the IBM PC arrived on the scene in 1981, legitimizing personal computers, VisiCorp wasted
no time porting VisiCalc to this new hardware environment, and Sorcim soon followed with a PC
version of SuperCalc.

By current standards, both VisiCalc and SuperCalc were extremely crude. For example, text
entered into a cell couldn’t extend beyond the cell — a lengthy title had to be entered into multi-
ple cells. Nevertheless, the ability to automate the budgeting tedium was enough to lure thou-
sands of accountants from paper ledger sheets to floppy disks.

You can download a copy of the original VisiCalc from Dan Bricklin’s Web site at www.
bricklin.com. And yes, nearly 30 years later, this 27K program still runs on today’s
PCs (see Figure 1-1).

Figure 1-1: VisiCalc, running in a DOS window on a PC running Windows XP.

Lotus 1-2-3
Envious of VisiCalc’s success, a small group of computer freaks at a start-up company in
Cambridge, Massachusetts, refined the spreadsheet concept. Headed by Mitch Kapor and
Jonathan Sachs, the company designed a new product and launched the software industry’s first
full-fledged marketing blitz. I remember seeing a large display ad for 1-2-3 in The Wall Street
Journal. It was the first time that I’d ever seen software advertised in a general interest publication.

Released in January 1983, Lotus Development Corporation’s 1-2-3 was an instant success. Despite
its $495 price tag (which is probably close to $1,000 in today’s dollars), it quickly outsold
VisiCalc, rocketing to the top of the sales charts, where it remained for many years.

What Lotus did right
Lotus 1-2-3 improved on all the basics embodied in VisiCalc and SuperCalc and was also the first
program to take advantage of the new and unique features found in the powerful 16-bit IBM PC
AT. For example, 1-2-3 bypassed the slower DOS calls and wrote text directly to display memory,

Chapter 1: Excel 2010: Where It Came From 13

giving it a snappy and responsive feel that was unusual for the time. The online help system was
a breakthrough, and the ingenious “moving bar” menu style set the standard for many years.

One feature that really set 1-2-3 apart, though, was its macro capability — a powerful tool that
enabled spreadsheet users to record their keystrokes to automate many procedures. When such
a macro was “played back,” the original keystrokes were sent to the application, and it was like a
super-fast typist was at the keyboard. Although a far cry from today’s macro capability, 1-2-3
macros were definitely a step in the right direction.

1-2-3 was not the first integrated package, but it was the first successful one. It combined (1) a
powerful electronic spreadsheet with (2) elementary graphics and (3) some limited but handy
database features. Easy as 1, 2, 3 — get it?

Lotus followed up the original 1-2-3 Release 1 with Release 1A in April 1983. This product enjoyed
tremendous success and put Lotus in the enviable position of virtually owning the spreadsheet
market. In September 1985, Release 1A was replaced by Release 2, which was a major upgrade
that was superseded by the bug-fixed Release 2.01 the following July. Release 2 introduced add-
ins, which are special-purpose programs that can be attached to give an application new features
and extend the application’s useful life. Release 2 also had improved memory management, more
functions, 8,192 rows (four times as many as its predecessor), and added support for a math
coprocessor. Release 2 also included some significant enhancements to the macro language.

Not surprisingly, the success of 1-2-3 spawned many clones — work-alike products that usually
offered a few additional features and sold at a much lower price. Among the more notable were
Paperback Software’s VP Planner series and Mosaic Software’s Twin. Lotus eventually took legal
action against Paperback Software for copyright infringement (for copying the “look and feel” of
1-2-3); the successful suit essentially put Paperback out of business.

In the summer of 1989, Lotus shipped DOS and OS/2 versions of the long-delayed 1-2-3 Release
3. This product literally added a dimension to the familiar row-and-column-based spreadsheet: It
extended the paradigm by adding multiple spreadsheet pages. The idea wasn’t really new, how-
ever; a relatively obscure product called Boeing Calc originated the 3-D spreadsheet concept,
and SuperCalc 5 and CubeCalc also incorporated it.

1-2-3 Release 3 offered features that users wanted — features that ultimately became standard
fare: multilayered worksheets, the capability to work with multiple files simultaneously, file link-
ing, improved graphics, and direct access to external database files. But it still lacked an impor-
tant feature that users were begging for: a way to produce high-quality printed output.

Release 3 began life with a reduced market potential because it required an 80286-based PC and
a minimum of 1MB of RAM — fairly hefty requirements in 1989. But Lotus had an ace up its corpo-
rate sleeve. Concurrent with the shipping of Release 3, the company surprised nearly everyone
by announcing an upgrade of Release 2.01. (The product materialized a few months later as 1-2-3
Release 2.2.) Release 3 was not a replacement for Release 2, as most analysts had expected.
Rather, Lotus made the brilliant move of splitting the spreadsheet market into two segments:
those with high-end hardware and those with more mundane equipment.

Part I: Some Essential Background14

Too little, too late
1-2-3 Release 2.2 wasn’t a panacea for spreadsheet buffs, but it was a significant improvement.
The most important Release 2.2 feature was Allways, an add-in that gave users the ability to churn
out attractive reports, complete with multiple typefaces, borders, and shading. In addition, users
could view the results on-screen in a WYSIWYG (What You See Is What You Get) manner. Allways
didn’t, however, let users issue any worksheet commands while they viewed and formatted their
work in WYSIWYG mode. Despite this rather severe limitation, many 1-2-3 users were overjoyed
with this new capability because they could finally produce near-typeset-quality output.

In May 1990, Microsoft released Windows 3.0. As you probably know, Windows changed the way
that people used personal computers. Apparently, the decision-makers at Lotus weren’t con-
vinced that Windows was a significant product, and the company was slow getting out of the
gate with its first Windows spreadsheet, 1-2-3 for Windows, which wasn’t introduced until late
1991. Worse, this product was, in short, a dud. It didn’t really capitalize on the Windows environ-
ment and disappointed many users. It also disappointed at least one book author. My very first
book was titled PC World 1-2-3 For Windows Complete Handbook (Wiley). I think it sold fewer
than 1,000 copies.

Serious competition from Lotus never materialized. Consequently, Excel, which had already
established itself as the premier Windows spreadsheet, became the overwhelming Windows
spreadsheet market leader and has never left that position. Lotus came back with 1-2-3 Release 4
for Windows in June 1993, which was a vast improvement over the original. Release 5 for
Windows appeared in mid-1994.

Also in mid-1994, Lotus unveiled 1-2-3 Release 4.0 for DOS. Many analysts (including myself)
expected a product more compatible with the Windows product. But we were wrong; DOS
Release 4.0 was simply an upgraded version of Release 3.4. Because of the widespread accep-
tance of Windows, that was the last DOS version of 1-2-3 to see the light of day.

Over the years, spreadsheets became less important to Lotus. In mid-1995, IBM purchased Lotus
Development Corporation. Additional versions of 1-2-3 became available, but it seems to be a
case of too little, too late. The current version is Release 9.8. Excel clearly dominates the spread-
sheet market, and 1-2-3 users are an increasingly rare breed.

Quattro Pro
The other significant player in the spreadsheet world is (or, I should say, was) Borland
International. Borland started in spreadsheets in 1987 with a product called Quattro. Word has it
that the internal code name was Buddha because the program was intended to “assume the
Lotus position” in the market (that is, #1). Essentially a clone of 1-2-3, Quattro offered a few addi-
tional features and an arguably better menu system at a much lower price. Importantly, users
could opt for a 1-2-3-like menu system that let them use familiar commands and also ensured
compatibility with 1-2-3 macros.

In the fall of 1989, Borland began shipping Quattro Pro, which was a more powerful product that
built upon the original Quattro and trumped 1-2-3 in just about every area. For example, the first
Quattro Pro let you work with multiple worksheets in movable and resizable windows — although

Chapter 1: Excel 2010: Where It Came From 15

it did not have a graphical user interface (GUI). More trivia: Quattro Pro was based on an obscure
product called Surpass, which Borland acquired.

Released in late 1990, Quattro Pro Version 2.0 added 3-D graphs and a link to Borland’s Paradox
database. A mere six months later — much to the chagrin of Quattro Pro book authors — Version
3.0 appeared, featuring an optional graphical user interface and a slide show feature. In the
spring of 1992, Version 4 appeared with customizable SpeedBars and an innovative analytical
graphics feature. Version 5, which came out in 1994, had only one significant new feature: work-
sheet notebooks (that is, 3-D worksheets).

Like Lotus, Borland was slow to jump on the Windows bandwagon. When Quattro Pro for
Windows finally shipped in the fall of 1992, however, it provided some tough competition for the
other two Windows spreadsheets, Excel 4.0 and 1-2-3 Release 1.1 for Windows. Importantly,
Quattro Pro for Windows had an innovative feature, known as the UI Builder, that let developers
and advanced users easily create custom user interfaces.

Also worth noting was a lawsuit between Lotus and Borland. Lotus won the suit, forcing Borland
to remove the 1-2-3 macro compatibility and 1-2-3 menu option from Quattro Pro. This ruling was
eventually overturned in late 1994, however, and Quattro Pro can now include 1-2-3 compatibility
features (as if anyone really cares). Both sides spent millions of dollars on this lengthy legal fight,
and when the dust cleared, no real winner emerged.

Borland followed up the original Quattro Pro for Windows with Version 5. In 1994, Novell pur-
chased WordPerfect International and Borland’s entire spreadsheet business, and Version 6 was
released.

In 1996, WordPerfect and Quattro Pro were both purchased by Corel Corporation. As I write, the
current version of Quattro Pro is Version 14, which is part of WordPerfect Office X4.

There was a time when Quattro Pro seemed the ultimate solution for spreadsheet developers.
But then Excel 5 arrived.

Microsoft Excel
And now on to the good stuff.

Most people don’t realize that Microsoft’s experience with spreadsheets extends back to the early
’80s. Over the years, Microsoft’s spreadsheet offerings have come a long way, from the barely
adequate MultiPlan to the powerful Excel 2010.

It started with MultiPlan
In 1982, Microsoft released its first spreadsheet, MultiPlan. Designed for computers running the
CP/M operating system, the product was subsequently ported to several other platforms, includ-
ing Apple II, Apple III, XENIX, and MS-DOS.

MultiPlan essentially ignored existing software user-interface standards. Difficult to learn and use,
it never earned much of a following in the United States. Not surprisingly, Lotus 1-2-3 pretty
much left MultiPlan in the dust.

Part I: Some Essential Background16

Excel arrives
Excel sort of evolved from MultiPlan, first surfacing in 1985 on the Macintosh. Like all Mac applica-
tions, Excel was a graphics-based program (unlike the character-based MultiPlan). In November
1987, Microsoft released the first version of Excel for Windows (labeled Excel 2.0 to correspond
with the Macintosh version). Because Windows wasn’t in widespread use at the time, this version
included a runtime version of Windows — a special version that had just enough features to run
Excel and nothing else. Less than a year later, Microsoft released Excel Version 2.1. In July 1990,
Microsoft released a minor upgrade (2.1d) that was compatible with Windows 3.0. Although
these 2.x versions were quite rudimentary by current standards (see Figure 1-2) and didn’t have
the attractive, sculpted look of later versions, they attracted a small but loyal group of supporters
and provided an excellent foundation for future development.

Excel’s first macro language also appeared in Version 2.The XLM macro language consisted of
functions that were evaluated in sequence. It was quite powerful, but very difficult to learn and
use. The XLM macro language was replaced by Visual Basic for Applications (VBA), which is the
topic of this book. However, Excel 2010 still supports XLM macros.

Figure 1-2: The original Excel 2.1 for Windows. This product has come a long way.
(Photo courtesy of Microsoft)

Chapter 1: Excel 2010: Where It Came From 17

Meanwhile, Microsoft developed a version of Excel (numbered 2.20) for OS/2 Presentation
Manager, released in September 1989 and upgraded to Version 2.21 about 10 months later. OS/2
never quite caught on, despite continued efforts by IBM.

In December 1990, Microsoft released Excel 3 for Windows, which boasted a significant improve-
ment in both appearance and features (see Figure 1-3). The upgrade included a toolbar, drawing
capabilities, a powerful optimization feature (Solver), add-in support, Object Linking and
Embedding (OLE) support, 3-D charts, macro buttons, simplified file consolidation, workgroup
editing, and the ability to wrap text in a cell. Excel 3 also had the capability to work with external
databases (via the Q+E program). The OS/2 version upgrade appeared five months later.

Figure 1-3: Excel 3 was a vast improvement over the original release.
(Photo courtesy of Microsoft)

Version 4, released in the spring of 1992, not only was easier to use but also had more power and
sophistication for advanced users (see Figure 1-4). Excel 4 took top honors in virtually every
spreadsheet product comparison published in the trade magazines. In the meantime, the rela-
tionship between Microsoft and IBM became increasingly strained, and Microsoft stopped making
versions of Excel for OS/2.

Part I: Some Essential Background18

Figure 1-4: Excel 4 was another significant step forward, although still far from Excel 5.
(Photo courtesy of Microsoft)

VBA is born
Excel 5 hit the streets in early 1994 and immediately earned rave reviews. Like its predecessor, it
finished at the top of every spreadsheet comparison published in the leading trade magazines.
Despite stiff competition from 1-2-3 Release 5 for Windows and Quattro Pro for Windows 5 —
both were fine products that could handle just about any spreadsheet task thrown their way —
Excel 5 continued to rule the roost. This version, by the way, was the first to feature VBA.

Excel 95 (also known as Excel 7) was released concurrently with Microsoft Windows 95.
(Microsoft skipped over Version 6 to make the version numbers consistent across its Office prod-
ucts.) On the surface, Excel 95 didn’t appear to be much different from Excel 5. Much of the core
code was rewritten, however, and speed improvements were apparent in many areas.
Importantly, Excel 95 used the same file format as Excel 5, which is the first time that an Excel
upgrade didn’t use a new file format. This compatibility wasn’t perfect, however, because Excel
95 included a few enhancements in the VBA language. Consequently, it was possible to develop
an application using Excel 95 that would load but not run properly in Excel 5.

Chapter 1: Excel 2010: Where It Came From 19

In early 1997, Microsoft released Office 97, which included Excel 97. Excel 97 is also known as
Excel 8. This version included dozens of general enhancements plus a completely new interface
for developing VBA-based applications. In addition, the product offered a new way of developing
custom dialog boxes (called UserForms rather than dialog sheets). Microsoft tried to make Excel
97 compatible with previous versions, but the compatibility was far from perfect. Many applica-
tions that were developed using Excel 5 or Excel 95 required some tweaking before they would
work with Excel 97 or later versions.

I discuss compatibility issues in Chapter 26.

Excel 2000 was released in early 1999 and was also sold as part of Office 2000. The enhance-
ments in Excel 2000 dealt primarily with Internet capabilities, although a few significant changes
were apparent in the area of programming.

Excel 2002 (sometimes known as Excel XP) hit the market in mid-2001. Like its predecessor, it
didn’t offer many significant new features. Rather, it incorporated a number of minor new fea-
tures and several refinements of existing features. Perhaps the most compelling new feature was
the ability to repair damaged files and save your work when Excel crashed.

Excel 2003 (released in fall 2003) was perhaps the most disappointing upgrade ever. This ver-
sion had very few new features. Microsoft touted the ability to import and export eXtensible
Markup Language (XML) files and map the data to specific cells in a worksheet — but very few
users actually needed such a feature. In addition, Microsoft introduced some “rights manage-
ment” features that let you place restrictions on various parts of a workbook (for example, allow
only certain users to view a particular worksheet). In addition, Excel 2003 had a new Help system
(which put the Help contents in the task pane) and a new “research” feature that lets you look up
a variety of information in the task pane. (Some of these required a fee-based account.)

For some reason, Microsoft chose to offer two sub-versions of Excel 2003. The XML and
rights management features are available only in the stand-alone version of Excel and
in the version of Excel that’s included with the Professional version of Office 2003.
Because of this, Excel developers may now need to deal with compatibility issues
within a particular version!

A new user interface
Excel 2007 (Version 12) became available in late 2006 and was part of the Microsoft 2007 Office
System. In terms of user interface, this upgrade was clearly the most significant ever. A new
Ribbon UI replaced menus and toolbars. In addition, the Excel 2007 grid size is 1,000 times larger
than in previous versions, and the product uses a new open XML file format. Other improvements
include improved tables, conditional formatting enhancements, major cosmetic enhancements
for charts, and document themes.

Part I: Some Essential Background20

Reaction to the new UI was mixed. Some users loved it, others hated it. Several companies even
created add-ins that allowed Excel 2007 users to revert to the old menu system. Clearly, Excel
2007 is easier for beginners, but long-time users may spend a lot of time wondering where to
find their old commands.

The current version, Excel 2010, is part of Microsoft 2010 Office System. Apparently, the decision-
makers at Microsoft are a bit superstitious. They skipped Version 13, and went straight to Version 14.

Excel 2010 features enhancements in pivot tables, conditional formatting, and image editing. The
product now supports in-cell charts called sparklines and the ability to preview pasting before
committing to it. A new backstage feature is devoted to document-related tasks, such as saving
and printing. In addition, end users can now customize the Ribbon. And finally, dozens of new
worksheet functions are available — mostly highly specialized functions that replace old functions
that had some accuracy problems.

Current Competition
So there you have it: More than three decades of spreadsheet history condensed into a few
pages. It has been an interesting ride, and I’ve been fortunate enough to have been involved with
spreadsheets the entire time.

Things have changed. Microsoft not only dominates the spreadsheet market, it virtually owns it.
What little competition exists is primarily in the form of free open-source products, such as
OpenOffice and StarOffice. Increasingly, you hear about Web-based spreadsheets, such as
Google Spreadsheets (see Figure 1-5). Microsoft has responded, and now has its own Web-based
version of Excel and other Office 2010 applications.

In the final analysis, Microsoft’s biggest competitor is probably itself. Users tend to settle on a
particular version of Excel, and if things are working well, they have very little motivation to
upgrade. Convincing users to upgrade to a new version that provides only a few advantages is
one of Microsoft’s biggest challenges.

Why Excel Is Great for Developer s
Excel is a highly programmable product, and it’s easily the best choice for developing
 spreadsheet-based applications.

Chapter 1: Excel 2010: Where It Came From 21

Figure 1-5: A Web-based spreadsheet from Google.

For developers, Excel’s key features include the following:

 File structure: The multisheet orientation makes it easy to organize an application’s ele-
ments and store them in a single file. For example, a single workbook file can hold any
number of worksheets and chart sheets. UserForms and VBA modules are stored with a
workbook but are invisible to the end user.

 Visual Basic for Applications: This macro language lets you create structured programs
directly in Excel. This book focuses on using VBA, which, as you’ll discover, is extremely
powerful and relatively easy to learn.

Part I: Some Essential Background22

 Easy access to controls: Excel makes it very easy to add controls, such as buttons, list
boxes, and option buttons, to a worksheet. Implementing these controls often requires
little or no macro programming.

 Custom dialog boxes: You can easily create professional-looking dialog boxes by creat-
ing UserForms.

 Custom worksheet functions: With VBA, you can create custom worksheet functions to
simplify formulas and calculations.

 Customizable user interface: Developers have lots of control over the user interface. In
previous versions, changing the interface involved creating custom menus and toolbars.
Beginning with Excel 2007, it involves modifying the Ribbon. Changing the Ribbon inter-
face is not as easy as it was in previous versions, but you can still do it.

 Customizable shortcut menus: Using VBA, you can customize the right-click, context-
sensitive shortcut menus.

 Powerful data analysis options: Excel’s PivotTable feature makes it easy to summarize
large amounts of data with very little effort. The data can reside in a worksheet or in an
external database.

 Microsoft Query: You can access important data directly from the spreadsheet environ-
ment. Data sources include standard database file formats, text files, and Web pages.

 Extensive protection options: Your applications can be kept confidential and protected
from changes by casual users.

 Ability to create add-ins: With a single command, you can create add-in files that bring
new features to Excel.

 Support for automation: With VBA, you can control other applications that support auto-
mation. For example, your VBA macro can generate a report in Microsoft Word.

 Ability to create Web pages: You can easily create a HyperText Markup Language
(HTML) document from an Excel workbook. The HTML is very bloated, but it’s readable
by Web browsers.

Excel’s Role in Microsoft’s Strategy
Currently, most copies of Excel are sold as part of Microsoft Office — a suite of products that
includes a variety of other programs. (The exact programs that you get depend on which version
of Office you buy.) Obviously, it helps if the programs can communicate well with each other.
Microsoft is at the forefront of this trend. All the Office products have extremely similar user
interfaces, and all support VBA.

Therefore, after you hone your VBA skills in Excel, you’ll be able to put them to good use in other
applications — you just need to learn the object model for the other applications.

23

2
Excel in a Nutshell
In This Chapter

● Introducing Excel’s object orientation

● Gaining a conceptual overview of Excel, including a description of its major features

● Discovering the new features in Excel 2010

● Taking advantage of helpful tips and techniques

Thinking in Terms of Objects
When you’re developing applications with Excel (especially when you’re dabbling with Visual
Basic for Applications — VBA), it’s helpful to think in terms of objects, or Excel elements that you
can manipulate manually or via a macro. Here are some examples of Excel objects:

 The Excel application

 An Excel workbook

 A worksheet in a workbook

 A range or a table in a worksheet

 A ListBox control on a UserForm (a custom dialog box)

 A chart embedded in a worksheet

 A chart series in a chart

 A particular data point in a chart

You may notice that an object hierarchy exists here: The Excel object contains workbook objects,
which contain worksheet objects, which contain range objects. This hierarchy comprises Excel’s
object model. Excel has more than 200 classes of objects that you can control directly or by
using VBA. Other Microsoft Office products have their own object models.

Part I: Some Essential Background24

Controlling objects is fundamental to developing applications. Throughout this book,
you find out how to automate tasks by controlling Excel’s objects, and you do so by
using VBA. This concept becomes clearer in subsequent chapters.

Workbooks
The most common Excel object is a workbook. Everything that you do in Excel takes place in a
workbook, which is stored in a file that, by default, has an XLSX extension. An Excel workbook
can hold any number of sheets (limited only by memory). There are four types of sheets:

 Worksheets

 Chart sheets

 Excel 4.0 XLM macro sheets (obsolete, but still supported)

 Excel 5.0 dialog sheets (obsolete, but still supported)

You can open or create as many workbooks as you like (each in its own window), but at any
given time, only one workbook is the active workbook. Similarly, only one sheet in a workbook is
the active sheet. To activate a sheet, click its sheet tab at the bottom of the screen. To change a
sheet’s name, double-click the tab and enter the new text. Right-clicking a tab brings up a short-
cut menu with additional options for the sheet, including changing its tab color, hiding the sheet,
and so on.

You can also hide the window that contains a workbook by using the View➜Window➜Hide com-
mand. A hidden workbook window remains open, but it isn’t visible to the user. Use the
View➜Window➜Unhide command to make the window visible again. A single workbook can dis-
play in multiple windows (choose View➜Window➜New Window). Each window can display a
different sheet or a different area of the same sheet.

Worksheets
The most common type of sheet is a worksheet, which is what people normally think of when
they think of a spreadsheet. Worksheets contain cells, and the cells store data and formulas.

Excel 2010 worksheets have 16,384 columns and 1,048,576 rows. You can hide unneeded rows
and columns to keep them out of view, but you can’t increase or decrease the number of rows or
columns.

Versions prior to Excel 2007 used the XLS binary format, and worksheets had only
65,536 rows and 256 columns. If you open such a file, Excel 2010 automatically enters
compatibility mode in order to work with the smaller worksheet grid. To convert such a
file to the new format, save it as an XLSX or XLSM file. Then close the workbook and re-
open it.

Chapter 2: Excel in a Nutshell 25

How big is a worksheet?
It’s interesting to stop and think about the actual size of a worksheet. Do the arithmetic (16,384 ×
1,048,576), and you’ll see that a worksheet has 17,179,869,184 cells. Remember that this is in just one
worksheet. A single workbook can hold more than one worksheet.

If you’re using a 1600 x 1200 video mode with the default row heights and column widths, you can see
24 columns and 49 rows (or 1,176 cells) at a time — which is about .0000068 percent of the entire
worksheet. In other words, more than 14.6 million screens of information reside within a single work-
sheet.

If you entered a single digit into each cell at the relatively rapid clip of one cell per second, it would
take you over 500 years, nonstop, to fill up a worksheet. To print the results of your efforts would
require more than 36 million sheets of paper — a stack about 12,000 feet high. (That’s ten Empire
State Buildings stacked on top of each other.)

As you might suspect, filling an entire workbook with values is impossible. It’s not even close to being
possible. Even if you use the 64-bit version of Excel, you’d soon run out of memory, and Excel would
probably crash.

The real value of using multiple worksheets in a workbook isn’t access to more cells. Rather, mul-
tiple worksheets enable you to organize your work better. Back in the old days, when a file com-
prised a single worksheet, developers wasted a lot of time trying to organize the worksheet to
hold their information efficiently. Now you can store information on any number of worksheets
and still access it instantly by clicking a sheet tab.

By default, every new workbook starts out with three worksheets. You can easily add a
new sheet when necessary, so you really don’t need to start with three sheets. You may
want to change this default to a single sheet. To change this option, use the
Office➜Excel Options command, click the General tab, and change the setting for the
option labeled Include This Many Sheets.

As you know, a worksheet cell can hold a constant value or the result of a formula. The value may
be a number, a date, a Boolean value (True or False), or text. Every worksheet also has an invisi-
ble drawing layer, which lets you insert graphic objects, such as charts, shapes, SmartArt,
UserForm controls, pictures, and other embedded objects.

You have complete control over the column widths and row heights — in fact, you can even hide
rows and columns (as well as entire worksheets). You can specify any font size, and you have
complete control over colors. You can display text in a cell vertically (or at an angle) and even
wrap it around to occupy multiple lines. In addition, you can merge a group of cells to create a
single larger cell.

In the past, Excel was limited to a palette of 56 colors. Beginning with Excel 2007, the
number of colors has been virtually unlimited. In addition, Excel 2007 introduced docu-
ment themes. A single click lets you apply a new theme to a workbook, which can give
it an entirely different look.

Part I: Some Essential Background26

Chart sheets
A chart sheet normally holds a single chart. Many users ignore chart sheets, preferring to store
charts on the worksheet’s drawing layer. Using chart sheets is optional, but they make it a bit
easier to print a chart on a page by itself, and they’re especially useful for presentations. Figure
2-1 shows a pie chart on a chart sheet.

Figure 2-1: A pie chart on a chart sheet.

XLM macro sheets
An XLM macro sheet (also known as an MS Excel 4 macro sheet) is essentially a worksheet, but it
has some different defaults. More specifically, an XLM macro sheet displays formulas rather than
the results of formulas. In addition, the default column width is larger than in a normal worksheet.

As the name suggests, an XLM macro sheet is designed to hold XLM macros. As you may know,
the XLM macro system is a holdover from previous versions of Excel (Version 4.0 and earlier).
Excel 2010 continues to support XLM macros for compatibility reasons — although it no longer
provides the option of recording an XLM macro. This book doesn’t cover the XLM macro system;
instead, it focuses on the more powerful VBA macro system.

Chapter 2: Excel in a Nutshell 27

What’s new in Excel 2010?
Here’s a quick overview of the new features in Excel 2010:

● 64-bit version: If your hardware and Windows version supports it, you can install the 64-bit
version, which lets you create larger workbooks. You might experience some incompatible
macros and add-ins. Specifically, macros that use 32-bit Windows API calls won’t work in
64-bit Excel 2010. In most cases, however, you can modify the code so that the API calls
work with both versions of Excel.

● Sparkline charts: Create small in-cell charts to summarize a range of data graphically.
● Slicers: A slicer is a new way to filter and display data in pivot tables.
● New pivot table formatting options: You have more control over the appearance of pivot

table reports.
● Office button changes: The big round Office button in Excel 2007 has been replaced by a

File button, displayed to the left of the tabs. Clicking it displays Office Backstage, a screen
that lets you perform various operations on your workbook. This view essentially replaces
the traditional File and Print menus — plus quite a bit more.

● Conditional formatting enhancements: Data bar conditional formatting can display in a
solid color, and the bars provide a more accurate display and support negative values.

● Function enhancements: Some of Excel’s worksheet financial and statistical functions
have been improved in terms of numerical accuracy. These functions have new names, and
the old versions are still available for compatibility.

● Image-editing enhancements: You have much more control over graphic images inserted
into a workbook, including the ability to remove non-essential parts from the background
of an image.

● Screen capture tool: You can easily capture a window from a different program and insert
the image on a worksheet.

● Paste preview: When you copy a range, the Paste command displays various options with
a live preview so that you can see how the paste operation will look.

● Ribbon customization: End users can customize the Ribbon by adding new tabs and
groups. Unfortunately, it’s still not possible to customize the Ribbon using VBA.

● Equation editor: You can create and display (noncalculating) mathematical equations and
embed them on a worksheet.

● Faster: Microsoft made some improvements to the calculation engine, and files load a bit faster.
● New security features: Workbooks downloaded from the Internet or from e-mail attach-

ments are opened in Protected View mode. You can designate workbooks as trusted, and
they don’t need to reside in special trusted folders.

● Solver: Excel 2010 includes a new version of the Solver add-in.
● Enhancements to VBA: You can now perform operations that used to require old XLM

macros directly using VBA macro commands. In addition, macro recording now works for
operations such as chart and shape formatting.

Part I: Some Essential Background28

Excel 5/95 dialog sheets
In Excel 5 and Excel 95, you created a custom dialog box by inserting a special dialog sheet.
Excel 97 and later versions still support these dialog sheets, but a much better alternative is avail-
able: UserForms. You work with UserForms in the Visual Basic Editor (VBE).

If you open a workbook that contains an Excel 5/95 dialog sheet, you can access the dialog sheet
by clicking its tab.

I don’t discuss Excel 5/95 dialog sheets in this book.

Excel’s User Interface
A user interface (UI) is the means by which an end user communicates with a computer program.
Generally speaking, a UI includes elements such as menus, toolbars, dialog boxes, keystroke com-
binations, and so on.

The release of Office 2007 signaled the end of traditional menus and toolbars. The UI for Excel
consists of the following elements:

 The Ribbon

 The Quick Access toolbar

 Right-click shortcut menus

 Dialog boxes

 Keyboard shortcuts

 Smart Tags

 Task pane

About the Ribbon
In Office 2007, Microsoft introduced an entirely new UI for its product. Menus and toolbars are
gone, replaced with a tab and Ribbon UI. Click a tab along the top (that is, a word such as Home,
Insert, or Page Layout), and the Ribbon displays the commands for that tab. Office 2007 was the
first software in history to use this new interface, and a few other companies have incorporated
this new UI style in their products.

The appearance of the commands on the Ribbon varies, depending on the width of the Excel
window. When the window is too narrow to display everything, the commands adapt and may
seem to be missing. But the commands are still available. Figure 2-2 shows the Home tab of
the Ribbon with all controls fully visible. Figure 2-3 shows the Ribbon when Excel’s window is

Chapter 2: Excel in a Nutshell 29

narrower. Notice that some of the descriptive text is gone, but the icons remain. Figure 2-4
shows the extreme case, in which the window is very narrow. Some of the groups display a single
icon. However, if you click the icon, all the group commands are available to you.

Figure 2-2: The Home tab of the Ribbon.

Figure 2-3: The Home tab when Excel’s window is narrower.

Figure 2-4: The Home tab when Excel’s window is very narrow.

If you’d like to hide the Ribbon to increase your worksheet view, just double-click any
of the tabs. The Ribbon goes away, and you’ll be able to see about four additional rows
of your worksheet. When you need to use the Ribbon again, just click any tab, and it
comes back. You can also press Ctrl+F1 to toggle the Ribbon display or use the ^ con-
trol, to the left of the Help icon in the tab bar.

Contextual tabs
In addition to the standard tabs, Excel includes contextual tabs. Whenever an object (such as a
chart, a table, a picture, or SmartArt) is selected, tools for working with that specific object are
made available in the Ribbon.

Figure 2-5 shows the contextual tabs that appear when an embedded equation is selected. In this
case, Excel displays two contextual tabs: Format (for working with object) and Design (for work-
ing with the equation). Notice that the contextual tabs contain a description (Drawing Tools and
Equation Tools) in Excel’s title bar. When contextual tabs are displayed, you can, of course, con-
tinue to use all the other tabs.

Part I: Some Essential Background30

Figure 2-5: When you select an object, contextual tabs contain tools for working with that object.

Types of commands on the Ribbon
For the most part, the commands in the Ribbon work just as you’d expect them to. You’ll encoun-
ter several different styles of commands on the Ribbon:

 Simple buttons: Click the button, and it does its thing. An example of a simple button is
the Increase Font Size button in the Font group of the Home tab. Some buttons perform
the action immediately; others display a dialog box so that you can enter additional infor-
mation. Button controls may or may not be accompanied by text.

 Toggle buttons: A toggle button is clickable and also conveys some type of information
by displaying two different colors. An example is the Bold button in the Font group of the
Home tab. If the active cell isn’t bold, the Bold button displays in its normal color. But if
the active cell is already bold, the Bold button displays a different background color. If
you click this button, it toggles the Bold attribute for the selection.

 Simple drop-downs: If the Ribbon command has a small downward-pointing arrow, then
the command is a drop-down list. Click it, and additional commands appear below it. An
example of a simple drop-down is the Merge and Center command in the Alignment
group of the Home Tab. When you click this control, you see four options related to
merging and centering information.

Chapter 2: Excel in a Nutshell 31

 Split buttons: A split button control combines a one-click button (on the top) with a
drop-down (on the bottom). If you click the button part, the command is executed. If you
click the drop-down part, you choose from a list of related commands. You can identify a
split button because it displays in two colors when you hover the mouse over it. An
example of a split button is the Paste command in the Clipboard group of the Home tab.
Clicking the top part of this control pastes the information from the Clipboard. If you click
the bottom part of the control, you get a list of paste-related commands (see Figure 2-6).

 Check boxes: A check box control turns something on or off. An example is the Gridlines
control in the Show/Hide group of the View tab. When the Gridlines check box is
checked, the sheet displays gridlines. When the control isn’t checked, the sheet gridlines
aren’t displayed.

 Spinners: An example of a spinner control is in the Scale to Fit group of the Page Layout
tab. Click the top part of the spinner to increase the value; click the bottom part of the
spinner to decrease the value.

Figure 2-6: The Paste command is a split button control.

Refer to Chapter 22 for information about customizing Excel’s Ribbon.

Some of the Ribbon groups contain a small icon in the lower-right corner, known as a dialog
launcher. For example, if you examine the Home➜Alignment group, you’ll see this icon (refer to
Figure 2-7). Click it, and it displays the Format Cells dialog box, with the Number tab preselected.
This dialog box provides options that aren’t available in the Ribbon.

Part I: Some Essential Background32

Figure 2-7: This small dialog launcher icon, when clicked, displays a dialog box that has additional options.

In Excel 2007, end users couldn’t modify the Ribbon. In Excel 2010, users can easily
add or remove commands. See Chapter 22 for information about customizing the
Ribbon.

The Quick Access toolbar
The Quick Access toolbar is a place to store commonly used commands. The Quick Access tool-
bar is always visible, regardless of which Ribbon tab you select. Normally, the Quick Access tool-
bar appears on the left side of the title bar. Alternatively, you can display the Quick Access
toolbar below the Ribbon by right-clicking the Quick Access toolbar and selecting Show Quick
Access Toolbar Below the Ribbon.

By default, the Quick Access toolbar contains three tools: Save, Undo, and Redo. You can, of
course, customize the Quick Access toolbar by adding other commands that you use often. To
add a command from the Ribbon to your Quick Access toolbar, right-click the command and
choose Add To Quick Access toolbar.

Excel has quite a few commands that aren’t available in the Ribbon. In most cases, the only way
to access these commands is to add them to your Ribbon or Quick Access toolbar. Figure 2-8
shows the Quick Access toolbar section of the Excel Options dialog box. This area is your one-
stop shop for Quick Access toolbar customization. A quick way to display this dialog box is to
right-click the Quick Access toolbar and choose Customize Quick Access toolbar.

Accessing the Ribbon by using your keyboard
At first glance, you may think that the Ribbon is completely mouse-centric. After all, none of the
commands has the traditional underlined letter to indicate the Alt+keystrokes. But, in fact, the
Ribbon is very keyboard friendly. The trick is to press the Alt key to display the pop-up keytips.
Each Ribbon control has a letter (or series of letters) that you type to issue the command.

Chapter 2: Excel in a Nutshell 33

Figure 2-8: Add new icons to your Quick Access toolbar by using the Quick Access toolbar section of the
Excel Options dialog box.

You don’t ’need to hold down the Alt key as you type the keytip letters.

Figure 2-9 shows how the Home tab looks after I press the Alt key to display the keytips. If you
press one of the keytips, the screen then displays more keytips. For example, to use the keyboard
to align the cell contents to the left, press Alt, followed by H (for Home) and then AL (for Align
Left). If you’re a keyboard fan (like me), it will just take a few times before you memorize the
keystrokes required for common commands.

After you press Alt, you can also use the left and right arrow keys to scroll through the tabs.
When you reach the proper tab, press the down-arrow key to enter the Ribbon. Then use the
left- and right-arrow keys to scroll through the Ribbon commands. When you reach the com-
mand you need, press Enter to execute it. This method isn’t as efficient as using the keytips, but
it’s a quick way to take a look at the choices on the Ribbon.

Figure 2-9: Pressing Alt displays the keytips.

Part I: Some Essential Background34

Excel 2010 still supports the menu-oriented keyboard shortcuts from Excel 2003. So if
you’ve memorized key sequences, such as Alt+ES (to display the Paste Special dialog
box), you can still use those shortcuts.

Shortcut menus and the Mini Toolbar
The only menus that remain in Excel are shortcut menus. These menus appear when you right-
click your mouse. The shortcut menus are context-sensitive. In other words, the menu that
appears depends on the location of the mouse pointer when you right-click. You can right-click
just about anything — a cell, a row or column border, a workbook title bar, a toolbar, and so on.

Right-clicking some objects displays a Mini Toolbar above the shortcut menu. This toolbar pro-
vides quick access to commonly used formatting commands. Figure 2-10 shows the Mini Toolbar
when a cell is selected.

Although you can’t customize the Ribbon by using VBA, you can use VBA to customize any of
the shortcut menus. You can’t, however, modify the Mini Toolbar.

Refer to Chapter 23 for more information about customizing shortcut menus.

Figure 2-10: Right-clicking some objects displays a Mini Toolbar in addition to a shortcut menu.

Chapter 2: Excel in a Nutshell 35

Dialog boxes
Some Ribbon commands display a dialog box. In many cases, these dialog boxes contain addi-
tional controls that aren’t available in the Ribbon.

You’ll find two general classes of dialog boxes in Excel:

 Modal dialog boxes: When a modal dialog box is displayed, it must be closed in order to
execute the commands. An example is the Format Cells dialog box. None of the options
you specify are executed until you click OK. Use the Cancel button to close the dialog
box without making any changes.

 Modeless dialog boxes: These are stay-on-top dialog boxes. For example, if you’re work-
ing with a chart using the Format dialog box, your changes are reflected immediately in
the chart. Modeless dialog boxes usually have a Close button rather than OK and Cancel
buttons.

Many of Excel’s dialog boxes use a notebook tab metaphor, which makes a single dialog box func-
tion as several different dialog boxes. In older dialog boxes, the tabs are usually along the top. But
in newer dialog boxes (such as the one shown in Figure 2-11), the tabs are along the left side.

Figure 2-11: Tabbed dialog boxes make many options accessible without overwhelming the user.

Developers can create custom dialog boxes by using the UserForm feature. As you’ll see, you can
create a wide variety of dialog boxes, including tabbed dialog boxes.

Refer to Part IV for information about creating and working with UserForms.

Part I: Some Essential Background36

Keyboard shortcuts
Excel has many useful keyboard shortcuts. For example, you can press Ctrl+D to copy a cell to
selected cells below it. If you’re a newcomer to Excel — or you just want to improve your effi-
ciency — I urge you to check out the Help system (access the Accessibility main topic and go
from there). Learning these shortcuts is key to becoming proficient in Excel. The Help file has
tables that summarize useful keyboard commands and shortcuts.

And, as I note previously, you can access the Ribbon commands by using the keyboard.

Smart Tags
A Smart Tag is a small icon that appears automatically in your worksheet after you perform cer-
tain actions. Clicking a Smart Tag reveals several options. For example, if you copy and paste a
range of cells, Excel generates a Smart Tag that appears below the pasted range (see Figure
2-12) and provides you with several options regarding the formatting of the pasted data.

Figure 2-12: This Smart Tag appears when you paste a copied range.

Task pane
Excel 2002 introduced a new UI element known as the task pane. This multipurpose user inter-
face element is normally docked on the right side of Excel’s window (but you can drag it any-
where). The task pane is used for a variety of purposes, including displaying the Office Clipboard,
displaying a pivot table field list, inserting clipart, providing research assistance, and mapping
eXtensible Markup Language (XML) data. Figure 2-13 shows the Clip Art task pane.

Chapter 2: Excel in a Nutshell 37

Figure 2-13: Locating clipart is one of several uses for the task pane.

Customizing the Display
Excel offers a great deal of flexibility regarding what is displayed on-screen (formula bar, grid-
lines, row and column headings, and so on). These commands are located in the View tab.

In fact, Excel makes it possible to develop an application that doesn’t even look like a spread-
sheet. For example, by choosing View➜Workbook Views➜Full Screen, you can get rid of every-
thing except the title bar, thereby maximizing the amount of information visible. To exit
full-screen mode, right-click any cell and choose Close Full Screen from the shortcut menu.

Notice the zoom control in the right side of the status bar. This control makes zooming in or out
very easy. In addition, you can right-click the status bar and specify the type of information you’d
like to see.

What’s new in the Visual Basic Editor?
Nothing.

Most of Excel 2010’s updated object model is accessible in your VBA code, but the VB Editor
hasn’t changed in many versions. The Microsoft Office applications all use the new Ribbon UI,
but the VB Editor still uses menus and toolbars. By comparison, most would agree that the VB
Editor is starting to look very old-fashioned. Maybe we’ll see an updated UI in the next release.
But I’m not holding my breath.

Part I: Some Essential Background38

Data Entry
Data entry in Excel is quite straightforward. Excel interprets each cell entry as one of the following:

 A numeric value (including date and time values)

 Text

 A Boolean value (True or False)

 A formula

Formulas always begin with an equal sign (=). Excel accommodates habitual 1-2-3 users, how-
ever, and accepts an each-at symbol (@), a plus sign (+), or a minus sign (–) as the first character
in a formula. Excel automatically adjusts the entry after you press Enter.

Formulas, Functions, and Names
Formulas are what make a spreadsheet a spreadsheet. Excel has some advanced formula-related
features that are worth knowing. They enable you to write array formulas, use an intersection
operator, include links, and create megaformulas (my term for a lengthy and incomprehensible —
but very efficient — formula).

Chapter 3 covers formulas and presents lots of tricks and tips.

Excel also has some useful auditing capabilities that help you identify errors or track the logic in
an unfamiliar spreadsheet. To access these features, use the commands in the
Formulas➜Formula Auditing group.

You may find the Formulas➜Formula Auditing➜Error Checking command useful. This command
scans your worksheet and identifies possibly erroneous formulas. In Figure 2-14, Excel identifies a
possibly inconsistent formula and provides some options.

Worksheet functions enable you to perform calculations or operations that would otherwise be
impossible. Excel provides a huge number of built-in functions.

The easiest way to locate the function that you need is to use the Insert Function dialog box, as
shown in Figure 2-15. Access this dialog box by clicking the Insert Function button on the formula
bar (or by pressing Shift+F3). After you select a function, Excel displays its Function Arguments
dialog box, which assists with specifying the function’s arguments.

Beginning with Excel 2007, the Analysis ToolPak functions became part of Excel. In
other words, you can use these function even if the Analysis ToolPak add-in isn’t
installed.

Chapter 2: Excel in a Nutshell 39

Figure 2-14: Excel can monitor your formulas for possible errors.

Figure 2-15: The Insert Function dialog box is the best way to insert a function into a formula.

Excel also lets you create your own worksheet functions by using VBA. For details
about this powerful feature, see Chapter 10.

A name is an identifier that enables you to refer to a cell, range, value, formula, or graphic object.
Formulas that use names are much easier to read than formulas that use cell references, and cre-
ating formulas that use named references is much easier.

Part I: Some Essential Background40

I discuss names in Chapter 3. As you can see there, Excel handles names in some unique
ways.

Selecting Objects
Selecting objects in Excel conforms to standard Windows practices. You can select a range of
cells by clicking and dragging. (Learning the keyboard shortcuts is more efficient, however.)
Clicking an object that has been placed on the drawing layer selects the object. To select multiple
objects or noncontiguous cells, press Ctrl while you select the objects or cells.

Clicking a chart selects a specific object within the chart. To select the chart object
itself, press Ctrl while you click the chart.

If an object has a macro assigned to it, clicking the object executes the macro. To actually select
such an object, right-click it and press Esc to hide the shortcut menu. Or press Ctrl while you click
the object.

Formatting
Excel provides two types of formatting: numeric formatting and stylistic formatting.

Numeric formatting refers to how a number appears in the cell. In addition to choosing from an
extensive list of predefined formats, you can create your own formats (see Figure 2-16). The pro-
cedure is thoroughly explained in the Help system.

Excel applies some numeric formatting automatically, based on the entry. For example, if you
precede a number with a currency symbol (a dollar sign in the United States), Excel applies
Currency number formatting. You can also use the conditional formatting feature to apply num-
ber formatting conditionally, based on the magnitude of the number.

Stylistic formatting refers to the formatting that you apply to make your work look good. Many
Ribbon buttons offer direct access to common formatting options, but you’ll want to access the
object’s Format dialog box for the full range of formatting options.

The easiest way to get to the correct dialog box and format an object is to select the object and
press Ctrl+1. You can also right-click the object and choose Format xxx (where xxx is the selected
object) from the shortcut menu. Either of these actions brings up a tabbed dialog box that holds
all the formatting options for the selected object.

Chapter 2: Excel in a Nutshell 41

Figure 2-16: Excel’s numeric formatting options are very flexible.

Excel’s conditional formatting feature is particularly useful. This feature, accessed by choosing
Home➜Styles➜Conditional Formatting, allows you to specify formatting that will be applied only
if certain conditions are met. For example, you can make cells that exceed a specified value
appear in a different color.

Excel 2007 introduced several conditional formatting options, including data bars, color scales,
and icon sets. These features have been enhanced in Excel 2010. Figure 2-17 shows the data bars
conditional formatting option that displays a histogram directly in the cells.

Figure 2-17: The data bars option is one of the conditional formatting features.

Part I: Some Essential Background42

Protection Options
Excel offers a number of different protection options. For example, you can protect formulas
from being overwritten or modified, protect a workbook’s structure, password-protect a work-
book, and protect your VBA code.

Protecting formulas from being overwritten
In many cases, you might want to protect your formulas from being overwritten or modified. To
do so, perform the following steps:

 1. Select the cells that may be overwritten.

 2. Right-click and choose Format Cells from the shortcut menu.

 3. In the Format Cells dialog box, click the Protection tab.

 4. In the Protection tab, clear the Locked check box.

 5. Click OK to close the Format Cells dialog box.

 6. Choose Review➜Changes➜Protect Sheet to display the Protect Sheet dialog box, as
shown in Figure 2-18.

 7. In the Protect Sheet dialog box, select the options that correspond to the actions to
allow, specify a password if desired, and then click OK.

By default, all cells are locked. The locked status of a cell has no effect, however, unless
you have a protected worksheet.

Figure 2-18: The Protect Sheet dialog box.

Chapter 2: Excel in a Nutshell 43

You can also hide your formulas so that they won’t appear in Excel’s formula bar when the cell is
activated. To do so, select the formula cells and make sure that the Hidden check box is marked
in the Protection tab of the Format Cells dialog box.

Protecting a workbook’s structure
When you protect a workbook’s structure, you can’t add or delete sheets. Choose the
Review➜Changes➜Protect Workbook command to display the Protect Structure and Windows
dialog box, as shown in Figure 2-19. Make sure that you enable the Structure check box. If you
also mark the Windows check box, you can’t move or resize the window.

Figure 2-19: The Protect Structure and Windows dialog box.

Applying password protection to a workbook
In some cases, you may want to limit access to a workbook to only those who know the password.

To save a workbook file with a password, choose File➜Info➜Protect Workbook➜Encrypt With
Password to display the Encrypt Document dialog box (see Figure 2-20). In this dialog box, you
can specify a password that’s required to open the workbook.

Figure 2-20: Use the Encrypt Document dialog box to save a workbook with a password.

Protecting VBA code with a password
If your workbook contains VBA code, you may wish to use a password to prevent others from
viewing or modifying your macros. To apply a password to the VBA code in a workbook, activate
the VBE (Alt+F11) and select your project in the Projects window. Then choose Tools➜xxxx
Properties (where xxxx corresponds to your Project name) to display the Project Properties
dialog box.

Part I: Some Essential Background44

In the Project Properties dialog box, click the Protection tab (see Figure 2-21). Enable the Lock
Project for Viewing check box and enter a password (twice). Click OK and then save your file.
When the file is closed and then reopened, a password will be required to view or modify the
code.

Keep in mind that Excel isn’t really a secure application. The protection features, even
when used with a password, are intended to prevent casual users from accessing vari-
ous components of your workbook. Anyone who really wants to defeat your protection
can probably do so by using readily available password-cracking utilities (or by know-
ing a few “secrets”).

Figure 2-21: Protecting a VBA project with the Project Properties dialog box.

Charts
Excel is perhaps the most commonly used application in the world for creating charts. As I men-
tion earlier in this chapter, you can store charts on a chart sheet or float them on a worksheet.
You can also create pivot charts. A pivot chart is linked to a pivot table, and you can view various
graphical summaries of your data by using the same techniques used in a pivot table.

A new feature in Excel 2010 is Sparkline charts. These small charts fit inside a cell. This type of
chart is completely separate from Excel’s standard chart feature. Figure 2-22 shows a worksheet
with some Sparkline charts added.

Chapter 2: Excel in a Nutshell 45

Figure 2-22: Sparkline charts in a worksheet.

Shapes and SmartArt
As I mention earlier in this chapter, each worksheet has an invisible drawing layer that holds
charts, pictures, controls (such as buttons and list boxes), and shapes.

Excel enables you to easily draw a wide variety of geometric shapes directly on your worksheet.
To access the Shape gallery, choose Insert➜Illustrations➜Shapes. The shapes are highly custom-
izable, and you can even add text. You can also group objects into a single object, which is easier
to size or position.

A feature introduced in Office 2007 is SmartArt, which you use to create a wide variety of cus-
tomizable diagrams. Figure 2-23 shows an example of a SmartArt diagram on a worksheet.

Part I: Some Essential Background46

Figure 2-23: A SmartArt diagram.

Database Access
Over the years, most spreadsheets have enabled users to work with simple flat database tables.
Excel has some slick tools.

Databases fall into two categories:

 Worksheet databases: The entire database is stored in a worksheet, limiting the size of
the database.

 External databases: The data is stored in one or more files and is accessed as needed.

Worksheet databases
Generally, a rectangular range of data that contains column headers can be considered a work-
sheet database.

Excel 2007 was the first version that enabled you to specifically designate a range as a table.
Select any cell in your rectangular range of data and choose Insert➜Tables➜Table. Using a table
offers many advantages: an automatic summary row at the bottom, easy filtering and sorting,
auto-fill formulas in columns, and simplified formatting. In addition, if you create a chart from a
table, the chart expands automatically as you add rows to the table.

Chapter 2: Excel in a Nutshell 47

Tables are particularly useful when working with columns of data. Each column header is actually
a drop-down list that contains easy access for filtering or sorting (see Figure 2-24). Table rows
that don’t meet the filter criteria are temporarily hidden.

Figure 2-24: Excel’s table feature makes it easy to sort and filter rows.

External databases
To work with external database tables, use the commands in the Data➜Get External Data group.
Excel 2010 can work with a wide variety of external databases.

Internet Features
Excel includes a number of features that relate to the Internet. For example, you can save a work-
sheet or an entire workbook in HyperText Markup Language (HTML) format, accessible in a Web
browser. In addition, you can insert clickable hyperlinks (including e-mail addresses) directly in
cells.

In versions prior to Excel 2007, HTML was a round-trip file format. In other words, you
could save a workbook in HTML format and then reopen it in Excel, and nothing would
be lost. That’s no longer the case. HTML is now considered an export-only format.

Part I: Some Essential Background48

You can also create Web queries to bring in data stored in a corporate intranet or on the Internet.
Such a query can be refreshed, so the data updates as new information is posted. Figure 2-25
shows an example of a Web query.

Figure 2-25: Create a Web query to import data into a worksheet.

Analysis Tools
Excel is certainly no slouch when it comes to analysis. After all, that’s what most people use a
spreadsheet for. You can handle most analysis tasks with formulas, but Excel offers many other
options:

 Outlines: A worksheet outline is often an excellent way to work with hierarchical data
such as budgets. Excel can create an outline (horizontal, vertical, or both) automatically,
or you can do so manually. After you create the outline, you can collapse or expand it to
display various levels of detail.

 Analysis ToolPak: In previous versions of Excel, the Analysis ToolPak add-in provided
additional special-purpose analysis tools and worksheet functions, primarily statistical in
nature. Beginning with Excel 2007, these features are built in. These tools make Excel
suitable for casual statistical analysis.

Chapter 2: Excel in a Nutshell 49

 Pivot tables: Pivot tables are among Excel’s most powerful tools. A pivot table is capable
of summarizing data in a handy table, and you can arrange this table in many ways. In
addition, you can manipulate a pivot table entirely by VBA. Data for a pivot table comes
from a worksheet database or an external database and is stored in a special cache,
which enables Excel to recalculate rapidly after a pivot table is altered. Figure 2-26 shows
a pivot table.

Figure 2-26: Excel’s pivot table feature has many applications.

See Chapter 17 for information about manipulating pivot tables with VBA.

 Solver: For specialized linear and nonlinear problems, Excel’s Solver add-in calculates
solutions to what-if scenarios based on adjustable cells, constraint cells, and, optionally,
cells that must be maximized or minimized.

The Solver add-in has finally been updated in Excel 2010. It has a new look as well as
some performance improvements.

Part I: Some Essential Background50

Add-Ins
An add-in is a program that’s attached to an application to give it additional functionality. To
attach an Excel add-in, use the Add-Ins tab in the Excel Options dialog box.

In addition to the add-ins that ship with Excel, you can download additional add-ins from
Microsoft’s Web site (http://office.microsoft.com), and you can purchase or download
many third-party add-ins from online services. You can use the coupon in the back of the book to
acquire a discounted copy of the Power Utility Pak add-in. And, as I detail in Chapter 21, creating
your own add-ins is very easy.

Macros and Programming
Excel has two built-in macro programming languages: XLM and VBA. The original XLM macro
language is obsolete and has been replaced by VBA. Excel 2010 can still execute most XLM mac-
ros, and you can even create new ones. However, you can’t record XLM macros. You’ll want to
use VBA to develop new macros.

Part III of this book is devoted to the VBA language.

File Format
A key consideration is file compatibility. Excel 97 through Excel 2003 all use the same file format,
so file compatibility isn’t a problem for these four versions. Microsoft introduced a new file format
with Excel 2007, and it’s also used in Excel 2010. Fortunately, Microsoft has made a compatibility
pack available for Excel XP and Excel 2003. This compatibility pack enables these older versions
of Excel to read and write the new file format.

It’s important to understand the difference between file compatibility and feature compatibility.
For example, even though the compatibility pack enables Excel 2003 to open files created by
Excel 2010, it can’t handle features that were introduced in later versions.

Refer to Chapter 4 for more information about Excel’s file format and read Chapter 26
for more information about compatibility issues for developers.

Chapter 2: Excel in a Nutshell 51

Excel’s Help System
One of Excel’s most important features is its Help system. When you get stuck, simply click the
question mark below the title bar (or press F1). Excel’s Help window appears, and you can search
or use the Table of Contents.

The Search button in the Help window is actually a drop-down control. Use the options
to help narrow your search or to specify the source to search (see Figure 2-27).

Figure 2-27: Excel’s Help window.

Part I: Some Essential Background52

53

3
Formula Tricks and
Techniques
In This Chapter

● Getting an overview of Excel formulas

● Differentiating between absolute and relative references in formulas

● Understanding and using names

● Introducing array formulas

● Counting and summing cells

● Working with dates and times

● Creating megaformulas

About Formulas
Virtually every successful spreadsheet application uses formulas. In fact, constructing formulas
can certainly be construed as a type of programming.

For a much more comprehensive treatment of Excel formulas and functions, refer to my
book, Excel 2010 Formulas (Wiley).

Formulas, of course, are what make a spreadsheet a spreadsheet. If it weren’t for formulas, your
worksheet would just be a static document — something that a word processor that has great
support for tables could produce.

 A formula entered into a cell can consist of any of the following elements:

 Operators such as + (for addition) and * (for multiplication)

 Cell references (including named cells and ranges)

Part I: Some Essential Background54

 Numbers or text strings

 Worksheet functions (such as SUM or AVERAGE)

A formula in Excel 2010 can consist of up to 8,192 characters. After you enter a formula into a
cell, the cell displays the result of the formula. The formula itself appears in the formula bar when
the cell is activated. For a better view of a lengthy formula, click and drag the thick border of the
formula bar to expand it vertically.

Calculating Formulas
You’ve probably noticed that the formulas in your worksheet get calculated immediately. If you
change a cell that a formula uses, the formula displays a new result with no effort on your part.
This is what happens when the Excel Calculation mode is set to Automatic. In this mode (which is
the default mode), Excel uses the following rules when calculating your worksheet:

 When you make a change — enter or edit data or formulas, for example — Excel immedi-
ately calculates those formulas that depend on the new or edited data.

 If it’s in the middle of a lengthy calculation, Excel temporarily suspends calculation when
you need to perform other worksheet tasks; it resumes when you’re finished.

 Formulas are evaluated in a natural sequence. In other words, if a formula in cell D12
depends on the result of a formula in cell D11, cell D11 is calculated before D12.

Sometimes, however, you might want to control when Excel calculates formulas. For example, if
you create a worksheet with thousands of complex formulas, calculation might slow things down.
In such a case, you should set Excel’s calculation mode to Manual. Use the Calculation Options
control in the Formulas➜Calculation group.

When you’re working in Manual Calculation mode, Excel displays Calculate in the status bar when
you have any uncalculated formulas. You can press the following shortcut keys to recalculate the
formulas:

 F9 calculates the formulas in all open workbooks.

 Shift+F9 calculates the formulas in the active worksheet only. Other worksheets in the
same workbook won’t be calculated.

 Ctrl+Alt+F9 forces a recalculation of everything in all workbooks. Use it if Excel (for some
reason) doesn’t seem to be calculating correctly, or if you want to force a recalculation of
formulas that use custom functions created with Visual Basic for Applications (VBA).

 Ctrl+Alt+Shift+F9 rechecks all dependent formulas and calculates all cells in all work-
books (including cells not marked as needing to be calculated).

Excel’s Calculation mode isn’t specific to a particular worksheet. When you change
Excel’s Calculation mode, it affects all open workbooks, not just the active workbook.

Chapter 3: Formula Tricks and Techniques 55

Cell and Range References
Most formulas refer to one or more cells. You can make cell references by using the cell’s or
range’s address or name (if it has one). Cell references come in four styles:

 Relative: The reference is fully relative. When the formula is copied, the cell reference
adjusts to its new location. Example: A1.

 Absolute: The reference is fully absolute. When the formula is copied, the cell reference
doesn’t change. Example: A1.

 Row Absolute: The reference is partially absolute. When the formula is copied, the col-
umn part adjusts, but the row part doesn’t change. Example: A$1.

 Column Absolute: The reference is partially absolute. When the formula is copied, the
row part adjusts, but the column part doesn’t change. Example: $A1.

By default, all cell and range references are relative. To change a reference, you must manually
add the dollar signs. Or, when editing a cell in the formula bar, move the cursor to a cell address
and press F4 repeatedly to cycle through all four types of cell referencing.

Why use references that aren’t relative?
If you think about it, you’ll realize that the only reason why you would ever need to change a ref-
erence is if you plan to copy the formula. Figure 3-1 demonstrates why this is so. The formula in
cell C3 is

=$B3*C$2

Figure 3-1: An example of using nonrelative references in a formula.

This formula calculates the area for various lengths (listed in column B) and widths (listed in row
3). After the formula is entered, you can then copy it down to C7 and across to F7. Because the
formula uses absolute references to row 2 and column B and relative references for other rows
and columns, each copied formula produces the correct result. If the formula used only relative
references, copying the formula would cause all the references to adjust and thus produce incor-
rect results.

Part I: Some Essential Background56

About R1C1 notation
Normally, Excel uses what’s known as A1 notation: Each cell address consists of a column letter
and a row number. However, Excel also supports R1C1 notation. In this system, cell A1 is referred
to as cell R1C1, cell A2 as R2C1, and so on.

To change to R1C1 notation, access the Formulas tab of the Excel Options dialog box. Place a
check mark next to R1C1 Reference Style. After you do so, you’ll notice that the column letters all
change to numbers. All the cell and range references in your formulas are also adjusted.

Table 3-1 presents some examples of formulas that use standard notation and R1C1 notation. The
formula is assumed to be in cell B1 (also known as R1C2).

Table 3-1: Comparing Simple Formulas In Two Notations

Standard R1C1

=A1+1 =RC[–1]+1

=A1+1 =R1C1+1

=$A1+1 =RC1+1

=A$1+1 =R1C[–1]+1

=SUM(A1:A10) =SUM(RC[–1]:R[9]C[–1])

=SUM(A1:A10) =SUM(R1C1:R10C1)

If you find R1C1 notation confusing, you’re not alone. R1C1 notation isn’t too bad when you’re
dealing with absolute references. But when relative references are involved, the brackets can be
very confusing.

The numbers in brackets refer to the relative position of the references. For example, R[–5]C[–3]
specifies the cell that’s five rows above and three columns to the left. On the other hand, R[5]
C[3] references the cell that’s five rows below and three columns to the right. If the brackets are
omitted, the notation specifies the same row or column. For example, R[5]C refers to the cell five
rows below in the same column.

Although you probably won’t use R1C1 notation as your standard system, it does have at least
one good use. Using R1C1 notation makes spotting an erroneous formula easy. When you copy a
formula, every copied formula is exactly the same in R1C1 notation. This is true regardless of the
types of cell references that you use (relative, absolute, or mixed). Therefore, you can switch to
R1C1 notation and check your copied formulas. If one looks different from its surrounding formu-
las, there’s a good chance that it might be incorrect.

In addition, if you write VBA code to create worksheet formulas, you might find it easier to create
the formulas by using R1C1 notation.

Chapter 3: Formula Tricks and Techniques 57

Referencing other sheets or workbooks
When a formula refers to other cells, the references don’t need to be on the same sheet as the
formula. To refer to a cell in a different worksheet, precede the cell reference with the sheet
name followed by an exclamation point. Here’s an example of a formula that uses a cell reference
in a different worksheet (Sheet2):

=Sheet2!A1+1

You can also create link formulas that refer to a cell in a different workbook. To do so, precede
the cell reference with the workbook name (in square brackets), the worksheet name, and an
exclamation point. Here’s an example:

=[Budget.xlsx]Sheet1!A1

If the workbook name in the reference includes one or more spaces, you must enclose it (and the
sheet name) in single quotation marks. For example:

=’[Budget For 2010.xlsx]Sheet1’!A1

If the linked workbook is closed, you must add the complete path to the workbook reference.
Here’s an example:

=’C:\Budgeting\Excel Files\[Budget For 2010.xlsx]Sheet1’!A1

Although you can enter link formulas directly, you can also create the reference by using normal
pointing methods. To do so, the source file must be open. When you do so, Excel creates abso-
lute cell references. If you plan to copy the formula to other cells, make the references relative.

Working with links can be tricky. For example, if you choose the File➜Save As command
to make a backup copy of the source workbook, you automatically change the link for-
mulas to refer to the new file (not usually what you want to do). Another way to mess up
your links is to rename the source workbook when the dependent workbook is not open.

Part I: Some Essential Background58

Using Names
One of the most useful features in Excel is its ability to provide meaningful names for various
items. For example, you can name cells, ranges, rows, columns, charts, and other objects. You can
even name values or formulas that don’t appear in cells in your worksheet. (See the “Naming
constants” section, later in this chapter.)

Referencing Data in a Table
Beginning with Excel 2007, you can designate a range to be a table by using the
Insert➜Tables➜Table command. Tables add a few new twists to formulas.

When you enter a formula into a cell in a table, Excel automatically copies the formula to all the
other cells in the column — but only if the column was empty. This is known as a calculated col-
umn. If you add a new row to the table, the calculated column formula is entered automatically
for the new row. Most of the time, this is exactly what you want. If you don’t like the idea of
Excel entering formulas for you, use the SmartTag to turn off this feature. The SmartTag appears
after Excel enters the calculated column formula.

Excel also supports “structured referencing” for referring to cells within a table. The table in the
accompanying figure is named Table1.

You can create formulas that refer to cells within the table by using the column headers. In some
cases, using column headers may make your formulas easier to understand. But the real advan-
tage is that your formulas will continue to be valid if rows are added or removed from the table.
For example, these are all valid formulas that use table references:

=Table1[[#Totals],[Income]]
=SUM(Table1[Income])
=Table1[[#Totals],[Income]]-Table1[[#Totals],[Expenses]]
=SUM(Table1[Income])-SUM(Table1[Expenses])
=SUMIF(Table1[State],”Oregon”,Table1[Income])
=Table1[@Expenses]

The last formula uses an each-at symbol (@), which means “this row.” This formula is valid only
if it’s in a cell in one of the rows occupied by the table.

Chapter 3: Formula Tricks and Techniques 59

Naming cells and ranges
Excel provides several ways to name a cell or range:

 Choose Formulas➜Defined Names➜Define Name to display the New Name dialog box.

 Use the Name Manager dialog box (Formulas➜Defined Names➜Name Manager or press
Ctrl+F3). This method isn’t the most efficient because it requires clicking the New button
in the Name Manger dialog box, which displays the New Name dialog box.

 Select the cell or range and then type a name in the Name box and press Enter. The
Name box is the drop-down control displayed to the left of the formula bar.

 If your worksheet contains text that you’d like to use for names of adjacent cells or
ranges, select the text and the cells to be named and choose Formulas➜Defined
Names➜Create from Selection. In Figure 3-2, for example, B3:E3 is named North, B4:E4 is
named South, and so on. Vertically, B3:B6 is named Qtr_1, C3:C6 is named Qtr_2, and so
on. Note that Excel changes the names to make them valid. (A hyphen isn’t a valid char-
acter in a name.)

Using names is especially important if you write VBA code that uses cell or range references. The
reason? VBA does not automatically update its references if you move a cell or range that’s
referred to in a VBA statement. For example, if your VBA code writes a value to Range(“C4”),
the data will be written to the wrong cell if the user inserts a new row above or a new column to
the left of cell C4. Using a reference to a named cell, such as Range(“InterestRate”), avoids
these potential problems.

Figure 3-2: Excel makes it easy to create names that use descriptive text in your worksheet.

Part I: Some Essential Background60

Applying names to existing references
When you create a name for a cell or a range, Excel doesn’t automatically use the name in place
of existing references in your formulas. For example, assume that you have the following formula
in cell F10:

=A1–A2

If you define the names Income for A1 and Expenses for A2, Excel doesn’t automatically change
your formula to

=Income-Expenses

However, replacing cell or range references with their corresponding names is fairly easy. Start
by selecting the range that contains the formulas that you want to modify. Then choose
Formulas➜Defined Names➜Define Name➜Apply Names. In the Apply Names dialog box, select
the names that you want to apply and then click OK. Excel replaces the range references with the
names in the selected cells.

Hidden names
Some Excel macros and add-ins create hidden names. Hidden names exist in a workbook but
don’t appear in the Name Manager dialog box. For example, the Solver add-in creates a number
of hidden names. Normally, you can just ignore these hidden names. However, sometimes these
hidden names create a problem. If you copy a sheet to another workbook, the hidden names are
also copied, and they might create a link that is very difficult to track down.

You can use the following VBA procedure to delete all hidden names in the workbook:

Sub DeleteHiddenNames()
 Dim n As Name
 Dim Count As Integer
 For Each n In ActiveWorkbook.Names
 If Not n.Visible Then
 n.Delete
 Count = Count + 1
 End If
 Next n
 MsgBox Count & “ hidden names were deleted.”
End Sub

Chapter 3: Formula Tricks and Techniques 61

Unfortunately, you can’t automatically unapply names. In other words, if a formula uses
a name, you can’t convert the name to an actual cell or range reference. Even worse, if
you delete a name that a formula uses, the formula doesn’t revert to the cell or range
address — it simply returns a #NAME? error.

My Power Utility Pak add-in (available by using the coupon in the back of the book)
includes a utility that scans all formulas in a selection and automatically replaces names
with their cell addresses.

Intersecting names
Excel has a special operator called the intersection operator that comes into play when you’re
dealing with ranges. This operator is a space character. Using names with the intersection opera-
tor makes creating meaningful formulas very easy. For this example, refer to Figure 3-2. If you
enter the following formula into a cell

=Qtr_2 South

the result is 7,015 — the intersection of the Qtr_2 range and the South range.

Naming columns and rows
Excel lets you name complete rows and columns. In the preceding figure, the name Qtr_1 is
assigned to the range B3:B6. Alternatively, Qtr_1 could be assigned to all of column B, Qtr_2 to
column C, and so on. You also can do the same horizontally so that North refers to row 3, South
to row 4, and so on.

The intersection operator works exactly as before, but now you can add more regions or quarters
without having to change the existing names.

When naming columns and rows, make sure that you don’t store any extraneous information in
named rows or columns. For example, remember that if you insert a value in cell C7, it is included
in the Qtr_1 range.

Scoping names
A named cell or range normally has a workbook-level scope. In other words, you can use the
name in any worksheet in the workbook.

Another option is to create names that have a worksheet-level scope. To create a worksheet-
level name, define the name by preceding it with the worksheet name followed by an exclama-
tion point: for example, Sheet1!Sales. If the name is used on the sheet in which it is designed, you
can omit the sheet qualifier when you reference the name. You can, however, reference a work-
sheet-level name on a different sheet if you precede the name with the sheet qualifier.

Part I: Some Essential Background62

The Name Manager dialog box (Formulas➜Defined Names➜Name Manager) makes identifying
names by their scope easy (see Figure 3-3). Note that the dialog box is resizable, and you can
adjust the column widths. You can also sort the information within this dialog box. For example,
click the Scope column header, and the names are sorted by scope.

Figure 3-3: The Name Manager displays the scope for each defined name.

Naming constants
Virtually every experienced Excel user knows how to create cell and range names (although not
all Excel users actually do so). But most Excel users don’t know that you can use names to refer
to values that don’t appear in your worksheet — that is, constants.

Suppose that many formulas in your worksheet need to use a particular interest rate value. One
approach is to type the interest rate into a cell and give that cell a name, such as InterestRate.
After doing so, you can use that name in your formulas, like this:

=InterestRate*A3

An alternative is to call up the New Name dialog box (Formulas➜Defined Names➜Define Name)
and enter the interest rate directly into the Refers To box (see Figure 3-4). Then you can use the
name in your formulas just as if the value were stored in a cell. If the interest rate changes, just
change the definition for InterestRate, and Excel updates all the cells that contain this name.

This technique also works for text. For example, you can define the name IWC to stand
for International Widget Corporation. Then you can enter =IWC into a cell, and the cell
displays the full name.

Chapter 3: Formula Tricks and Techniques 63

Figure 3-4: Excel lets you name constants that don’t appear in worksheet cells.

Naming formulas
In addition to naming cells, ranges, and constants, you can also create named formulas. It’s
important to understand that a named formula, as described here, does not exist in a cell. A
named formula exists only in memory To create a named formula, enter a formula directly into
the Refers To field in the New Name dialog box.

This point is very important: The formula that you enter uses cell references relative to
the active cell at the time that you create the named formula.

Figure 3-5 shows a formula (=A1^B1) entered directly in the Refers To box in the New Name dia-
log box. In this case, the active cell is C1, so the formula refers to the two cells to its left. (Notice
that the cell references are relative.) After this name is defined, entering =Power into a cell raises
the value two cells to the left to the power represented by the cell directly to the left. For exam-
ple, if B10 contains 3 and C10 contains 4, entering the following formula into cell D10 returns a
value of 81 (3 to the 4th power).

=Power

Figure 3-5: You can name a formula that doesn’t appear in any worksheet cell.

Part I: Some Essential Background64

When you display the Name Manager after creating the named formula, the Refers To column
displays a formula that is relative to the current active cell. For example, if cell D32 is the active
cell, the Refers To column displays

=Sheet1!B32^Sheet1!C32

Notice that Excel qualifies the cell references by adding the worksheet name to the cell refer-
ences used in your formula. This, of course, will cause the named formula to produce incorrect
results if you use it on a worksheet other than the one in which it was defined. If you’d like to use
this named formula on a sheet other than Sheet1, you need to remove the sheet references from
the formula (but keep the exclamation points). For example:

=!A1^!B1

After you understand the concept, you might discover some new uses for named formulas. One
distinct advantage is apparent if you need to modify the formula. You can just change the for-
mula one time rather than edit each occurrence of the formula.

The companion CD-ROM contains a workbook with several examples of named formu-
las. The workbook is called named formulas.xlsx.

When you’re working in the New Name dialog box, the Refers To field is normally in
“point mode,” which makes it easy to enter a range reference by clicking in the work-
sheet. Press F2 to toggle between point mode and normal editing mode, which allows
you to use the arrow keys to edit the formula.

The secret to understanding cell and range
names

Excel users often refer to named ranges and named cells. In fact, I use these terms frequently
throughout this chapter. Actually, this terminology isn’t quite accurate.

Here’s the secret to understanding names:

When you create a name for a cell or a range in Excel, you’re actually creating a named formula —
a formula that doesn’t exist in a cell. Rather, these named formulas exist in Excel’s memory.

When you work with the New Name dialog box, the Refers To field contains the formula, and the
Name field contains the formula’s name. You’ll find that the contents of the Refers To field
always begin with an equal sign — which makes it a formula.

This isn’t exactly an earthshaking revelation, but keeping this “secret” in mind could help you
understand what’s going on behind the scenes when you create and use names in your workbooks.

Chapter 3: Formula Tricks and Techniques 65

Naming objects
In addition to providing names for cells and ranges, you can give more meaningful names to
objects such as pivot tables and shapes. Using meaningful names can make referring to such
objects easier, especially when you refer to them in your VBA code.

To change the name of a nonrange object, use the Name box, which is located to the left of the
formula bar. Just select the object, type the new name in the Name box, and then press Enter.

If you simply click elsewhere in your workbook after typing the name in the Name box,
the name won’t stick. You must press Enter.

For some reason, Excel doesn’t allow you to use the Name box to rename a chart. You must use
Chart Tools➜Layout➜Properties➜Chart Name.

Formula Errors
Entering a formula and receiving an error in return isn’t uncommon. One possibility is that the
formula you entered is the cause of the error. Another possibility is that the formula refers to a
cell that has an error value. The latter scenario is known as the ripple effect — a single error value
can make its way to lots of other cells that contain formulas that depend on the cell. The tools in
the Formulas➜Formula Auditing group can help you trace the source of formula errors.

Table 3-2 lists the types of error values that may appear in a cell that has a formula.

Table 3-2: Excel Error Values

Error Value Explanation

#DIV/0! The formula is trying to divide by 0 (zero), an operation that’s not allowed on this planet.
This error also occurs when the formula attempts to divide by a cell that is empty.

 #N/A The formula is referring (directly or indirectly) to a cell that uses the NA worksheet func-
tion to signal the fact that data isn’t available. A LOOKUP function that can’t locate a value
also returns #N/A.

#NAME? The formula uses a name that Excel doesn’t recognize. This can happen if you delete a
name that’s used in the formula or if you have unmatched quotes when using text. A for-
mula will also display this error if it uses a function defined in an add-in and that add-in
isn’t installed.

#NULL! The formula uses an intersection of two ranges that don’t intersect. (This concept is
described in the section “Intersecting names,” earlier in the chapter.

#NUM! There is a problem with a function argument; for example, the SQRT function is attempting
to calculate the square root of a negative number. This error also appears if a calculated
value is too large or too small. Excel doesn’t support nonzero values less than 1E–307 or
greater than 1E+308 in absolute value.

continued

Part I: Some Essential Background66

Table 3-2: Excel Error Values
#REF! The formula refers to a cell that isn’t valid. This can happen if that cell has been deleted

from the worksheet.

#VALUE! The formula includes an argument or operand of the wrong type. An operand is a value or
cell reference that a formula uses to calculate a result. This error also occurs if your formula
uses a custom VBA worksheet function that contains an error.

A cell displays a series of hash marks under two conditions: The column isn’t wide enough
to display the result, or the formula returns a negative date or time value.

Array Formulas
In Excel terminology, an array is a collection of cells or values that is operated on as a group. An
array formula is a special type of formula that works with arrays. An array formula can produce a
single result, or it can produce multiple results — with each result displayed in a separate cell.

For example, when you multiply a 1 x 5 array by another 1 x 5 array, the result is a third 1 x 5
array. In other words, the result of this kind of operation occupies five cells; each element in the
first array is multiplied by each corresponding element in the second array to create five new val-
ues, each getting its own cell. The array formula that follows multiplies the values in A1:A5 by the
corresponding values in B1:B5. This array formula is entered into five cells simultaneously:

{=A1:A5*B1:B5}

You enter an array formula by pressing Ctrl+Shift+Enter. To remind you that a formula
is an array formula, Excel surrounds it with curly braces in the formula bar. When I pres-
ent an array formula in this book, I enclose it in curly braces to distinguish it from a nor-
mal formula. Don’t enter the braces yourself.

An array formula example
An array formula enables you to perform individual operations on each cell in a range in much
the same way that a programming language’s looping feature enables you to work with elements
of an array. If you’ve never used array formulas before, this section will get your feet wet with a
hands-on example.

Figure 3-6 shows a worksheet with text in A1:A5. The goal of this exercise is to create a single
formula that returns the sum of the total number of characters in the range. Without the single
formula requirement, you’d write a formula with the LEN function, copy it down the column, and
then use the SUM function to add the results of the intermediate formulas.

Chapter 3: Formula Tricks and Techniques 67

Figure 3-6: Cell B1 contains an array formula that returns the total number of characters contained in range
A1:A5. Notice the brackets in the formula bar.

To demonstrate how an array formula can occupy more than one cell, create the worksheet
shown in the figure and then try these steps:

 1. Select the range B1:B5.

 2. Type the following formula:

=LEN(A1:A5)

 3. Press Ctrl+Shift+Enter.

The preceding steps enter a single array formula into five cells. Enter a SUM formula that adds
the values in B1:B5, and you’ll see that the total number of characters in A1:A5 is 29.

Here’s the key point: It’s not necessary to actually display those five array elements. Rather, Excel
can store the array in memory. Knowing this, you can type the following single array formula in
any blank cell (Remember: Don’t type the curly brackets and make sure that you enter it by
pressing Ctrl+Shift+Enter):

{=SUM(LEN(A1:A5))}

This formula essentially creates a five-element array (in memory) that consists of the length of
each string in A1:A5. The SUM function uses this array as its argument, and the formula returns 29.

An array formula calendar
Figure 3-7 shows a worksheet set up to display a calendar for any month. (Change the month,
and the calendar updates.) Believe it or not, the calendar is created with a single array formula
that occupies 42 cells.

The array formula, entered in the range B5:H10, is

{=IF(MONTH(DATE(YEAR(B3),MONTH(B3),1))<>MONTH(DATE(YEAR(B3),

MONTH(B3),1)-(WEEKDAY(DATE(YEAR(B3),MONTH(B3),1))-1)

+{0;1;2;3;4;5}*7+{1,2,3,4,5,6,7}-1),””,

DATE(YEAR(B3),MONTH(B3),1)-(WEEKDAY(DATE(YEAR(B3),

MONTH(B3),1))-1)+{0;1;2;3;4;5}*7+{1,2,3,4,5,6,7}-1)}

Part I: Some Essential Background68

The formula returns date serial numbers, and you need to format the cells to display the day
number only by using a custom number format (“d”).

Figure 3-7: A single multicell array formula is all it takes to make a calendar for any month in any year.

The companion CD-ROM contains a workbook with the calendar example, as well as
several additional array formula examples. The file is named array formula exam-
ples.xlsx. In addition, you’ll find a workbook named yearly calendar.xlsx that
displays a calendar for a complete year.

Array formula pros and cons
The advantages of using array formulas rather than single-cell formulas include the following:

 They can sometimes use less memory.

 They can make your work much more efficient.

 They can eliminate the need for intermediate formulas.

 They can enable you to do things that would be difficult or impossible otherwise.

A few disadvantages of using array formulas are the following:

 Using many complex array formulas can sometimes slow your spreadsheet recalculation
time to a crawl.

 They can make your worksheet more difficult for others to understand.

 You must remember to enter an array formula with a special key sequence (by pressing
Ctrl+Shift+Enter).

Chapter 3: Formula Tricks and Techniques 69

Counting and Summing Techniques
A common task in Excel is conditional counting or summing. This section contains a number of
formula examples that deal with counting various items on a worksheet, based on single or multi-
ple criteria. You can adapt these formulas to your own needs.

Excel 2007 introduced two new counting and summing functions that aren’t available
in previous versions (COUNTIFS and SUMIFS). Therefore, I present two versions of
some formulas: an Excel 2007 and later version and an array formula that works with
all recent versions of Excel.

Figure 3-8 shows a simple worksheet to demonstrate the formulas that follow. The following
range names are defined:

Figure 3-8: This worksheet demonstrates some useful formulas for counting and summing.

 Month: A2:A10

 Region: B2:B10

 Sales: C2:C10

This workbook (including the formula examples) is available on the companion
CD-ROM. The file is named counting and summing examples.xlsx.

Part I: Some Essential Background70

Counting formula examples
Table 3-3 contains formulas that demonstrate a variety of counting techniques.

Table 3-3: Counting Formula Examples

Formula Description

=COUNTIF(Region,”North”) Counts the number of rows in which Region = “North”

=COUNTIF(Sales,300) Counts the number of rows in which Sales = 300

=COUNTIF(Sales,”>300”) Counts the number of rows in which Sales > 300

=COUNTIF(Sales,”<>100”) Counts the number of rows in which Sales <> 100

=COUNTIF(Region,”?????”) Counts the number of rows in which Region contains
five letters

=COUNTIF(Region,”*h*”) Counts the number of rows in which Region contains the
letter H (not case-sensitive)

=COUNTIFS(Month,”Jan”,Sales,”>200”) Counts the number of rows in which Month = “Jan” and
Sales > 200 (Excel 2007 and later)

{=SUM((Month=”Jan”)*(Sales>200))} An array formula that counts the number of rows in
which Month = “Jan” and Sales > 200

=COUNTIFS(Month,”Jan”,Region,”North”) Counts the number of rows in which Month = “Jan” and
Region = “North” (Excel 2007 and later)

{=SUM((Month=”Jan”)*(Region=”North”))} An array formula that counts the number of rows in
which Month = “Jan” and Region = “North”

=COUNTIFS(Month,”Jan”,Region,”North”)+
COUNTIFS(Month,”Jan”,Region,”South”)

Counts the number of rows in which Month = “Jan” and
Region = “North” or “South” (Excel 2007 and later)

{=SUM((Month=”Jan”)*((Region=”North”)+
(Region=”South”)))}

An array formula that counts the number of rows in
which Month = “Jan” and Region = “North” or “South”

=COUNTIFS(Sales,”>=300”,Sales,”<=400”) Counts the number of rows in which Sales is between
300 and 400 (Excel 2007 and later)

{=SUM((Sales>=300)*(Sales<=400))} An array formula that counts the number of rows in
which Sales is between 300 and 400

Summing formula examples
Table 3-4 shows a number of formula examples that demonstrate a variety of summing
techniques.

Table 3-4: Summing Formula Examples

Formula Description

=SUMIF(Sales,”>200”) Sum of all Sales over 200

=SUMIF(Month,”Jan”,Sales) Sum of Sales in which Month = “Jan”

=SUMIF(Month,”Jan”,Sales)+SUMIF(Month,”Feb”,Sales) Sum of Sales in which Month =”Jan” or “Feb”

Chapter 3: Formula Tricks and Techniques 71

Formula Description

{=SUM((Month=”Jan”)*(Region=”North”)*Sales)} Sum of Sales in which Month=”Jan” and
Region=”North”

=SUMIFS(Sales,Month,”Jan”,Region,”North”) Sum of Sales in which Month=”Jan” and
Region=”North” (Excel 2007 and later)

{=SUM((Month=”Jan”)*(Region=”North”)*Sales)} An array formula that returns the sum of Sales
in which Month=”Jan” and Region=”North”

=SUMIFS(Sales,Month,”Jan”,Region,”<>North”) Sum of Sales in which Month=”Jan” and Region
<> “North” (Excel 2007 and later)

{=SUM((Month=”Jan”)*(Region<>”North”)*Sales)} An array formula that returns the sum of Sales
in which Month=”Jan” and Region <> “North”

=SUMIFS(Sales,Month,”Jan”,Sales,”>=200”) Sum of Sales in which Month=”Jan” and
Sales>=200 (Excel 2007 and later)

{=SUM((Month=”Jan”)*(Sales>=200)*(Sales))} An array formula that returns the sum of Sales
in which Month=”Jan” and Sales>=200

=SUMIFS(Sales,Sales,”>=300”,Sales,”<=400”) Sum of Sales between 300 and 400 (Excel
2007 and later)

{=SUM((Sales>=300)*(Sales<=400)*(Sales))} An array formula that returns the sum of Sales
between 300 and 400

Other counting tools
Other ways to count or sum cells that meet certain criteria are:

 Filtering (using a table)

 Advanced filtering

 The DCOUNT and DSUM functions

 Pivot tables

For more information, consult the Help system.

Working with Dates and Times
Excel uses a serial number system to store dates. The earliest date that Excel can understand is
January 1, 1900. This date has a serial number of 1. January 2, 1900, has a serial number of 2, and
so on.

Most of the time, you don’t have to be concerned with Excel’s serial number date system. You
simply enter a date in a familiar date format, and Excel takes care of the details behind the
scenes. For example, if you need to enter August 15, 2010, you can simply enter the date by typ-
ing August 15, 2010 (or use any of a number of different date formats). Excel interprets your
entry and stores the value 40405, which is the serial number for that date.

Part I: Some Essential Background72

In this chapter, I assume the U.S. date system. If your computer uses a different date
system, you’ll need to adjust accordingly. For example, you might need to enter 15
August, 2010.

Entering dates and times
When working with times, you simply enter the time into a cell in a recognized format. Excel’s
system for representing dates as individual values is extended to include decimals that represent
portions or fractions of days. In other words, Excel perceives all time with the same system
whether that time is a particular day, a certain hour, or a specific second. For example, the date
serial number for August 15, 2010, is 40405. Noon (halfway through the day) is represented
internally as 40405.5. Again, you normally don’t have to be concerned with these fractional serial
numbers.

Because dates and times are stored as serial numbers, it stands to reason that you can add and
subtract dates and times. For example, you can enter a formula to calculate the number of days
between two dates. If cells A1 and A2 both contain dates, the following formula returns the num-
ber of intervening days:

=A2-A1

When performing calculations with time, things get a bit trickier. When you enter a
time without an associated date, the date is assumed to be January 0, 1900 (date serial
number 0). This is not a problem — unless your calculation produces a negative time
value. When this happens, Excel displays an error (displayed as #########). The solu-
tion? Switch to the 1904 date system. Display the Excel Options dialog box, click the
Advanced tab, and then enable the Use 1904 Date System check box. Be aware that
switching to the 1904 date system can cause problems with dates already entered in
your file or dates in workbooks that are linked to your file.

In some cases, you may need to use time values to represent duration, rather than a
point in time. For example, you may need to sum the number of hours worked in a
week. When you add time values, you can’t display more than 24 hours. For each
24-hour period, Excel simply adds another day to the total. The solution is to change
the number formatting to use square brackets around the hour part of the format. The
following number format, for example, displays more than 24 hours:

[hh]:mm

Chapter 3: Formula Tricks and Techniques 73

Using pre-1900 dates
The world, of course, didn’t begin on January 1, 1900. People who work with historical informa-
tion when using Excel often need to work with dates before January 1, 1900. Unfortunately, the
only way to work with pre-1900 dates is to enter the date into a cell as text. For example, you
can enter the following into a cell, and Excel won’t complain:

July 4, 1776

You can’t, however, perform any manipulation on dates that are actually text. For example, you
can’t change its formatting, you can’t determine which day of the week this date occurred on,
and you can’t calculate the date that occurs seven days later.

VBA, however, supports a much wider range of dates. I created a number of VBA worksheet functions
that allow you to work with pre-1900 dates. Figure 3-9 shows a demonstration of these functions
used in a worksheet. It’s also an excellent example of how VBA can extend the features in Excel.

Figure 3-9: The Extended Date Functions add-in lets you work with pre-1900 dates.

See Chapter 10 for more information about the Extended Date functions.

Part I: Some Essential Background74

Creating Megaformulas
Often, a formula requires intermediate formulas to produce a desired result. In other words, a for-
mula may depend on other formulas, which in turn depend on other formulas. After you get all
these formulas working correctly, you can often eliminate the intermediate formulas and use
what I refer to as a single megaformula instead. The advantages? You use fewer cells (less clut-
ter), the file size is smaller, and recalculation may even be a bit faster. The main disadvantage is
that the formula may be impossible to decipher or modify.

Here’s an example: Imagine a worksheet that has a column with thousands of people’s names. And
suppose that you’ve been asked to remove all the middle names and middle initials from the names —
but not all the names have a middle name or initial. Editing the cells manually would take hours, and
even Excel’s Data➜Data Tools➜Text To Columns command isn’t much help. So you opt for a formula-
based solution. Although this task isn’t difficult, it normally involves several intermediate formulas.

Figure 3-10 shows the results of the more conventional solution, which requires six intermediate
formulas shown in Table 3-5. The names are in column A; the end result goes in column H.
Columns B through G hold the intermediate formulas.

Figure 3-10: Removing the middle names and initials requires intermediate formulas.

Table 3-5: Intermediate Formulas Written In Row 2 in Figure 3-10

Column Intermediate Formula What It Does

B =TRIM(A2) Removes excess spaces.

C =FIND(“ “,B2,1) Locates the first space.

D =FIND(“ “,B2,C2+1) Locates the second space. Returns #VALUE! if there is no second
space.

E =IF(ISERROR(D2),C2,D2) Uses the first space if no second space exists.

F =LEFT(B2,C2) Extracts the first name.

G =RIGHT(B2,LEN(B2)-E2) Extracts the last name.

H =F2&G2 Concatenates the two names.

Chapter 3: Formula Tricks and Techniques 75

You can eliminate the intermediate formulas by creating a megaformula. You do so by creating
all the intermediate formulas and then going back into the final result formula and replacing each
cell reference with a copy of the formula in the cell referred to (without the equal sign).
Fortunately, you can use the Clipboard to copy and paste. Keep repeating this process until cell
H2 contains nothing but references to cell A2. You end up with the following megaformula in one
cell:

=LEFT(TRIM(A2),FIND

(“ “,TRIM(A2),1))&RIGHT(TRIM(A2),LEN(TRIM(A2))-

IF(ISERROR(FIND(“ “,TRIM(A2),FIND(“ “,TRIM(A2),1)+1)),

FIND(“ “,TRIM(A2),1),FIND(“ “,TRIM(A2),FIND

(“ “,TRIM(A2),1)+1)))

When you’re satisfied that the megaformula is working, you can delete the columns that hold the
intermediate formulas because they’re no longer used.

The megaformula performs exactly the same tasks as all the intermediate formulas — although
it’s virtually impossible for anyone to figure out, even the author. If you decide to use megafor-
mulas, make sure that the intermediate formulas are performing correctly before you start build-
ing a megaformula. Even better, keep a single copy of the intermediate formulas somewhere in
case you discover an error or need to make a change.

Another way to approach this problem is to create a custom worksheet function in VBA. Then
you could replace the megaformula with a simple formula, such as

=NOMIDDLE(A1)

In fact, I wrote such a function to compare it with intermediate formulas and megaformulas. The
listing follows.

Function NOMIDDLE(n) As String

 Dim FirstName As String, LastName As String

 n = Application.WorksheetFunction.Trim(n)

 FirstName = Left(n, InStr(1, n, “ “))

 LastName = Right(n, Len(n) - InStrRev(n, “ “))

 NOMIDDLE = FirstName & LastName

End Function

A workbook that contains the intermediate formulas, the megaformula, and the
NOMIDDLE VBA function is available on the companion CD-ROM. The workbook is
named megaformula.xlsm.

Part I: Some Essential Background76

Because a megaformula is so complex, you may think that using one slows down recalculation.
Actually, that’s not the case. As a test, I created a workbook that used the megaformula 175,000
times. Then I created another workbook that used six intermediate formulas to compute the
175,000 results. I compared the results in terms of calculation time and file size; see Table 3-6.

Table 3-6: Comparing Intermediate Formulas and Megaformula

Method Recalculation Time (Seconds) File Size

Intermediate formulas 5.8 12.60MB

Megaformula 3.9 2.95MB

The actual results will vary significantly, depending on system speed, amount of memory
installed, and the actual formula.

The VBA function was much slower — I abandoned the timed test after five minutes. This is fairly
typical of VBA functions; they are always slower than built-in Excel functions.

77

4
Understanding Excel Files
In This Chapter

● Starting Excel

● Opening and saving different types of files in Excel

● Introducing the XML file format in Excel 2007

● Figuring out how Excel uses the Windows Registry

Starting Excel
You can start Excel in various ways, depending on how it’s installed. You can click an icon on the
desktop, use the Windows Start button, or double-click a file associated with the Excel applica-
tion. All methods ultimately launch the excel.exe executable file.

When Excel 2010 starts, it performs the following actions:

 It reads its settings stored in the Windows Registry.

 It reads and applies any Quick Access toolbar or Ribbon customizations defined in the
Excel.officeUI file.

 It opens the *.xlb menu/toolbar customization file.

 It opens all add-ins that are installed (that is, those that are checked in the Add-Ins
dialog box).

 It opens any workbooks that are in the XLStart directory.

 It opens any workbooks that are in the alternate start-up directory (specified in the
Advanced tab of the Excel Options dialog box).

 It determines whether Excel ended with a crash the last time it was used. If so, it displays
a list of autorecovered workbooks.

 It displays an empty workbook — unless the user specified a workbook to open or one or
more files were found in the XLStart or alternate start-up directory.

Part I: Some Essential Background78

You can install Excel in any location. But in most cases, the Excel executable file is located in the
default installation directory:

C:\Program Files\Microsoft Office\Office14\EXCEL.EXE

You can create one or more shortcuts to this executable file and customize those shortcuts’ vari-
ous parameters, or command line switches. Table 4-1 lists these command line switches.

Table 4-1: Excel Command Line Switches

Switch What It Does

filename Opens the specified file. The filename is a parameter and does not require a switch.

/r filename Opens the specified file in read-only mode.

/t filename Opens the specified file as a template.

/n filename Opens the specified file as a template (same as /t).

/e Starts Excel without creating a new workbook and without displaying its splash
screen.

/p directory Sets the active path to a directory other than the default directory.

/s Starts Excel in Safe mode and does not load any add-ins or files in the XLStart or
alternate start-up file directories.

/m Forces Excel to create a new workbook that contains a single Microsoft Excel 4.0
macro sheet (obsolete).

You can experiment with these command line switches by using the Windows Start➜Run com-
mand (or use the Search box to start the Windows Run program). Put the path to Excel in
quotes, followed by a space and the command line switch. Figure 4-1 shows an example.

One way to specify any of these switches is to edit the properties of the shortcut that starts
Excel. For example, if there are times when you’d like Excel to start and use a folder named
c:\xlfiles as its default folder, you can customize a Windows shortcut. In this case, you need
to use the /p switch and specify the folder.

Figure 4-1: Starting Excel from the Windows Run dialog box.

Chapter 4: Understanding Excel Files 79

The instructions that follow are for Windows Vista.

Start with an icon that launches Excel. Right-click the icon and choose Properties. In the
Properties dialog box, click the Shortcut tab and enter the following in the Target field (see
Figure 4-2):

Figure 4-2: Customizing a shortcut to launch Excel.

“C:\Program Files\Microsoft Office\Office14\EXCEL.EXE” /p c:\xlfiles

Keep in mind that the path to excel.exe can vary for different installations and for different
versions.

You can also assign a shortcut key to launch Excel, which can be useful. If Excel is already run-
ning, pressing the shortcut key activates Excel.

You can run multiple instances of Excel on a single system. Each instance is treated as a
separate task. Most people have pretty good success running multiple versions of Excel
on a single system. For best results, install the versions in the order of their release
dates (earliest to newest).

Part I: Some Essential Background80

File Types
Although the Excel 2010 default file format is an XLSX workbook file, the program can also open
and save a wide variety of other file formats. This section provides an overview of the file types
that Excel 2010 can handle.

Beginning with Excel 2007, Microsoft removed support for Lotus and Quattro Pro
spreadsheet file formats.

Excel file formats
Excel 2007 introduced a new default file format, and that format is also used in Excel 2010.
However, these recent versions can still read and write older Excel file formats.

To change the default file save setting, choose File➜Options and click the Save tab in
the Excel Options dialog box. You’ll find a drop-down list that lets you select the
default file format.

Table 4-2 lists the Excel file types that Excel 2010 supports. Keep in mind that an Excel workbook
or add-in file can have any extension that you like. In other words, these files don’t need to be
stored with the standard extensions shown in the table. However, Excel may display a warning if
you try to open a file in which the content does not match the extension.

Table 4-2: Excel File Types

File Type Extension Read/Write Notes

Excel Workbook xlsx Yes/Yes The default Excel 2010 file format. It can’t store VBA
or XLM macro code.

Excel Macro-Enabled
Workbook

xlsm Yes/Yes The Excel 2010 file format for workbooks that contain
macros.

Excel Binary
Workbook

xlsb Yes/Yes The Excel 2010 binary file format. It’s an updated ver-
sion of the previous XLS format.

Template xltx Yes/Yes The Excel 2010 file format for a template. It can’t
store VBA or XLM macro code.

Macro-Enabled
Template

xltm Yes/Yes The Excel 2010 file format for a template that con-
tains macros.

Excel Add-In xlam Yes/Yes The Excel 2010 file format for an add-in. It can store
VBA and XLM macros.

Excel 97–Excel 2003
Workbook

xls Yes/Yes The Excel binary format (BIFF8) that’s compatible
with Excel 97 through Excel 2003.

Excel 97–Excel 2003
Template

xlt Yes/Yes The Excel binary template format (BIFF8) that’s com-
patible with Excel 97 through Excel 2003.

Chapter 4: Understanding Excel Files 81

File Type Extension Read/Write Notes

Excel 97–Excel 2003
Add-In

xla Yes/Yes The Excel binary format (BIFF8) for add-ins that’s
compatible with Excel 97 through Excel 2003.

Microsoft Excel
5.0/95 Workbook

xls Yes/Yes The Excel binary format (BIFF5) that’s compatible
with Excel 5.0 and Excel 95.

XML Spreadsheet
2003

xml Yes/Yes Microsoft’s XML Spreadsheet 2003 file format
(XMLSS).

Microsoft Office XP and Office 2003 users can install the Microsoft Office Compatibility
Pack, which allows them to open and save documents in the Office 2010 and Office 2007
file formats. The Compatibility Pack is available at http://office.microsoft.com.

Text file formats
When you attempt to load a text file into Excel, the Text Import Wizard might kick in to help you
specify how you want the file retrieved.

To bypass the Text Import Wizard, press the Shift key when you click Open in the Open
dialog box.

Table 4-3 lists the text file types supported by Excel 2010. All text file formats are limited to a
single worksheet.

Table 4-3: Text File Types

File Type Extension Read/Write Notes

CSV (comma
separated values)

csv Yes/Yes Columns are delimited with a comma, and rows are
delimited with a carriage return. Excel supports sub-
types for Macintosh and MS-DOS.

Formatted Text prn Yes/Yes Columns are delimited with a space character, and
rows are delimited with a carriage return.

Text txt Yes/Yes Columns are delimited with a tab, and rows are delim-
ited with a carriage return. Excel supports subtypes
for Macintosh, MS-DOS, and Unicode.

Data Interchange
Format (DIF)

dif Yes/Yes The file format originally used by VisiCalc.

Symbolic Link (SYLK) slk Yes/Yes The file format originally used by Multiplan.

Database file formats
Table 4-4 lists the database file types supported by Excel 2010. All database file formats are lim-
ited to a single worksheet.

Part I: Some Essential Background82

Table 4-4: Database File Types

File Type Extension Read/Write Notes

Access mdb, mde, accdb,
accde

Yes/No You can open one table from the database.

dBASE dbf Yes/No The file format originally created by
Ashton-Tate.

Others Various Yes/No By using the commands in the Data➜Get
External Data group, you can import data
from various data sources that have con-
nections or queries defined on your system.

Other file formats
Table 4-5 lists the other file types supported by Excel 2010.

Table 4-5: Other File Types

File Type Extension Read/Write Notes

Hypertext Markup
Language (HTML)

htm, html Yes/Yes Beginning with Excel 2007, this file format
no longer supports “round-tripping.” If you
save a file and then re-open it, you may
lose information.

Single File Web Page mht, mhtml Yes/Yes Also known as Archived Web Page. The
only browsers that can display these files
are Microsoft Internet Explorer and Opera.

OpenDocument
Spreadsheet

ods Yes/Yes A file format developed by Sun
Microsystems and OASIS. Readable by open
source spreadsheets, such as OpenOffice.

Portable Document
Format (PDF)

pdf No/Yes The file format originated by Adobe.

XML Paper
Specification

xps No/Yes Microsoft’s alternative to Adobe’s PDF.

Chapter 4: Understanding Excel Files 83

Working with Template Files
A template is essentially a model that serves as the basis for something else. An Excel template is
a workbook that’s used to create other workbooks. You can save any workbook as a template file
(XLTX extension). Doing so is useful if you tend to create similar files on a regular basis. For
example, you might need to generate a monthly sales report. You can save some time by creat-
ing a template that holds the necessary formulas and charts for your report. When you start new
files based on the template, you need only to plug in the values.

Viewing templates
Excel gives you access to many templates. To explore the Excel templates, choose File➜New to
display the Available Templates screen.

The Office Online Templates section contains a number of categories. Click a category, and you’ll
see the available templates. To use a template, select it and click Download. Figure 4-3 shows
some of templates available in the Invoices category.

Workspace files
A workspace file is a special file that contains information about an Excel workspace. For exam-
ple, if you have a project that uses two workbooks and you like to have the workbook windows
arranged in a particular way, you can save an XLW file to save this window configuration. Then,
whenever you open the XLW file, Excel restores the desired workspace.

To save a workspace, choose View➜Window➜Save Workspace and provide a name when
prompted.

To open a workspace file, use File➜Open and select Workspaces (*.xlw) from the Files of Type
drop-down list.

It’s important to understand that a workspace file does not include the workbooks — only the
configuration information that makes those workbooks visible in your Excel workspace. So if you
need to distribute a workspace to someone else, make sure that you include the workbook files
as well as the XLW file.

Part I: Some Essential Background84

Figure 4-3: Templates that you can use for invoices.

Microsoft Office Online has a wide variety of templates, and some are better than others. If you
download a few duds, don’t give up. Even though a template may not be perfect, you can often
modify a template to meet your needs. Modifying an existing template is often easier than creat-
ing a workbook from scratch.

The location of the Templates folder varies, depending on the version of Excel. To find
the location of your Templates folder, execute the following VBA statement:

MsgBox Application.TemplatesPath

Creating templates
Excel supports three types of templates:

 The default workbook template: Used as the basis for new workbooks. This file is named
book.xltx.

 The default worksheet template: Used as the basis for new worksheets inserted into a
workbook. This file is named sheet.xltx.

 Custom workbook templates: Usually, ready-to-run workbooks that include formulas.
They can be as simple or as complex as you like. Typically, these templates are set up so
that a user can simply plug in values and get immediate results.

Chapter 4: Understanding Excel Files 85

Using the workbook template to change workbook defaults
Every new workbook that you create starts out with some default settings. For example, the
workbook has three worksheets, the worksheets have gridlines, text appears in Calibri 11-point
font, columns are 8.43 units wide, and so on. If you’re not happy with any of the default work-
book settings, you can change them.

Making changes to Excel’s default workbook is fairly easy to do, and it can save you lots of time
in the long run. Here’s how you change Excel’s workbook defaults:

 1. Open a new workbook.

 2. Add or delete sheets to give the workbook the number of worksheets that you want.

 3. Make any other changes that you want to make, which can include column widths, named
styles, page setup options, and many of the settings that are available in the two Display
Options sections in the Advanced tab of the Excel Options dialog box.

 To change the default formatting for cells, choose Home➜Styles➜Cell Styles and then
modify the settings for the Normal style. For example, you can change the default font,
size, or number format.

 4. When your workbook is set up to your liking, choose File➜Save As.

 5. In the Save As dialog box, select Template (*.xltx) from the box labeled Save As Type.

 6. Enter book.xltx for the filename.

 7. Save the file in your \XLStart folder (not in your Templates folder).

 8. Close the file.

To determine the location of \XLStart, execute this VBA statement:

MsgBox Application.StartupPath

After you perform the preceding steps, the new default workbook that appears when Excel is
started is based on the book.xltx workbook template. You can also press Ctrl+N to create a
workbook based on this template. If you ever want to revert back to the standard default work-
book, just delete the book.xltx file.

If you choose File➜New and select Blank Workbook, the workbook will not be based
on the book.xltx template. I don’t know whether that’s a bug or by design. In any
case, it provides a way to override the custom book.xltx template if you need to.

Using the worksheet template to change worksheet defaults
When you insert a new worksheet into a workbook, Excel uses its built-in worksheet defaults for
the worksheet. These defaults include items such as column width, row height, and so on. If you

Part I: Some Essential Background86

don’t like the default settings for a new worksheet, you can change them by following these
steps:

 1. Start with a new workbook and delete all the sheets except one.

 2. Make any changes that you want to make, which can include column widths, named
styles, page setup options, and many of the settings that are available in the Excel
Options dialog box.

 3. When your workbook is set up to your liking, choose File➜Save As.

 4. In the Save As dialog box, select Template (*.xltx) from the Save As Type box.

 5. Enter sheet.xltx for the filename.

 6. Save the file in your \XLStart folder (not in your Templates folder).

 7. Close the file.

 8. Close and restart Excel.

After performing this procedure, all new sheets that you insert by clicking the Insert Worksheet
button (which is next to the last sheet tab) will be formatted like your sheet.xltx template.
You can also press Shift+F11 to insert a new worksheet.

Creating workbook templates
The book.xltx and sheet.xltx templates discussed in the preceding section are two special
types of templates that determine default settings for new workbooks and new worksheets. This
section discusses other types of templates, referred to as workbook templates, which are simply
workbooks that you set up as the basis for new workbooks or worksheets.

Why use a workbook template? The simple answer is that it saves you from repeating work.
Assume that you create a monthly sales report that consists of your company’s sales by region,
plus several summary calculations and charts. You can create a template file that consists of
everything except the input values. Then, when it’s time to create your report, you can open a
workbook based on the template, fill in the blanks, and be finished.

You could, of course, just use the previous month’s workbook and save it with a differ-
ent name. This approach is prone to errors, however, because you easily can forget to
use the Save As command and accidentally overwrite the previous month’s file.
Another option is to use the New From Existing icon in the New Workbook dialog box.
This step creates a new workbook from an existing one, but gives a different name to
ensure that the old file is not overwritten.

When you create a workbook that is based on a template, the default workbook name is the tem-
plate name with a number appended. For example, if you create a new workbook based on a
template named Sales Report.xltx, the workbook’s default name is Sales Report1.

Chapter 4: Understanding Excel Files 87

xlsx. The first time that you save a workbook that is created from a template, Excel displays its
Save As dialog box so that you can give the template a new name if you want to.

A custom template is essentially a normal workbook, and it can use any Excel feature, such as
charts, formulas, and macros. Usually, a template is set up so that the user can enter values and
get immediate results. In other words, most templates include everything but the data, which is
entered by the user.

If your template contains macros, it must be saved as an Excel Macro-Enabled
Template, with an XLTM extension.

Inside an Excel File
Excel 2010 uses an XML format for its workbooks, templates, and add-ins. These files are actually
Zip compressed files. As such, they can be “unzipped” and examined.

Versions prior to Excel 2007 used a binary file format. Although the binary file format specifica-
tions are known, working with binary files is not easy. The Excel XML file format, on the other
hand, is an open format. As such, these files can be created and manipulated using other software.

Dissecting a file
In this section, I describe the various parts within a typical Excel XLSM (macro-enabled) work-
book file. The workbook, named sample.xlsm, is shown in Figure 4-4. It has one worksheet,
one chart sheet, and a simple VBA macro. The worksheet contains a table, a button (from the
Forms controls), a SmartArt diagram, and a photo of a flower.

The sample.xlsm workbook is available on the companion CD-ROM.

To view the innards of an Excel 2010 file, you need to open an Explorer window and add a ZIP
extension to the filename. So the sample.xlsm file is renamed to sample.xlsm.zip. You can
then open the file by using any unzipping program. I use the Zip feature built into Windows Vista.

If your system is set up to hide file extensions, I suggest that you turn off that option. In
a Windows Explorer window, choose Tools➜Folder Options and click the View tab. In
the File and Folders section, remove the check mark from Hide Extensions For Known
File Types.

You may prefer to extract the zipped files into an uncompressed directory. Doing so
makes it easier to view the files. In Windows, right-click the filename and choose
Extract All.

Part I: Some Essential Background88

Figure 4-4: A simple workbook.

The first thing that you notice is that the file contains a directory structure. The left panel of
Figure 4-5 shows the fully expanded directory structure for the workbook file. The actual directo-
ries will vary with the workbook.

With a few exceptions, all the files are text files. More specifically, they are XML files. You can
view them in a text file editor, an XML editor, a Web browser, or even Excel. Figure 4-6 shows
one of these files viewed in the Firefox browser. The non-XML files include graphic images and
VBA projects (these are stored in binary format).

This XML file has four root-level folders, and some of these have subfolders. Many of the folders
contain a _rels folder. These folders contain XML files that define the relationships to other parts
within the package.

Chapter 4: Understanding Excel Files 89

Figure 4-5: The directory structure of the workbook file.

Following is a list of the folders in the sample.xlsm workbook:

 _rels: Contains information about the package relationships.

 customXml: Contains information about Ribbon enhancements stored in the workbook.

 docProps: Contains XML files that describe the file properties and application settings.

 xl: Holds the meat of the file. The folder name varies with the Office document type (xl,
ppt, word, and so on). You’ll find several XML files that contain settings for the workbook.
And if your workbook contains VBA code, it will be in a binary file with a BIN extension.
The xl folder has several subfolders. (Some workbooks may have more or fewer subfold-
ers, depending on the content.)

● charts: Contains an XML file for each chart. This file contains the chart settings.

● chartsheets: Contains an XML file with data for each chart sheet in the workbook.

● diagrams: Contains XML files that describe the diagrams (SmartArt) in the workbook.

● drawings: Contains an XML file with data for each drawing. Drawings include items
such as buttons, charts, and images.

Part I: Some Essential Background90

● media: Contains embedded media, such GIF and JPG files.

● tables: Contains an XML file with data for each table.

● theme: Contains an XML file with data about the workbook’s theme.

● worksheets: Contains an XML file for each worksheet in the workbook.

Figure 4-6: Viewing an XML file in a Web browser.

If you add a ZIP extension to an Excel file, you can still open it in Excel — although
you’ll get a warning message first. Also, you can save a workbook with a ZIP extension.
In the Save As dialog box, add a ZIP extension and then place double quotation marks
around the entire filename — for example, “Myworkbook.xlsx.zip”.

Chapter 4: Understanding Excel Files 91

Why is the file format important?
The open XML file formats introduced in Microsoft Office 2007 represent a significant step for the
computing community. For the first time, it’s relatively easy to read and write Excel workbooks
using software other than Excel. For example, you can write a program to modify thousands of
Excel workbook files without even opening Excel. Such a program could insert a new worksheet
into every file. The programmer, of course, would need to have excellent knowledge of the XML
file structures, but such a task is definitely doable.

Importantly, the new file formats are somewhat less prone to corruption (compared to the old
binary formats). I saved a workbook file and then deleted one of the worksheet XML files. When I
tried to reopen it in Excel, I got the message shown in Figure 4-7. Excel was able to tell that the
file was damaged by comparing the information in the .res files with what’s actually in the file.
In this case, Excel was able to repair the file and open it. The deleted worksheet was re-inserted,
but it was empty.

Figure 4-7: Excel can often repair a damaged workbook file.

In addition, the zipped XML files are usually smaller than comparable binary files. And, finally, the
structured nature of the files makes extracting individual elements (for example, all graphic
images) possible.

The typical Excel user won’t need to examine or modify the XML components of a workbook file.
But, as a developer, you may want to write code that changes Excel’s Ribbon user interface. If
that’s the case, you will need to be at least somewhat familiar with the structure of a workbook
XML file.

Refer to Chapter 22 for more information about modifying Excel’s Ribbon.

The OfficeUI File
A file named Excel.officeUI stores changes made to the Quick Access toolbar and Ribbon.
This XML file is located here:

C:\Users\<username>\AppData\Local\Microsoft\Office

Part I: Some Essential Background92

This file is updated whenever a change is made to the Quick Access toolbar or to the Ribbon. It’s
updated immediately, not when Excel is closed. This file doesn’t exist unless you’ve made at least
one change to the user interface.

You can view Excel.officeUI using an XML editor, a Web browser, or Excel. To view this file
in Excel, follow these steps:

 1. Make a copy of the Excel.officeUI file.

 2. Add an XML extension to the copy of the file so that the name is Excel.officeUI.XML.

 3. Choose File➜Open to open the file or just drag it into Excel’s window.

 4. You’ll see a dialog box with some options; choose As an XML Table.

Figure 4-8 shows an imported Excel.officeUI file (the file is displayed as a table). In this
case, the Quick Access toolbar has two commands enabled (rows 12 and 13 in the table), and I
added a new tab and group, with two commands (rows 14 and 15 in the table).

It’s possible to share an Excel.officeUI file with other users. For example, you may have cus-
tomized your Quick Access toolbar with some handy tools, and added a new Ribbon tab with lots
of useful commands, nicely organized . If a colleague is impressed, just give him a copy of your
Excel.officeUI file and tell him where to put it. Keep in mind that replacing an existing
Excel.officeUIfile will overwrite any changes your colleague has made.

Don’t attempt to modify the Excel.officeUI file unless you know what you’re doing. But feel
free to experiment. If Excel reports an error in the Excel.officeUI file at start-up, you can just
delete the file, and Excel will create a new one. Better yet, keep a backup copy of the original.

Figure 4-8: Viewing an Excel.officeUI data file in Excel.

The XLB File
Excel stores customized toolbar and menu bar configurations in an XLB file. Even though Excel
2010 doesn’t officially support custom toolbars and menus in the way that it did in previous ver-
sions, it still uses an XLB file if you use any applications that create toolbars or custom menus. If you
can’t find an XLB file, it means that Excel isn’t storing any custom toolbar or menu configurations.

Chapter 4: Understanding Excel Files 93

When you exit Excel, the current toolbar configuration is saved in a file named Excel12.xlb.
This file is (most likely) located here:

C:\Users\<username>\AppData\Roaming\Microsoft\Excel

This binary file contains information regarding the position and visibility of all custom toolbars
and custom menu bars, plus modifications that you’ve made to built-in toolbars or menu bars.

Add-In Files
An add-in is essentially an Excel workbook file with a few important differences:

 The workbook’s IsAddin property is True — which means that it can be loaded and
unloaded by using the Add-Ins dialog box.

 The workbook is hidden and cannot be unhidden by the user. Consequently, an add-in is
never the active workbook.

 When using VBA, the add-in workbook is not part of the Workbooks collection.

Access the Add-Ins dialog box by choosing File➜Excel Options. Click the Add-Ins tab,
select Excel Add-Ins from the Manage list, and click Go. If you’ve set up Excel to display
the Developer tab, you can also use Developer➜Add-Ins➜Addins. Or (easiest of all),
just press Alt+TI, a handy key combination leftover from Excel 2003.

Many add-ins provide new features or functions to Excel. You can access these new features as if
they were built into the product.

You can create your own add-ins from workbook files. In fact, creating add-ins is the preferred
method of distributing some types of Excel applications. Excel 2010 add-ins have an XLAM
extension by default.

Besides XLAM add-ins, Excel supports XLL add-ins and COM add-ins. These types
of add-ins are created using software other than Excel. This book discusses only XLAM
add-ins.

Chapter 21 covers the topic of add-ins in detail.

Part I: Some Essential Background94

Excel Settings in the Registry
The Excel Options dialog box has dozens of user-specified options. Excel uses the Windows
Registry to store these settings and retrieve them when Excel is started. In this section, I provide
some background information about the Windows Registry and discuss how Excel uses the
Registry to store its settings.

About the Registry
The Windows Registry is essentially a central hierarchical database that is used by the operating
system and by application software. The Registry first appeared in Windows 95 and replaces the
old INI files that stored Windows and application settings.

Your VBA macros can also read and write information to the Registry. Refer to Chapter
11 for details.

You can use the Registry Editor program (included with Windows) to browse the Registry — and
even to edit its contents if you know what you’re doing. The Registry Editor is named regedit.
exe. Before beginning your explorations, take a minute to read the sidebar “Before You Edit the
Registry. . . .” Figure 4-9 shows what the Registry Editor looks like.

Figure 4-9: The Registry Editor lets you browse and make changes to the Registry.

Chapter 4: Understanding Excel Files 95

The Registry consists of keys and values, arranged in a hierarchy. The top-level keys are

 HKEY_CLASSES_ROOT

 HKEY_CURRENT_USER

 HKEY_LOCAL_MACHINE

 HKEY_USERS

 HKEY_CURRENT_CONFIG

Excel’s settings
Information used by Excel 2010 is stored in this Registry section:

HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Excel

In this section of the Registry, you’ll find a number of keys that contain specific values that deter-
mine how Excel operates.

The Registry settings are updated automatically by Excel when Excel closes.

It’s important to understand that Excel reads the Windows Registry only once — when
it starts up. In addition, Excel updates the Registry settings only when Excel closes nor-
mally. If Excel crashes (unfortunately, not an uncommon occurrence), the Registry
information is not updated. For example, if you change one of Excel’s settings, such as
the visibility of the formula bar, this setting is not written to the Registry until Excel
closes by normal means.

Table 4-6 lists some of the Registry sections that are relevant to Excel 2010. You may not find all
these sections in your Registry database, and you may find some others.

Before you edit the Registry . . .
You can use the regedit.exe program to change anything in the Registry, including informa-
tion that is critical to your system’s operation. In other words, if you change the wrong piece of
information, Windows may no longer work properly.

Get into the habit of choosing the File➜Export command in Regedit. This command enables you
to save an ASCII version of the entire Registry or just a specific branch of the Registry. If you
find that you messed up something, you can always import the ASCII file to restore the Registry
to its previous condition (choose the File➜Import command). Refer to the Help file for Regedit
for details.

Part I: Some Essential Background96

Table 4-6: Excel Configuration Information in the Registry

Section Description

Add-In Manager Lists add-ins that appear in the Add-Ins dialog box. Add-ins that are included with
Excel do not appear in this list. If you have an add-in entry in this list box that you
no longer use, you can remove it by using the Registry Editor.

Converters Lists additional (external) file converters that are not built into Excel.

Error Checking Holds the settings for formula error checking

File MRU Holds information about the most recently used files (which appears in the Recent
Documents list when you choose File➜Recent).

Options A catch-all section; holds a wide variety of settings.

Recent Templates Stores the names of templates you’ve used recently.

Resiliency Information used for recovering documents.

Security Specifies the security options for opening files that contain macros.

Spell Checker Stores information about your spell checker options.

StatusBar Stores the user choices for what appears in the status bar.

UserInfo Stores information about the user.

Although you can change most of the settings via the Excel Options dialog box, you can’t change
a few settings directly from Excel (but you can use the Registry Editor to make changes). For
example, when you select a range of cells, you may prefer that the selected cells appear in high
contrast white-on-black. There is no way to specify this setting in Excel, but you can add a new
Registry key like this:

 1. Open the Registry Editor and locate this section:

HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Excel\Options

 2. Right-click and choose New➜DWORD Value.

 3. Name this value Options6.

 4. Right-click the Options6 key and select Modify.

 5. In the Edit DWORD Value dialog box, click the Decimal option and enter 16 (see Figure 4-10).

Figure 4-10: Setting a value for a Registry setting.

Chapter 4: Understanding Excel Files 97

When you restart Excel, range selections will appear with a black background rather than the
usual light blue. If you don’t like this look, just delete the Options6 Registry entry.

If you have trouble starting Excel, the Registry keys may have become corrupt. You can
try using the Registry Editor to delete the entire Excel section:

HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Excel

The next time Excel starts, it will rebuild the Registry keys. You will, however, lose all
the customization information that was stored there.

Part I: Some Essential Background98

PART II
Excel Application
Development
CHAPTER 5
What Is a Spreadsheet Application?

CHAPTER 6
Essentials of Spreadsheet Application Development

101

5
What Is a Spreadsheet
Application?
In This Chapter

● Getting a working definition of a spreadsheet application

● Understanding the difference between a spreadsheet user and a spreadsheet developer

● Classifying spreadsheet users to help you conceptualize the audience for your applications

● Discussing why people use spreadsheets

● Exploring a taxonomy of the basic types of spreadsheets

Spreadsheet Applications
For the purposes of this book, a spreadsheet application is a spreadsheet file (or group of related
files) that is designed so that someone other than the developer can perform useful work without
extensive training. According to this definition, most of the spreadsheet files that you’ve devel-
oped probably don’t qualify as spreadsheet applications. You may have dozens or hundreds of
spreadsheet files on your hard drive, but it’s a safe bet that most of them aren’t really designed
for others to use.

A good spreadsheet application has the following characteristics:

 It enables the end user to perform a task that he or she probably would not be able to do
otherwise.

 It provides the appropriate solution to the problem. (A spreadsheet environment isn’t
always the optimal approach.)

 It accomplishes what it is supposed to do. This prerequisite may be obvious, but it’s not
at all uncommon for applications to fail this test.

Part II: Excel Application Development102

 It produces accurate results and is free of bugs.

 It uses appropriate and efficient methods and algorithms to accomplish its job.

 It traps errors before the user is forced to deal with them.

Note that errors and bugs are not the same. Attempting to divide by zero is an error,
whereas failure to identify that error before it occurs is a bug.

 It does not allow the user to delete or modify important components accidentally (or
intentionally).

 Its user interface is clear and consistent so that the user always knows how to proceed.

 Its formulas, macros, and user interface elements are well documented, allowing for sub-
sequent changes, if necessary.

 It is designed so that it can be modified in simple ways without making major changes. A
basic fact of life is that a user’s needs change over time.

 It has an easily accessible help system that provides useful information on at least the
major procedures.

 It is designed to be portable and to run on any system that has the proper software (in
this case, a copy of the appropriate version of Excel).

It should come as no surprise that it is possible to create spreadsheet applications for many dif-
ferent usage levels, ranging from simple fill-in-the-blank templates to extremely complex appli-
cations that use a custom interface and that may not even look like spreadsheets.

The Developer and the End User
I’ve already used the terms developer and end user, and you will see them frequently throughout
this book. Because you’ve gotten this far, I think I can safely assume that you’re either a spread-
sheet application developer or a potential developer.

My definitions regarding developers and end users are simple. The person who creates the
spreadsheet application is the developer. For joint projects, there are multiple developers: a
development team. The person who uses the results of the developer’s spreadsheet program-
ming efforts is the end user (which I often shorten to simply user). In many cases, there will be
multiple end users, and often the developer is one of the users.

Who are developers? What do they do?
I’ve spent about 20 years trading methodologies and hanging out (usually in a virtual manner
online) with the motley crew of folks who call themselves spreadsheet developers. I divide them
into two primary groups:

Chapter 5: What Is a Spreadsheet Application? 103

 Insiders are developers who are intimately involved with the users and thoroughly under-
stand their needs. In many cases, these developers are also users of the application.
Often, they develop an application in response to a particular problem.

 Outsiders are developers who are hired to produce a solution to a problem. In most
cases, developers in this category are familiar with the business in general but not with
the specifics of the application they are developing. In other cases, these developers are
already employed by the company that requests the application (but they normally work
in a different department).

Some developers devote all their time to development efforts. These developers may be either
insiders or outsiders. A fair number of consultants (outsiders) make a decent living developing
spreadsheet applications on a freelance basis.

Other spreadsheet developers don’t work full time at the task and may not even realize they are
developing spreadsheet applications. These developers are often office computer gurus who
seem to know everything about computers and software. These folks often create spreadsheet
applications as a way to make their lives easier — the time spent developing a well-designed
application for others can often save hours of training time and can greatly reduce the time spent
answering others’ questions.

Spreadsheet developers are typically involved in the following activities, often performing most
or all of each task on their own:

 Determining the needs of the user

 Planning an application that meets these needs

 Determining the most appropriate user interface

 Creating the spreadsheet, formulas, macros, and user interface

 Testing the application under all reasonable sets of conditions

 Making the application relatively user-friendly (often based on results from the testing)

 Making the application aesthetically appealing and intuitive

 Documenting the development effort

 Distributing the application to users

 Updating the application if and when it’s necessary

I discuss these developer activities in more detail in Chapter 6.

Developers must have a thorough understanding of their development environment (in this case,
Excel). And there’s certainly a lot to know when it comes to Excel. Developing nontrivial spread-
sheet applications with Excel requires an in-depth knowledge of formulas, functions, macros,

Part II: Excel Application Development104

custom dialog boxes, user interface elements, and add-ins. Most Excel users, of course, don’t
meet these qualifications and have no intention of ever learning these details — which brings me
to the next topic: classifying spreadsheet users.

Classifying spreadsheet users
Over the years, I’ve found that it’s often useful to classify people who use spreadsheets (includ-
ing both developers and end users) along two dimensions: their degree of experience with
spreadsheets and their interest in learning about spreadsheets.

To keep things simple, each of these two dimensions has three levels. These levels can be com-
bined in nine combinations, which are shown in Table 5-1. In reality, only seven segments are
worth thinking about because both moderately experienced and very experienced spreadsheet
users generally have at least some interest in spreadsheets. (After all, that’s what motivated them
to get their experience.) Users who have a lot of spreadsheet experience and a low level of inter-
est would make very bad developers.

Table 5-1: Classification of Spreadsheet Users by Experience and Interest

No Interest Moderately Interested Very Interested

Little Experience User User User/Potential Developer

Moderately Experienced N/A User Developer

Very Experienced N/A User Developer

It should be clear that spreadsheet developers must have a great deal of experience with spread-
sheets as well as a high interest in spreadsheets. Those with little spreadsheet experience but a
great deal of interest are potential developers. All they need is more experience. If you’re reading
this book, you probably fall into one of the boxes in the last column of the table.

The audience for spreadsheet applications
The remaining segments in the preceding table comprise spreadsheet end users, whom you can
think of as the consumers of spreadsheet applications. When you develop a spreadsheet applica-
tion for others to use, you need to know which of these groups of people will actually be using
your application.

Users with little experience and no interest in learning more about spreadsheets make up a large
percentage of all spreadsheet users, probably the largest group of all. These are the people who
need to use a spreadsheet for their jobs but who view the spreadsheet simply as a means to an
end. Typically, they know very little about computers and software, and they usually have no
interest in learning anything more than what’s required to get their work done. They might even
feel a bit intimidated by computers. Often, these users don’t even know which version of Excel
they use, and they are largely unfamiliar with what it can do. Obviously, applications developed
for this group must be user-friendly. By that I mean straightforward, unintimidating, easy to use,
and as foolproof as possible.

Chapter 5: What Is a Spreadsheet Application? 105

From the developer’s point of view, a more interesting group is comprised of users who have lit-
tle or moderate spreadsheet experience but who are interested in learning more. These users
understand the concept of formulas, use worksheet functions, and generally have a good idea of
what the product is capable of doing. These users generally appreciate the work that you put
into an application and are often impressed by your efforts. Even better, they’ll often make excel-
lent suggestions for improving your applications. Applications developed for this group should
also be user-friendly, but they can also be more complex and customizable than applications
designed for the less experienced and less interested groups.

Solving Problems with Excel
In the previous sections, I cover the basic concept of a spreadsheet application, discuss the end
users and developers of such applications, and even attempt to figure out why people use
spreadsheets at all. Now, it’s time to take a look at the types of tasks that are appropriate for
spreadsheet applications.

You may already have a good idea of the types of tasks for which you can use a spreadsheet.
Traditionally, spreadsheet software has been used for numerical applications that are largely
interactive. Corporate budgets are an excellent example of this interactivity. After the model has
been set up (that is, after formulas have been developed), working with a budget is simply a
matter of plugging in amounts and observing the bottom-line totals. Often, budgeters simply
need to allocate fixed resources among various activities and present the results in a reasonably
attractive (or at least legible) format. Excel, of course, is ideal for this scenario.

Budget-type problems, however, probably account for only a small percentage of your spread-
sheet-development time. If you’re like me, you’ve learned that uses for Excel can often extend
well beyond the types of tasks for which spreadsheets were originally designed.

Here are just a few examples of nontraditional ways that you can use Excel:

 As a presentation device: For example, with minimal effort, you can create an attractive,
interactive, on-screen slide show with only Excel. PowerPoint is a better choice, but Excel
will do in a pinch.

 As a data-entry tool: For repetitive data-entry tasks, a spreadsheet is often the most efficient
route to take. You can then export the data to a variety of formats for use in other programs.

 As a database manager: If you’re dealing with a fairly small amount of data, you may find
it much easier to manage it using Excel rather than a program like Access.

 As a forms generator: For creating attractive printed forms, many find it easier to use
Excel’s formatting capabilities than to learn a desktop publishing package.

 As a text processor: Excel’s text functions and macro capability enable you to manipulate
text in ways that are impossible using a word processor.

 As a platform for simple games: Clearly, Excel was not designed with gaming in mind.
However, I’ve downloaded (and written) some interesting strategy games by using the
tools found in Excel and other spreadsheets.

Part II: Excel Application Development106

You can probably think of many more examples for this list.

Ironically, the versatility of spreadsheets is a double-edged sword. On one hand, it’s tempting to
try to use a spreadsheet for every problem that crops up. On the other hand, you’ll often be spin-
ning your wheels by trying to use a spreadsheet for a problem that’s better suited for a different
solution.

Basic Spreadsheet Types
In this section, I classify spreadsheets into several basic types to provide a better perspective on
how spreadsheet applications fit into the overall scheme of things. This is all quite arbitrary, of
course, and is based solely on my own experience. Moreover, the categories have quite a bit of
overlap, but they cover most of the spreadsheets that I’ve seen and developed.

My names for these categories are as follows:

 Quick-and-dirty

 For-your-eyes-only

 Single-user applications

 Spaghetti applications

 Utility applications

 Add-ins that contain worksheet functions

 Single-block budgets

 What-if models

 Data storage and access

 Database front ends

 Turnkey applications

I discuss each of these categories in the following sections.

Quick-and-dirty spreadsheets
This is probably the most common type of spreadsheet. Most of the spreadsheets in this category
are fairly small and are developed to quickly solve a problem or answer a question. Here’s an
example: You’re about to buy a new car, and you want to figure out your monthly payment for
various loan amounts. Or perhaps you need to generate a chart that shows your company’s sales
by month, so you quickly enter 12 values and whip out a chart, which you paste into your word
processor.

Chapter 5: What Is a Spreadsheet Application? 107

In both of the preceding cases, you can probably input the entire model in a few minutes, and
you certainly won’t take the time to document your work. You probably won’t even think of
developing any macros or custom dialog boxes. In fact, you might not even deem these simple
spreadsheets worthy of saving to disk. Obviously, spreadsheets in this category are not
 applications.

For-your-eyes-only spreadsheets
As the name implies, no one except you — the creator — will ever see or use the spreadsheets
that fall into this category. An example of this type might be a file in which you keep information
relevant to your income taxes. You open the file whenever a check comes in the mail, you incur
an expense that can be justified as business, you buy tax-deductible Girl Scout cookies, and so
on. Another example is a spreadsheet that you use to keep track of your employees’ time records
(sick leave, vacation, and so on).

Spreadsheets in this category differ from quick-and-dirty spreadsheets in that you use them
more than once, so you save these spreadsheets to files. But, again, they’re not worth spending a
great deal of time on. You might apply some simple formatting, but that’s about it. This type of
spreadsheet also lacks any type of error detection because you understand how the formulas are
set up; you know enough to avoid inputting data that will produce erroneous results. If an error
does crop up, you immediately know what caused it.

Spreadsheets in this category don’t qualify as applications, although they sometimes increase in
sophistication over time.

Single-user applications
This is a spreadsheet application that only the developer uses, but its complexity extends beyond
the spreadsheets in the for-your-eyes-only category. For example, I developed a workbook to
keep track of registered users for my software applications. It started out as a simple worksheet
database (for my eyes only), but then I realized that I could also use it to generate mailing labels
and invoices. One day I spent an hour or so writing macros and then realized that I had converted
this workbook from a for-your-eyes-only spreadsheet to a single-user application.

Creating single-user applications for yourself is an excellent way to get practice with Excel’s
developer’s tools. For example, you can learn to create custom dialog boxes, modify the user
interface, write Visual Basic for Applications (VBA) macros, and so on.

Working on a meaningful project (even if it’s meaningful only to you) is the best way to
learn advanced features in Excel — or any other software, for that matter.

Spaghetti applications
An all-too-common type of spreadsheet is what I call a spaghetti application. The term stems
from the fact that the parts of the application are difficult to follow, much like a plate of

Part II: Excel Application Development108

 spaghetti. Most of these spreadsheets begin life as a reasonably focused, single-user application.
But over time, they’re passed along to others who make their own modifications. As require-
ments change and employees come and go, new parts are added, and others are ignored. Before
too long, the original purpose of the workbook may have been forgotten. The result is a file that
is used frequently, but no one really understands exactly how it all works.

Everyone who’s involved with it knows that the spaghetti application should be completely
reworked. But because nobody really understands it, the situation tends to worsen over time.
Spreadsheet consultants make a lot of money untangling such applications. I’ve found that, in
many cases, the most efficient solution is to redefine the users’ needs and build a new application
from scratch.

Utility applications
Good as it is, I still find quite a bit lacking in Excel. This brings me to the next category of spread-
sheets: utility applications. Utilities are special tools designed to perform a single recurring task.
For example, if you often import text into Excel, you may want some additional text-handling
commands, such as the ability to convert selected text to uppercase (without using formulas).
The solution? Develop a text-handling utility that does exactly what you want.

The Power Utility Pak is a collection of utility applications for Excel. I developed these
utilities to extend Excel’s functionality. These utilities work just like normal Excel com-
mands. You can download a trial version of the Power Utility Pak from my Web site
(www.spreadsheetpage.com), and you can get a discounted copy of the licensed ver-
sion by using the coupon located at the back of the book. And if you’re interested, the
complete VBA source code is also available for a small fee.

The best utility applications are very general in nature. Most macros are designed to perform a spe-
cific operation on a specific type of data found in a specific type of workbook. A good utility essen-
tially works like a command normally found in Excel. In other words, the utility needs to recognize
the context in which a command is executed and take appropriate action. This usually requires
quite a bit of error-handling code so that the utility can handle any situation that comes up.

Utility applications always use macros and may or may not use custom dialog boxes. Fortunately,
Excel makes creating such utilities relatively easy, and they can be converted to add-ins and
attached to Excel’s user interface so that they appear to be part of Excel.

The topic of creating utilities is so important that I devote an entire chapter to it.
Chapter 16 discusses how to create custom Excel utilities with VBA.

Add-ins that contain worksheet functions
As you know, Excel has many worksheet functions that you can use in formulas. Chances are that
you’ve needed a particular function, only to find that it doesn’t exist. The solution? Create your

Chapter 5: What Is a Spreadsheet Application? 109

own by using VBA. Custom worksheet functions can often simplify your formulas and make your
spreadsheet easier to maintain.

In Chapter 10, you’ll find everything you need to know about creating custom work-
sheet functions, including lots of examples.

Single-block budgets
By a single-block budget, I mean a spreadsheet (not necessarily a budget model) that essentially
consists of one block of cells. The top row might contain names that correspond to time (months,
quarters, or years), and the left column usually contains categories of some type. Typically, the
bottom row and right column contain formulas that add the numbers together. There may or
may not be formulas that compute subtotals within the block.

This is a very common type of spreadsheet. In most cases, simple single-block budget models are
not good candidates for applications because they are simple to begin with, but there are excep-
tions. For example, you might consider converting such a spreadsheet into an application if the
model is an unwieldy 3-D spreadsheet, needs to include consolidations from other files, or will be
used by departmental managers who may not understand spreadsheets.

What-if models
Many consider the what-if model category to be the epitome of spreadsheets at their best. The
ability to instantly recalculate thousands of formulas makes spreadsheet software the ideal tool
for financial modeling and other models that depend on the values of several variables. If you
think about it, just about any spreadsheet that contains formulas is a what-if model (which are
often distributed as templates). Changing the value of a cell used in a formula is akin to asking
“what if . . .?” My view of this category, however, is a bit more sophisticated. It includes spread-
sheets designed exclusively for systematically analyzing the effects of various inputs.

What-if models often benefit from additional work to make them more user-friendly, especially if
the model will be used for a lengthy period of time. Creating a good user interface on an applica-
tion can make it very easy for anyone to use, including computer-illiterates. As an example, you
might create an interface that lets users provide names for various sets of assumptions and then
lets them instantly view the results of a selected scenario and create a perfectly formatted sum-
mary chart with the click of a button.

Data storage and access spreadsheets
A large percentage of Excel workbooks consist of one or more database tables (sometimes
known as lists). These tables are used to track just about anything you can think of. Most people
find that it’s much easier to view and manipulate data in a spreadsheet than it is using normal
database software. If the tables are set up properly, they can be summarized with a pivot table.

Part II: Excel Application Development110

Spreadsheets in this category are often candidates for applications, especially if end users need
to perform things like data validation and pivot table summaries.

For more sophisticated database applications, such as those that use multiple tables with rela-
tionships between them, you’ll be better off using a real database program such as Access.

Database front ends
Increasingly, spreadsheet products are used to access external databases. Spreadsheet users can
access data stored in external files, even if they come in a variety of formats, by using tools that
Excel provides. When you create an application that does this, it’s sometimes referred to as an
executive information system, or EIS. This sort of system combines data from several sources and
summarizes it for users.

Accessing external databases from a spreadsheet often strikes fear in the hearts of beginning
users. Creating an executive information system is therefore an ideal sort of Excel application
because its chief goal is usually ease of use.

Turnkey applications
The final category of spreadsheet types is the most complex. By turnkey, I mean ready to go, with
little or no preparation by the end user. For example, the user loads the file and is presented
with a user interface that makes user choices perfectly clear. Turnkey applications may not even
look as if they are being powered by a spreadsheet, and, often, the user interacts completely with
dialog boxes rather than cells. I’ve heard these types of applications referred to as “dictator
applications” because the user can perform only the operations that the developer has allowed.

Actually, you can convert many of the categories just described into turnkey applications. The
critical common elements, as I discuss throughout the remainder of the book, include good plan-
ning, error handling, and user interface design.

111

6
Essentials of Spreadsheet
Application Development
In This Chapter

● Discovering the basic steps involved in spreadsheet application development

● Determining end users’ needs

● Planning applications to meet users’ needs

● Developing and testing your applications

● Documenting your development efforts and writing user documentation

Steps for Application Development
There is no simple, surefire recipe for developing an effective spreadsheet application. Everyone
has his or her own style for creating such applications, and I haven’t discovered one best way
that works for everyone. In addition, every project is different and, therefore, requires its own
approach. Finally, the demands and technical expertise of the people you work with (or for) also
play a role in how the development process proceeds.

As I mention in the preceding chapter, spreadsheet developers typically perform the following
activities:

 Determine the needs of the user(s)

 Plan an application that meets these needs

 Determine the most appropriate user interface

 Create the spreadsheet, formulas, macros, and user interface

 Test and debug the application

 Attempt to make the application bulletproof

Part II: Excel Application Development112

 Make the application aesthetically appealing and intuitive

 Document the development effort

 Develop user documentation and Help systems

 Distribute the application to the user

 Update the application when necessary

Not all these steps are required for each application, and the order in which these activities are
performed varies from project to project. I describe each of these activities in the pages that fol-
low, and in most cases, I cover the technical details in subsequent chapters.

Determining User Needs
When you undertake a new Excel project, one of your first steps is to identify exactly what the
end users require. Failure to thoroughly assess the end users’ needs early on often results in addi-
tional work later when you have to adjust the application so that it does what it was supposed to
do in the first place.

In some cases, you’ll be intimately familiar with the end users — you may even be an end user
yourself. In other cases (for example, if you’re a consultant developing a project for a new client),
you may know little or nothing about the users or their situations.

How do you determine the needs of the user? If you’ve been asked to develop a spreadsheet
application, it’s a good idea to meet with the end users and ask very specific questions. Better
yet, get everything in writing, create flow diagrams, pay attention to minor details, and do any-
thing else to ensure that the product you deliver is the product that is needed.

Here are some guidelines that may help make this phase easier:

 Don’t assume that you know what the user needs. Second-guessing at this stage almost
always causes problems later on.

 If possible, talk directly to the end users of the application, not just their supervisor or
manager.

 Learn what, if anything, is currently being done to meet the users’ needs. You might be
able to save some work by simply adapting an existing application. At the very least,
looking at current solutions will familiarize you with the operation.

 Identify the resources available at the user’s site. For example, try to determine whether
you must work around any hardware or software limitations.

 If possible, determine the specific hardware systems that will be used. If your application
will be used on slower systems, you need to take that into account. See the later section
“System speed.”

Chapter 6: Essentials of Spreadsheet Application Development 113

 Identify which version(s) of Excel is (are) in use. Although Microsoft does everything in
its power to urge users to upgrade to the latest version of the software, the majority of
Excel users haven’t upgraded to the most recent version.

 Understand the skill levels of the end users. This information will help you design the
application appropriately.

 Determine how long the application will be used and whether any changes are antici-
pated during the lifetime of the project. Knowing this information may influence the
amount of effort that you put into the project and help you plan for changes.

One final note: Don’t be surprised if the project specifications change before you complete the
application. This occurrence is quite common, and you’re in a better position if you expect
changes rather than being surprised by them. Just make sure that your contract (if you have one)
addresses the issue of changing specifications.

Planning an Application That Meets User Needs
After you determine the end users’ needs, it’s very tempting to jump right in and start fiddling
around in Excel. Take it from someone who suffers from this problem: Try to restrain yourself.
Builders don’t construct a house without a set of blueprints, and you shouldn’t build a spread-
sheet application without some type of plan. The formality of your plan depends on the scope of
the project and your general style of working, but you should spend at least some time thinking
about what you’re going to do and coming up with a plan of action.

Before rolling up your sleeves and settling down at your keyboard, you’ll benefit by taking some
time to consider the various ways you can approach the problem. This planning period is where a
thorough knowledge of Excel pays off. Avoiding blind alleys rather than stumbling into them is
always a good idea.

If you ask a dozen Excel experts to design an application based on very precise specifications,
chances are that you’ll get a dozen different implementations of the project that meet those
specifications. Of those solutions, some will definitely be better than the others because Excel
often provides several different options to accomplish a task. If you know Excel inside and out,
you’ll have a good idea of the potential methods at your disposal, and you can choose the one
most appropriate for the project at hand. Often, a bit of creative thinking yields an unusual
approach that’s vastly superior to other methods.

So at the beginning stage of this planning period, consider some general options, such as these:

 File structure: Think about whether you want to use one workbook with multiple sheets,
several single-sheet workbooks, or a template file.

 Data structure: You should always consider how your data will be structured, and also
determine whether you will be using external database files or storing everything in
worksheets.

Part II: Excel Application Development114

 Formulas versus VBA: Should you use formulas or write Visual Basic for Applications
(VBA) procedures to perform calculations? Both methods have advantages and disad-
vantages.

 Add-in or workbook file: In some cases, an add-in may be the best choice for your final
product. Or, perhaps you might use an add-in in conjunction with a standard workbook.

 Version of Excel: Will your Excel application be used with Excel 2010 only? With Excel
2007? What about Excel 2003 and earlier versions? Will your application also be run on a
Macintosh? These considerations are very important because each new version of Excel
adds features that aren’t available in previous versions. The new user interface intro-
duced in Excel 2007 makes it more challenging than ever to create an application that
works with older versions.

 Error handling: Error handling is a major issue with applications. You need to determine
how your application will detect and deal with errors. For example, if your application
applies formatting to the active worksheet, you need to be able to handle a case in which
a chart sheet is active.

 Use of special features: If your application needs to summarize a lot of data, you may
want to consider using Excel’s pivot table feature. Or, you may want to use Excel’s data
validation feature as a check for valid data entry.

 Performance issues: The time to start thinking about increasing the speed and efficiency
of your application is at the development stage, not when the application is completed
and users are complaining.

 Level of security: As you may know, Excel provides several protection options to restrict
access to particular elements of a workbook. For example, you can lock cells so that for-
mulas cannot be changed, and you can assign a password to prevent unauthorized users
from viewing or accessing specific files. Determining up front exactly what you need to
protect — and what level of protection is necessary — will make your job easier.

Be aware that Excel’s protection features aren’t 100-percent effective — far from it. If
you desire complete and absolute security for your application, Excel probably isn’t the
best platform.

You’ll probably have to deal with many other project-specific considerations in this phase. The
important thing is that you consider all options and don’t settle on the first solution that comes to
mind.

Another design consideration is remembering to plan for change. You’ll do yourself a favor if you
make your application as generic as possible. For example, don’t write a procedure that works
with only a specific range of cells. Rather, write a procedure that accepts any range as an argu-
ment. When the inevitable changes are requested, such a design makes it easier for you to carry
out the revisions. Also, you may find that the work that you do for one project is similar to the
work that you do for another. Keeping reusability in mind when you are planning a project is
always a good idea.

Chapter 6: Essentials of Spreadsheet Application Development 115

One thing that I’ve learned from experience is to avoid letting the end user completely guide
your approach to a problem. For example, suppose that you meet with a manager who tells you
that the department needs an application to write text files that will be imported into another
application. Don’t confuse the user’s need with the solution. The user’s real need is to share data.
Using an intermediate text file to do it is just one possible solution to the need. There may be
better ways to approach the problem. In other words, don’t let the users define their problem by
stating it in terms of a solution approach. Determining the best approach is your job.

Determining the Most Appropriate User Interface
When you develop spreadsheets that others will use, you need to pay special attention to the
user interface. By user interface, I mean the method by which the user interacts with the applica-
tion and executes your VBA macros.

Learning while you develop
Now a few words about reality: Excel is a moving target. Excel’s upgrade cycle is approximately
18 to 24 months, which means that you have fewer than two years to get up to speed with its
current innovations before you have even more innovations to contend with.

Excel 5, which introduced VBA, represented a major paradigm shift for Excel developers.
Thousands of people up until that point earned their living developing Excel applications (in
Excel 2, 3, and 4) that were largely based on the XLM macro language. Beginning with Excel 5,
dozens of new tools became available, and developers, for the most part, eagerly embraced
them.

When Excel 97 became available, developers faced yet another shift. This new version intro-
duced a new file format, the Visual Basic Editor (VBE), and UserForms as a replacement for dia-
log sheets. Excel 2000, 2002, and 2003 introduced additional features, but these changes
weren’t as radical as those in previous upgrades.

Excel 2007 was perhaps the most significant upgrade ever. The key challenge is dealing with the
new Ribbon user interface. In the past, creating custom menus and toolbars was relatively easy,
and you could do it entirely using VBA. But modifying the Ribbon requires quite a bit of addi-
tional work, and you’ll need to go beyond VBA to make it happen. In addition, the new file for-
mats will require some additional considerations. You may find it more efficient to create two
versions of your applications: one for Excel 2007 and 2010, and one for Excel 2003 and earlier
versions.

VBA isn’t difficult to learn, but it definitely takes time to become comfortable with it — and even
more time to master it. Consequently, it’s not uncommon to be in the process of learning VBA
while you’re developing applications with it. In fact, I think it’s impossible to learn VBA without
developing applications. If you’re like me, you’ll find it much easier to learn VBA if you have a
project that requires it. Learning VBA just for the sake of learning VBA usually doesn’t work.

Part II: Excel Application Development116

Menu and toolbar compatibility
Excel 2010 still supports custom menus and toolbars, but the way these UI elements are handled
may not be to your liking.

The following figure shows a custom menu and toolbar displayed in Excel 2003. The menu and
toolbar were created using my Power Utility Pak add-in. Each menu item and toolbar button
executes a macro.

As shown in the following figure, when the Power Utility Pak add-in is installed in Excel 2010, the
custom menu appears in a group labeled Add-Ins➜Menu Commands, and the custom toolbar is
in a group labeled Add-Ins➜Custom Toolbars. (You can’t resize or move the toolbars.) These
Ribbon groups display the menu additions and toolbars for all the applications or add-ins that
are loaded. The menu items and toolbar buttons still function, but the designer’s original UI con-
ception has been compromised.

Chapter 6: Essentials of Spreadsheet Application Development 117

With Excel 2010 (and Excel 2007), some of these decisions are irrelevant. Custom menus and
toolbars are, for all intents and purposes, obsolete. Consequently, developers must learn how to
work with the Ribbon.

Excel provides several features that are relevant to user interface design:

 Ribbon customization

 Shortcut menu customization

 Shortcut keys

 Custom dialog boxes (UserForms)

 Controls (such as a ListBox or a CommandButton) placed directly on a worksheet

To solve this problem, I created a new version of PUP specifically for Excel 2007 and later.

Part II: Excel Application Development118

I discuss these features briefly in the following sections and cover them more thoroughly in later
chapters.

Customizing the Ribbon
The Ribbon UI introduced in Excel 2007 is a dramatic shift in user interface design. Fortunately,
the developer has a fair amount of control over the Ribbon. Although Excel 2010 allows the end
user to modify the Ribbon, making UI changes via code isn’t a simple task.

See Chapter 22 for information about working with the Ribbon.

Customizing shortcut menus
Excel 2010 still allows the VBA developer to customize the right-click shortcut menus. Figure 6-1
shows a customized shortcut menu that appears when you right-click a row number. Notice that
this shortcut menu has several menu items (those with a “P” icon) that aren’t normally available.

Figure 6-1: An example of a customized shortcut menu.

Chapter 6: Essentials of Spreadsheet Application Development 119

Chapter 23 describes how to work with shortcut menus using VBA.

Creating shortcut keys
Another user interface option at your disposal is to create custom shortcut keys. Excel lets you
assign a Ctrl key (or Shift+Ctrl key) combination to a macro. When the user presses the key com-
bination, the macro executes.

Be aware, however, of these two caveats: First, you must make it clear to the user which keys are
active and what they do; second, you need to be careful not to assign a key combination that’s
already used for something else. A key combination that you assign to a macro takes precedence
over the built-in shortcut keys. For example, Ctrl+S is a built-in Excel shortcut key used to save
the current file. If you assign this key combination to a macro, you lose the capability to save the
file with Ctrl+S. Remember that shortcut keys are case-sensitive, so you can use a combination
such as Ctrl+Shift+S.

Creating custom dialog boxes
Anyone who has used a personal computer for any length of time is undoubtedly familiar with
dialog boxes. Consequently, custom Excel dialog boxes can play a major role in the user inter-
faces that you design for your applications. Figure 6-2 shows an example of a custom dialog box.

A custom dialog box is known as a UserForm. A UserForm can solicit user input, get a user’s
options or preferences, and direct the flow of your entire application. You create and edit
UserForms in the VBE. The elements that make up a UserForm (buttons, drop-down lists, check
boxes, and so on) are called controls — more specifically, ActiveX controls. Excel provides a stan-
dard assortment of ActiveX controls, and you can also incorporate third-party controls.

After adding a control to a dialog box, you can link it to a worksheet cell so that it doesn’t require
any macros (except a simple macro to display the dialog box). Linking a control to a cell is easy,
but it’s not always the best way to get user input from a dialog box. Most of the time, you want
to develop VBA macros that work with your custom dialog boxes.

I cover UserForms in detail in Part IV.

Part II: Excel Application Development120

Figure 6-2: A dialog box created with Excel’s UserForm feature.

Using ActiveX controls on a worksheet
Excel also lets you add the UserForm ActiveX controls to a worksheet’s drawing layer (an invisible
layer on top of a sheet that holds pictures, charts, and other objects). Figure 6-3 shows a simple
worksheet model with several UserForm controls inserted directly on the worksheet. This sheet
contains the following ActiveX controls: a CheckBox, a ScrollBar, and two sets of OptionButtons.
This workbook uses no macros. Rather, the controls are linked to worksheet cells.

This workbook is available on the companion CD-ROM. The file is named worksheet
controls.xlsx.

Perhaps the most common control is a CommandButton. By itself, a CommandButton doesn’t do
anything, so you need to attach a macro to each CommandButton.

Figure 6-3: You can add UserForm controls to worksheets and link them to cells.

Chapter 6: Essentials of Spreadsheet Application Development 121

Using dialog box controls directly in a worksheet often eliminates the need for custom dialog
boxes. You can often greatly simplify the operation of a spreadsheet by adding a few ActiveX
controls (or Form controls) to a worksheet. These ActiveX controls let the user make choices by
operating familiar controls rather than making entries into cells.

Access these controls by using the Developer➜Controls➜Insert command (see Figure 6-4). If the
Developer tab isn’t on the Ribbon, add it by using the Customize Ribbon tab of the Excel Options
dialog box.

Figure 6-4: Worksheet controls.

The controls come in two types: Form Controls and ActiveX Controls. Both sets of controls have
their advantages and disadvantages. Generally, the Form controls are easier to use, but the
ActiveX controls are a bit more flexible. Table 6-1 summarizes these two classes of controls.

Table 6-1: ActiveX Controls Versus Form Controls

ActiveX Controls Form Controls

Excel versions 97, 2000, 2002, 2003, 2007, 2010 5, 95, 97, 2000, 2002, 2003, 2007, 2010

Controls available CheckBox, TextBox, CommandButton,
OptionButton, ListBox, ComboBox,
ToggleButton, SpinButton, ScrollBar,
Label, Image (and others can be
added)

GroupBox, Button, CheckBox,
OptionButton, ListBox, DropDown
(ComboBox), ScrollBar, Spinner

Macro code storage In the code module for the Sheet In any standard VBA module

Macro name Corresponds to the control name (for
example, CommandButton1_Click)

Any name you specify

Correspond to . . . UserForm controls Pre–Excel 97 Dialog Sheet controls

Customization Extensive, using the Properties box Minimal

Respond to events Yes Click or Change events only

Part II: Excel Application Development122

Executing the development effort
After you identify user needs, determine the approach that you’ll take to meet those needs, and
decide on the components that you’ll use for the user interface, it’s time to get down to the nitty-
gritty and start creating the application. This step, of course, comprises a great deal of the total
time that you spend on a particular project.

How you go about developing the application depends on your own personal style and the
nature of the application. Except for simple fill-in-the-blanks template workbooks, your applica-
tion will probably use macros. Developing the macros is the tough part. Creating macros in Excel
is easy, but creating good macros is difficult.

Concerning Yourself with the End User
In this section, I discuss the important development issues that surface as your application becomes
more and more workable and as the time to package and distribute your work grows nearer.

Testing the application
How many times have you used a commercial software application, only to have it bomb out on
you at a crucial moment? Most likely, the problem was caused by insufficient testing that didn’t
catch all the bugs. All nontrivial software has bugs, but in the best software, the bugs are simply
more obscure. As you’ll see, you sometimes must work around the bugs in Excel to get your
application to perform properly.

After you create your application, you need to test it. Testing is one of the most crucial steps; it’s
not uncommon to spend as much time testing and debugging an application as you did creating
the application in the first place. Actually, you should be doing a great deal of testing during the
development phase. After all, whether you’re writing a VBA routine or creating formulas in a
worksheet, you want to make sure that the application is working the way it’s supposed to work.

Like standard compiled applications, spreadsheet applications that you develop are prone to
bugs. A bug can be defined as (1) something that does happen but shouldn’t happen while a pro-
gram (or application) is running, or (2) something that doesn’t happen when it should happen.
Both species of bugs are equally nasty, and you should plan on devoting a good portion of your
development time to testing the application under all reasonable conditions and fixing any prob-
lems that you find. In some cases, unfortunately, the problems aren’t entirely your fault. Excel,
too, has its problems (see the “Bugs? In Excel?” sidebar).

I probably don’t need to tell you to thoroughly test any spreadsheet application that you develop
for others. And depending on its eventual audience, you may want to make your application bul-
letproof. In other words, try to anticipate all the errors and screw-ups that could possibly occur
and make concerted efforts to avoid them — or, at least, to handle them gracefully. This foresight
not only helps the end user but also makes it easier on you and protects your reputation. Also
consider using beta testing; your end users are likely candidates because they’re the ones who
will be using your product. (See the upcoming sidebar “What about beta testing?”)

Chapter 6: Essentials of Spreadsheet Application Development 123

Bugs? In Excel?
You may think that a product like Excel, which is used by millions of people throughout the
world, would be relatively free of bugs. Think again. Excel is such a complex piece of software
that it is only natural to expect some problems with it. And Excel does have some problems.

Getting a product like Excel out the door isn’t easy, even for a company like Microsoft with
seemingly unlimited resources. Releasing a software product involves compromises and trade-
offs. It’s commonly known that most major software vendors release their products with full
knowledge that they contain bugs. Most bugs are considered insignificant enough to ignore.
Software companies could postpone their releases by a few months and fix many of them, but
software, like everything else, is ruled by economics. The benefits of delaying a product’s release
often don’t exceed the costs involved. Although Excel definitely has its share of bugs, my guess
is that the majority of Excel users never encounter one.

In this book, I point out the problems with Excel that I know about. You’ll surely discover some
more on your own. Some problems occur only with a particular version of Excel — and under a
specific configuration involving hardware and/or software. These bugs are the worst ones of all
because they aren’t easily reproducible.

So what’s a developer to do? It’s called a workaround. If something that you try to do doesn’t
work — and all indications say that it should work — it’s time to move on to Plan B. Frustrating?
Sure. A waste of your time? Absolutely. It’s all part of being a developer.

Although you can’t conceivably test for all possibilities, your macros should be able to handle
common types of errors. For example, what if the user enters a text string instead of a numeric
value? What if the user tries to run your macro when a workbook isn’t open? What if he cancels a
dialog box without making any selections? What happens if the user presses Ctrl+F6 and jumps
to the next window? When you gain experience, these types of issues become very familiar, and
you account for them without even thinking.

Making the application bulletproof
If you think about it, destroying a spreadsheet is fairly easy. Erasing one critical formula or value
can cause errors throughout the entire worksheet — and perhaps even other dependent work-
sheets. Even worse, if the damaged workbook is saved, it replaces the good copy on disk. Unless
a backup procedure is in place, the user of your application may be in trouble, and you’ll proba-
bly be blamed for it.

Part II: Excel Application Development124

Obviously, you can easily see why you need to add some protection when users — especially
novices — will be using your worksheets. Excel provides several techniques for protecting work-
sheets and parts of worksheets:

 Lock specific cells: You can lock specific cells (by using the Protection tab in the Format
Cells dialog box) so that users can’t change them. Locking takes effect only when the
document is protected with the Review➜Changes➜Protect Sheet command. The Protect
Sheet dialog box has options that allow you to specify which actions users can perform
on a protected sheet (see Figure 6-5).

Figure 6-5: Using the Protect Sheet dialog box to specify what users can and can’t do.

What about beta testing?
Software manufacturers typically have a rigorous testing cycle for new products. After extensive
internal testing, the pre-release product is usually sent to a group of interested users for beta
testing. This phase often uncovers additional problems that are usually corrected before the
product’s final release.

If you’re developing an Excel application that more than a few people will use, you may want to
consider a beta test. This test enables your intended users to use your application in its intended
setting on different hardware (usually).

The beta period should begin after you’ve completed all your own testing and you feel that the
application is ready to distribute. You’ll need to identify a group of users to help you. The pro-
cess works best if you distribute everything that will ultimately be included in your application:
user documentation, the installation program, help, and so on. You can evaluate the beta test in
a number of ways, including face-to-face discussions, questionnaires, and phone calls.

You almost always become aware of problems that you need to correct or improvements that
you need to make before you undertake a widespread distribution of the application. Of course,
a beta testing phase takes additional time, and not all projects can afford that luxury.

Chapter 6: Essentials of Spreadsheet Application Development 125

 Hide the formulas in specific cells: You can hide the formulas in specific cells (by using
the Protection tab in the Format Cells dialog box) so that others can’t see them. Again,
hiding takes effect only when the document is protected by choosing the
Review➜Changes➜Protect Sheet command.

 Protect an entire workbook: You can protect an entire workbook — the structure of the
workbook, the window position and size, or both. Use the Review➜Changes➜Protect
Workbook command for this purpose.

 Lock objects on the worksheet: Use the Properties tab in the Size and Properties dialog
box to lock objects (such as shapes) and prevent them from being moved or changed. To
access the Size and Properties dialog box, select the object and then click the dialog box
launcher in the Drawing Tools➜Format➜Size group. (This context tab appears only when
an object is selected.) Locking objects takes effect only when the document is protected
via the Review➜Changes➜Protect Sheet command. By default, all objects are locked.

 Hide rows, columns, sheets, and documents: You can hide rows, columns, sheets, and
entire workbooks. Doing so helps prevent the worksheet from looking cluttered and also
provides some modest protection against prying eyes.

 Designate an Excel workbook as read-only recommended: You can designate an Excel
workbook as read-only recommended (and use a password) to ensure that the file can’t
be overwritten with any changes. You do this designation in the General Options dialog
box. Display this dialog box by choosing File➜Save As. In the Save As dialog box, click
the Tools button and choose General Options.

 Assign a password: You can assign a password to prevent unauthorized users from
opening your file. Choose File➜Info➜Protect Workbook➜Encrypt With Password.

 Use a password-protected add-in: You can use a password-protected add-in, which
doesn’t allow the user to change anything on its worksheets.

How secure are Excel’s passwords?
As far as I know, Microsoft has never advertised Excel as a secure program. And for good rea-
son: Circumventing Excel’s password system is actually quite easy to do. Several commercial
programs are available that can break passwords. Excel 2002 and later versions seem to have
stronger security than previous versions, but a determined user can still crack them. Bottom
line? Don’t think of password protection as foolproof. Sure, it will be effective for the casual user.
But if someone really wants to break your password, he can probably do so.

Part II: Excel Application Development126

Making the application aesthetically appealing and intuitive
If you’ve used many different software packages, you’ve undoubtedly seen examples of poorly
designed user interfaces, difficult-to-use programs, and just plain ugly screens. If you’re develop-
ing spreadsheets for other people, you should pay particular attention to how the application
looks.

How a computer program looks can make all the difference in the world to users, and the same is
true with the applications that you develop with Excel. Beauty, however, is in the eye of the
beholder. If your skills lean more in the analytical direction, consider enlisting the assistance of
someone with a more aesthetic sensibility to provide help with design.

The good news is that, beginning with Excel 2007, new features make creating better-looking
spreadsheets a relatively easy task. If you stick with the pre-designed cell styles, your work
stands a good chance of looking good. And, with the click of a mouse, you can apply a new
theme that completely transforms the look of the workbook — and still looks good.
Unfortunately, Excel 2010 adds nothing new in the area of UserForm design, so you’re on your
own in that area.

End users appreciate a good-looking user interface, and your applications will have a much more
polished and professional look if you devote additional time to design and aesthetic consider-
ations. An application that looks good demonstrates that its developer cared enough about the
product to invest extra time and effort. Take the following suggestions into account:

 Strive for consistency. When designing dialog boxes, for example, try to emulate the
look and feel of Excel’s dialog boxes whenever possible. Be consistent with formatting,
fonts, text size, and colors.

 Keep it simple. A common mistake that developers make is trying to cram too much
information into a single screen or dialog box. A good rule is to present only one or two
chunks of information at a time.

 Break down input screens. If you use an input screen to solicit information from the user,
consider breaking it up into several, less crowded screens. If you use a complex dialog
box, you may want to break it up by using a MultiPage control, which lets you create a
familiar tabbed dialog box.

 Don’t overdo color. Use color sparingly. It’s very easy to overdo color and make the
screen look gaudy.

 Monitor typography and graphics. Pay attention to numeric formats and use consistent
typefaces, font sizes, and borders.

Evaluating aesthetic qualities is very subjective. When in doubt, strive for simplicity and clarity.

Versions prior to Excel 2007 used a pallet of 56 colors. That restriction has been
removed, and Excel now supports more than 16 million colors.

Chapter 6: Essentials of Spreadsheet Application Development 127

Creating a user Help system
With regard to user documentation, you basically have two options: paper-based documentation
or electronic documentation. Providing electronic help is standard fare in Windows applications.
Fortunately, your Excel applications can also provide help — even context-sensitive help.
Developing help text takes quite a bit of additional effort, but for a large project, it may be worth
it. Figure 6-6 shows an example of a custom Help system in compiled HTML format.

Figure 6-6: An example of a custom help file for an Excel add-in.

Another point to consider is support for your application. In other words, who gets the phone call
if the user encounters a problem? If you aren’t prepared to handle routine questions, you need to
identify someone who is. In some cases, you want to arrange it so that only highly technical or
bug-related issues escalate to the developer.

In Chapter 24, I discuss several alternatives for providing help for your applications.

Part II: Excel Application Development128

Documenting the development effort
Putting a spreadsheet application together is one thing. Making it understandable for other peo-
ple is another. As with traditional programming, it’s important that you thoroughly document
your work. Such documentation helps you if you need to go back to it (and you will), and it helps
anyone else whom you might pass it on to.

You may want to consider a couple of things when you document your project. For
example, if you were hired to develop an Excel application, you may not want to share
all your hard-earned secrets by thoroughly documenting everything. If this situation is
the case, you should maintain two versions: one thoroughly documented (for your own
reference) and the other partially documented (for other users).

How do you document a workbook application? You can either store the information in a work-
sheet or use another file. You can even use a paper document, if you prefer. Perhaps the easiest
way is to use a separate worksheet to store your comments and key information for the project.
For VBA code, use comments liberally. (VBA text preceded with an apostrophe is ignored because
that text is designated as a comment.) Although an elegant piece of VBA code can seem perfectly
obvious to you today, when you come back to it in a few months, your reasoning may be com-
pletely obscured unless you use the VBA comment feature.

Distributing the application to the user
You’ve completed your project, and you’re ready to release it to the end users. How do you go
about distributing it? You can choose from many ways to distribute your application, and the
method that you choose depends on many factors.

You could just hand over a CD-ROM, scribble a few instructions, and be on your way. Or, you may
want to install the application yourself — but this approach isn’t always feasible. Another option is to
develop an official setup program that performs the task automatically. You can write such a program
in a traditional programming language, purchase a generic setup program, or write your own in VBA.

Excel 2000 and later versions incorporate technology to enable developers to digitally sign their
applications. This process is designed to help end users identify the author of an application, to
ensure that the project has not been altered, and to help prevent the spread of macro viruses or
other potentially destructive code. To digitally sign a project, you first apply for a digital certificate
from a formal certificate authority (or, you can self-sign your project by creating your own digital
certificate). Refer to the Help system or the Microsoft Web site for additional information.

Chapter 6: Essentials of Spreadsheet Application Development 129

Updating the application when necessary
After you distribute your application, you’re finished with it, right? You can sit back, enjoy your-
self, and try to forget about the problems that you encountered (and solved) during the course
of developing your application. In rare cases, yes, you may be finished. More often, however, the
users of your application won’t be completely satisfied. Sure, your application adheres to all the
original specifications, but things change. Seeing an application working often causes the user to
think of other things that the application could be doing. I’m talking updates.

When you need to update or revise your application, you’ll appreciate that you designed it well in the
first place and that you fully documented your efforts. If not, well . . . we learn from our experiences.

Other Development Issues
You need to keep several other issues in mind when developing an application — especially if you
don’t know exactly who will be using the application. If you’re developing an application that will
have widespread use (a shareware application, for example), you have no way of knowing how
the application will be used, what type of system it will run on, or what other software will be
running concurrently.

Why is there no runtime version of Excel?
When you distribute your application, you need to be sure that each end user has a licensed
copy of the appropriate version of Excel. Distributing a copy of Excel along with your application
is illegal. Why, you might ask, doesn’t Microsoft provide a runtime version of Excel? A runtime
version is an executable program that can load files but not create them. With a runtime version,
the end user wouldn’t need a copy of Excel to run your application. (This is common with data-
base programs.)

I’ve never seen a clear or convincing reason why Microsoft doesn’t have a runtime version of
Excel, and no other spreadsheet manufacturer offers a runtime version of its product, either. The
most likely reason is that spreadsheet vendors fear that doing so would reduce sales of the soft-
ware. Or, it may be that developing a runtime version would require a tremendous amount of
programming that would just never pay off.

On a related note . . . Microsoft does offer an Excel file viewer. This product lets you view Excel
files if you don’t own a copy of Excel. Macros, however, won’t execute. You can get a copy of this
free file viewer from the Microsoft Web site (http://office.microsoft.com/downloads).

Part II: Excel Application Development130

The user’s installed version of Excel
With every new release of Excel, the issue of compatibility rears its head. As I write this book,
Excel 2010 is about to be released — yet many large corporations are still using Excel 2003 and
some use even earlier versions.

Unfortunately, there is no guarantee that an application developed for, say, Excel 2000 will work
perfectly with later versions of Excel. If you need your application to work with a variety of Excel
versions, the best approach is to work with the lowest version — and then test it thoroughly with
all other versions.

Things get even more complicated when you consider Excel’s subversions. Microsoft distributes
service releases (SRs), Service Packs (SPs), and security updates to correct problems. In some
cases, your Excel application won’t work correctly unless the user has installed a particular
update.

I discuss compatibility issues in Chapter 26.

Language issues
Consider yourself very fortunate if all your end users have the English language version of Excel.
Non-English versions of Excel aren’t always 100 percent compatible, so that means additional
testing on your part. In addition, keep in mind that two users can both be using the English lan-
guage version of Excel yet use different Windows regional settings. In some cases, you may need
to be aware of potential problems.

I briefly discuss language issues in Chapter 26.

System speed
You’re probably a fairly advanced computer user and tend to keep your hardware reasonably up
to date. In other words, you have a fairly powerful system that is probably better than the aver-
age user’s system. In some cases, you’ll know exactly what hardware the end users of your appli-
cations are using. If so, it’s vitally important that you test your application on that system. A
procedure that executes almost instantaneously on your system may take several seconds on
another system. In the world of computers, several seconds may be unacceptable.

When you gain more experience with VBA, you’ll discover that there are ways to get
the job done, and there are ways to get the job done fast. It’s a good idea to get into
the habit of coding for speed. Other chapters in this book can certainly help you out in
this area.

Chapter 6: Essentials of Spreadsheet Application Development 131

Video modes
As you probably know, users’ video displays vary widely. As I write this book, the most com-
monly used video resolution is 1280 x 1024, followed closed by 1024 x 768. Systems with a reso-
lution of 800 x 600 are becoming much less common, but quite a few are still in use. Higher
resolution displays and even dual displays are becoming increasingly common. Just because you
have a super-high-resolution monitor, you can’t assume that everyone else does.

Video resolution can be a problem if your application relies on specific information being dis-
played on a single screen. For example, if you develop an input screen that fills the screen in 1280
x 1024 mode, users with a 1024 x 768 display won’t be able to see the whole input screen without
scrolling or zooming.

Also, it’s important to realize that a restored (that is, not maximized or minimized) workbook is
displayed at its previous window size and position. In the extreme case, it’s possible that a win-
dow saved by using a high-resolution display may be completely off the screen when opened on
a system running in a lower resolution.

Unfortunately, you can’t automatically scale things so that they look the same regardless of the
display resolution. In some cases, you can zoom the worksheet (using the Zoom control in the
status bar), but doing so reliably may be difficult. Unless you’re certain of the video resolution
that the users of your application will use, you should probably design your application so it
works with the lowest common denominator — 800 x 600 or 1024 x 768 mode.

As you discover later in the book (see Chapter 10), you can determine the user’s video resolution
by using Windows API calls from VBA. In some cases, you may want to programmatically adjust
things depending on the user’s video resolution.

Part II: Excel Application Development132

PART III
Understanding Visual
Basic for Applications
CHAPTER 7
Introducing Visual Basic for Applications

CHAPTER 8
VBA Programming Fundamentals

CHAPTER 9
Working with VBA Sub Procedures

CHAPTER 10
Creating Function Procedures

CHAPTER 11
VBA Programming Examples and Techniques

135

7
Introducing Visual Basic for
Applications
In This Chapter

● Introducing VBA — the programming language built into Excel

● Discovering how VBA differs from traditional spreadsheet macro languages and the
Visual Basic language

● Using the Visual Basic Editor (VBE)

● Working in the Code windows in the VBE and customizing the VBE environment

● Using Excel’s macro recorder

● Getting an overview of objects, collections, properties, and methods

● Reviewing a case study of the Comment object

● Looking at specific information and examples of working with Range objects

● Accessing a lot of information about Excel objects, properties, and methods

Getting Some BASIC Background
Many hard-core programmers scoff at the idea of programming in BASIC. The name itself (an
acronym for Beginner’s All-purpose Symbolic Instruction Code) suggests that BASIC isn’t a pro-
fessional language. In fact, BASIC was first developed in the early 1960s as a way to teach pro-
gramming techniques to college students. BASIC caught on quickly and is available in hundreds
of dialects for many types of computers.

BASIC has evolved and improved over the years. For example, in many early implementations,
BASIC was an interpreted language. Each line was interpreted before it was executed, causing
slow performance. Most modern dialects of BASIC allow the code to be compiled — converted to
machine code — which results in faster and more efficient execution.

Part III: Understanding Visual Basic for Applications136

BASIC gained quite a bit of respectability in 1991 when Microsoft released Visual Basic for
Windows. This product made it easy for the masses to develop stand-alone applications for
Windows. Visual Basic has very little in common with early versions of BASIC, but Visual Basic is
the foundation on which VBA was built.

Delving in to VBA
Excel 5 was the first application on the market to feature Visual Basic for Applications (VBA).
VBA is best thought of as Microsoft’s common application scripting language, and it’s included
with most Office 2010 applications and even in applications from other vendors. Therefore, if you
master VBA by using Excel, you’ll be able to jump right in and write macros for other Microsoft
(and some non-Microsoft) products. Even better, you’ll be able to create complete solutions that
use features across various applications.

Object models
The secret to using VBA with other applications lies in understanding the object model for each
application. VBA, after all, simply manipulates objects, and each product (Excel, Word, Access,
PowerPoint, and so on) has its own unique object model. You can program an application by
using the objects that the application exposes.

Excel’s object model, for example, exposes several very powerful data analysis objects, such as
worksheets, charts, pivot tables, and numerous mathematical, financial, engineering, and general
business functions. With VBA, you can work with these objects and develop automated proce-
dures. While you work with VBA in Excel, you gradually build an understanding of the object
model. Warning: The object model will be very confusing at first. Eventually, however, the pieces
come together — and all of a sudden, you realize that you’ve mastered it!

VBA versus XLM
Before version 5, Excel used a powerful (but very cryptic) macro language called XLM. Later ver-
sions of Excel (including Excel 2010) still execute XLM macros, but the capability to record mac-
ros in XLM was removed beginning with Excel 97. As a developer, you should be aware of XLM
(in case you ever encounter macros written in that system), but you should use VBA for your
development work.

Don’t confuse the XLM macro language with eXtensible Markup Language (XML).
Although these terms share the same letters, they have nothing in common. XML is a
storage format for structured data. The Office 2010 applications use XML as their
default file format.

Chapter 7: Introducing Visual Basic for Applications 137

Covering the Basics of VBA
Before I get into the meat of things, I suggest that you read through the material in this section
to get a broad overview of where I’m heading. I cover these topics in the remainder of this chap-
ter.

Following is a quick-and-dirty summary of what VBA is all about:

 Code: You perform actions in VBA by executing VBA code. You write (or record) VBA
code, which is stored in a VBA module.

 Module: VBA modules are stored in an Excel workbook file, but you view or edit a mod-
ule by using the Visual Basic Editor (VBE). A VBA module consists of procedures.

 Procedures: A procedure is basically a unit of computer code that performs some action.
VBA supports two types of procedures: Sub procedures and Function procedures.

● Sub: A Sub procedure consists of a series of statements and can be executed in a
number of ways. Here’s an example of a simple Sub procedure called Test: This pro-
cedure calculates a simple sum and then displays the result in a message box.

Sub Test()
 Sum = 1 + 1
 MsgBox “The answer is “ & Sum
End Sub

● Function: A VBA module can also have Function procedures. A Function pro-
cedure returns a single value (or possibly an array). A Function can be called from
another VBA procedure or used in a worksheet formula. Here’s an example of a
Function named AddTwo:

Function AddTwo(arg1, arg2)
 AddTwo = arg1 + arg2
End Function

Is VBA becoming obsolete?
For the past few years, I’ve heard rumors that Microsoft is going to remove VBA from the Office
applications and replace it with .NET. My understanding is that these rumors are completely
unfounded. Sure, Microsoft has developed another way to automate Office applications, but
VBA will be around for quite a while — at least in Excel for Windows. Microsoft has removed
VBA from Excel for Macintosh, but that was no great loss because most Excel VBA apps don’t
even attempt to be compatible with the Mac version.

Why will VBA survive? Because literally millions of VBA-based solutions are in use and VBA is
much easier to learn and use than the alternative.

Part III: Understanding Visual Basic for Applications138

 Objects: VBA manipulates objects contained in its host application. (In this case, Excel is
the host application.) Excel provides you with more than 100 classes of objects to manip-
ulate. Examples of objects include a workbook, a worksheet, a range on a worksheet, a
chart, and a shape. Many more objects are at your disposal, and you can use VBA code to
manipulate them. Object classes are arranged in a hierarchy.

 Objects also can act as containers for other objects. For example, Excel is an object called
Application, and it contains other objects, such as Workbook objects. The Workbook
object contains other objects, such as Worksheet objects and Chart objects. A
Worksheet object contains objects such as Range objects, PivotTable objects, and
so on. The arrangement of these objects is referred to as Excel’s object model.

 Collections: Like objects form a collection. For example, the Worksheets collection
consists of all the worksheets in a particular workbook. Collections are objects in them-
selves.

 Object hierarchy: When you refer to a contained or member object, you specify its posi-
tion in the object hierarchy by using a period (also known as a dot) as a separator
between the container and the member. For example, you can refer to a workbook
named Book1.xlsx as

Application.Workbooks(“Book1.xlsx”)

 This code refers to the Book1.xlsx workbook in the Workbooks collection. The
Workbooks collection is contained in the Excel Application object. Extending this
type of referencing to another level, you can refer to Sheet1 in Book1 as

Application.Workbooks(“Book1.xlsx”).Worksheets(“Sheet1”)

 You can take it to still another level and refer to a specific cell as follows:

Application.Workbooks(“Book1.xlsx”).Worksheets(“Sheet1”).Range(“A1”)

 Active objects: If you omit a specific reference to an object, Excel uses the active objects.
If Book1 is the active workbook, the preceding reference can be simplified as

Worksheets(“Sheet1”).Range(“A1”)

 If you know that Sheet1 is the active sheet, you can simplify the reference even more:

Range(“A1”)

 Objects properties: Objects have properties. A property can be thought of as a setting
for an object. For example, a range object has properties such as Value and Address. A
chart object has properties such as HasTitle and Type. You can use VBA to determine
object properties and also to change them. Some properties are read-only properties and
can’t be changed by using VBA.

Chapter 7: Introducing Visual Basic for Applications 139

 You refer to properties by combining the object with the property, separated by a period.
For example, you can refer to the value in cell A1 on Sheet1 as

Worksheets(“Sheet1”).Range(“A1”).Value

 VBA variables: You can assign values to VBA variables. Think of a variable as a name that
you can use to store a particular value. To assign the value in cell A1 on Sheet1 to a vari-
able called Interest, use the following VBA statement:

Interest = Worksheets(“Sheet1”).Range(“A1”).Value

 Object methods: Objects have methods. A method is an action that is performed with
the object. For example, one of the methods for a Range object is ClearContents.
This method clears the contents of the range. You specify methods by combining the
object with the method, separated by a period. For example, to clear the contents of cell
A1 on the active worksheet, use

Range(“A1”).ClearContents

 Standard programming constructs: VBA also includes many constructs found in modern
programming languages, including arrays, loops, and so on.

 Events: Some objects recognize specific events, and you can write VBA code that is exe-
cuted when the event occurs. For example, opening a workbook triggers a Workbook_
Open event. Changing a cell in a worksheet triggers a Worksheet_Change event.

Believe it or not, the preceding section pretty much describes VBA. Now it’s just a matter of
learning the details.

An analogy
If you like analogies, here’s one for you that may help you understand the relationships between
objects, properties, and methods in VBA. In this analogy, I compare Excel with a fast-food res-
taurant chain.

The basic unit of Excel is a Workbook object. In a fast-food chain, the basic unit is an individual
restaurant. With Excel, you can add workbooks and close workbooks, and the set of all the open
workbooks is known as Workbooks (a collection of Workbook objects). Similarly, the management
of a fast-food chain can add restaurants and close restaurants — and all the restaurants in the chain
can be viewed as the Restaurants collection — a collection of Restaurant objects.

An Excel workbook is an object, but it also contains other objects, such as worksheets, charts,
VBA modules, and so on. Furthermore, each object in a workbook can contain its own objects.
For example, a Worksheet object can contain Range objects, PivotTable objects, Shape
objects, and so on.

continued

Part III: Understanding Visual Basic for Applications140

Introducing the Visual Basic Editor
All your VBA work is done in the Visual Basic Editor (VBE). The VBE is a separate application that
works seamlessly with Excel. By seamlessly, I mean that Excel takes care of the details of opening
the VBE when you need it. You can’t run VBE separately; Excel must be running in order for the
VBE to run.

VBA modules are stored in workbook files. However, the VBA modules aren’t visible
unless you activate the VBE.

continued

Continuing with the analogy, a fast-food restaurant (like a workbook) contains objects, such as
the Kitchen, DiningArea, and Tables (a collection). Furthermore, management can add or
remove objects from the Restaurant object. For example, management can add more tables
to the Tables collection. Each of these objects can contain other objects. For example, the
Kitchen object has a Stove object, a VentilationFan object, a Chef object, a Sink
object, and so on.

So far, so good. This analogy seems to work. Let’s see whether I can take it further.

Excel objects have properties. For example, a Range object has properties such as Value and
Name, and a Shape object has properties such as Width and Height. Not surprisingly, objects
in a fast-food restaurant also have properties. The Stove object, for example, has properties
such as Temperature and NumberofBurners. The VentilationFan object has its own set
of properties (TurnedOn, RPM, and so on).

Besides properties, Excel’s objects also have methods, which perform operations on objects. For
example, the ClearContents method erases the contents of a Range object. An object in a
fast-food restaurant also has methods. You can easily envision a ChangeThermostat method
for a Stove object, or a SwitchOn method for a VentilationFan object.

With Excel, methods sometimes change an object’s properties. The ClearContents method
for a Range object changes the Range Value property. Similarly, the ChangeThermostat
method on a Stove object affects its Temperature property.

With VBA, you can write procedures to manipulate Excel’s objects. In a fast-food restaurant, the
management can give orders to manipulate the objects in the restaurants. (“Turn on the stove
and switch the ventilation fan to high.”) Now is it clear?

Chapter 7: Introducing Visual Basic for Applications 141

Displaying Excel’s Developer tab
The Excel Ribbon doesn’t display the Developer tab by default. If you’re going to be working with
VBA, it’s essential that you turn on the Developer tab:

 1. Right-click the Ribbon and choose Customize the Ribbon.

 Excel displays the Customize Ribbon tab of the Excel Options dialog box.

 2. In the list box on the right, place a checkmark next to Developer.

 3. Click OK.

After you perform these steps, Excel displays a new tab, as shown in Figure 7-1.

Figure 7-1: By default, the Developer tab is not displayed.

Activating the VBE
When you’re working in Excel, you can switch to the VBE by using either of the following tech-
niques:

 Press Alt+F11.

 Choose Developer➜Code➜Visual Basic.

In addition, you can access two special modules as follows. (These special VBA modules are used
for event-handler procedures, which I describe in Chapter 19.)

 Right-click a sheet tab and choose View Code, which takes you to the code module for
the sheet.

 Right-click a workbook’s title bar and choose View Code, which takes you to the code
module for the workbook. If the workbook window is maximized in Excel, the workbook
window’s title bar is not visible.

Figure 7-2 shows the VBE. Chances are that your VBE window won’t look exactly like the window
shown in the figure. This window is highly customizable — you can hide windows, change their
sizes, dock them, rearrange them, and so on.

Part III: Understanding Visual Basic for Applications142

Figure 7-2: The Visual Basic Editor window.

The VBE windows
The VBE has a number of parts. I briefly describe some of the key components in the following
list:

 VBE menu bar: Although Excel uses a fancy new Ribbon interface, the VBE is still stuck in
the menu and toolbar world. The VBE menu bar works like every other menu bar that
you’ve encountered. It contains commands that you use to work with the various compo-
nents in the VBE. Also, you’ll find that many of the menu commands have shortcut keys
associated with them. For example, the View➜Immediate Window command has a short-
cut key of Ctrl+G.

The VBE also features shortcut menus. As you’ll discover, you can right-click virtually
anything in a VBE window to get a shortcut menu of common commands.

 VBE toolbars: The Standard toolbar, which is directly under the menu bar by default, is
one of six VBE toolbars available. (The menu bar is also considered a toolbar.) You can
customize toolbars, move them around, display other toolbars, and so on. Choose
View➜Toolbars➜Customize to work with VBE toolbars.

Chapter 7: Introducing Visual Basic for Applications 143

 Project Explorer window: The Project Explorer window displays a tree diagram that con-
sists of every workbook that is currently open in Excel (including add-ins and hidden
workbooks). Each workbook is known as a project. I discuss the Project Explorer window
in more detail in the next section (“Working with the Project Explorer”).

 If the Project Explorer window isn’t visible, press Ctrl+R. To hide the Project Explorer win-
dow, click the Close button in its title bar or right-click anywhere in the Project Explorer
window and select Hide from the shortcut menu.

 Code window: A Code window (sometimes known as a Module window) contains VBA
code. Every item in a project’s tree has an associated code window. To view a code win-
dow for an object, double-click the object in the Project Explorer window. For example,
to view the code window for the Sheet1 object, double-click Sheet1 in the Project
Explorer window. Unless you’ve added some VBA code, the Code window is empty.

 Another way to view the Code window for an object is to select the object in the Project
Explorer window and then click the View Code button in the toolbar at the top of the
Project Explorer window.

 I discuss Code windows later in this chapter (see “Working with Code Windows”).

 Immediate window: The Immediate window is most useful for executing VBA statements
directly, testing statements, and debugging your code. This window may or may not be
visible. If the Immediate window isn’t visible, press Ctrl+G. To close the Immediate win-
dow, click the Close button in its title bar (or right-click anywhere in the Immediate win-
dow and select Hide from the shortcut menu).

Working with the Project Explorer
When you’re working in the VBE, each Excel workbook and add-in that’s currently open is con-
sidered a project. You can think of a project as a collection of objects arranged as an expandable
tree. You can expand a project by clicking the plus sign (+) at the left of the project’s name in the
Project Explorer window. You contract a project by clicking the minus sign (–) to the left of a
project’s name. If you try to expand a project that’s protected with a password, you’re prompted
to enter the password.

The top of the Project Explorer window contains three icons. The third icon, named
Toggle Folder, controls whether the objects in a project are displayed in a hierarchy or
are shown in a single nonhierarchical list.

Figure 7-3 shows a Project Explorer window with four projects listed (two XLAM add-ins and two
workbooks).

Part III: Understanding Visual Basic for Applications144

Figure 7-3: A Project Explorer window with four projects listed.

When you activate the VBE, you can’t assume that the code module that’s displayed
corresponds to the highlighted object in the Project Explorer window. To make sure
that you’re working in the correct code module, always double-click the object in the
Project Explorer window.

If you have many workbooks and add-ins loaded, the Project Explorer window can be a bit over-
whelming. Unfortunately, you can’t hide projects in the Project Explorer window. However, you
probably want to keep the project outlines contracted if you’re not working on them.

When viewing the Project Explorer in folder view, every project expands to show at least one
node called Microsoft Excel Objects. This node expands to show an item for each worksheet and
chart sheet in the workbook (each sheet is considered an object) and another object called
ThisWorkbook (which represents the Workbook object). If the project has any VBA modules,
the project listing also shows a Modules node, and the modules are listed there. A project can
also contain a node called Forms that contains UserForm objects (also known as custom dialog
boxes). If your project has any class modules, it displays another node called Class Modules.
Similarly, if your project has any references, you see another node called References. The
References node is a bit misleading because references can’t contain any VBA code.

Adding a new VBA module
To add a new VBA module to a project, select the project’s name in the Project Explorer window
and choose Insert➜Module. Or you can just right-click the project’s name and choose
Insert➜Module from the shortcut menu.

When you record a macro, Excel automatically inserts a VBA module to hold the recorded code.

Chapter 7: Introducing Visual Basic for Applications 145

Removing a VBA module
If you need to remove a VBA module, a class module, or a UserForm from a project, select the
module’s name in the Project Explorer window and choose File➜Remove xxx (where xxx is the
name of the module). Or you can right-click the module’s name and choose Remove xxx from the
shortcut menu. You’re asked whether you want to export the module before removing it. (See
the next section for details.)

You can’t remove code modules associated with the workbook (the ThisWorkbook code mod-
ule) or with a sheet (for example, the Sheet1 code module).

Exporting and importing objects
Except for those listed under the References node, you can save every object in a project to a
separate file. Saving an individual object in a project is called exporting. It stands to reason that
you can also import objects into a project. Exporting and importing objects might be useful if you
want to use a particular object (such as a VBA module or a UserForm) in a different project.

To export an object, select it in the Project Explorer window and choose File➜Export File. You
get a dialog box that asks for a filename. Note that the object remains in the project. (Only a
copy of it is exported.) If you export a UserForm object, any code associated with the UserForm
is also exported.

To import a file into a project, select the project’s name in the Project Explorer window and
choose File➜Import File. You get a dialog box that asks for a file. You can import only a file that
has been exported by choosing the File➜Export File command.

If you want to copy a module or UserForm to another project, you don’t need to export
and then import the object. Make sure that both projects are open; then simply activate
the Project Explorer and drag the object from one project to the other. The original
module or UserForm remains, and a copy is added to the other project.

Working with Code Windows
When you become proficient with VBA, you’ll be spending lots of time working in code windows.
Each object in a project has an associated code window. To summarize, these objects can be

 The workbook itself (ThisWorkbook in the Project Explorer window)

 A worksheet or chart sheet in a workbook (for example, Sheet1 or Chart1 in the
Project Explorer window)

 A VBA module

 A class module (a special type of module that lets you create new object classes)

 A UserForm

Part III: Understanding Visual Basic for Applications146

Minimizing and maximizing windows
Depending on how many workbooks and add-ins are open, the VBE can have lots of code win-
dows, and things can get a bit confusing. Code windows are much like worksheet windows in
Excel. You can minimize them, maximize them, rearrange them, and so on. Most people find it
most efficient to maximize the Code window that they’re working in. Doing so enables you to see
more code and keeps you from getting distracted. To maximize a Code window, click the maxi-
mize button in its title bar or just double-click its title bar. To restore a Code window (make it
nonmaximized), click the Restore button (below the Application title bar).

Sometimes, you may want to have two or more Code windows visible. For example, you might
want to compare the code in two modules or perhaps copy code from one module to another. To
view two or more Code windows at once, make sure that the active code window isn’t maxi-
mized. Then drag and resize the windows that you want to view.

Minimizing a code window gets it out of the way. You can also click the Close button in a Code
window’s title bar to close the window completely. To open it again, just double-click the appro-
priate object in the Project Explorer window.

The VBE doesn’t have a menu command to close a workbook. You must reactivate Excel and
close it from there. You can, however, use the Immediate window to close a workbook or an add-
in. Just activate the Immediate window (press Ctrl+G if it’s not visible), type a VBA statement like
the one that follows, and press Enter:

Workbooks(“myaddin.xlam”).Close

As you’ll see, this statement executes the Close method of the Workbook object, which closes
a workbook. In this case, the workbook happens to be an add-in.

Storing VBA code
In general, a code window can hold four types of code:

 Sub procedures: A procedure is a set of instructions that performs some action.

 Function procedures: A function is a set of instructions that returns a single value or an
array (similar in concept to a worksheet function, such as SUM).

 Property procedures: These are special procedures used in class modules.

 Declarations: A declaration is information about a variable that you provide to VBA. For
example, you can declare the data type for variables you plan to use.

A single VBA module can store any number of Sub procedures, Function procedures, and dec-
larations. How you organize a VBA module is completely up to you. Some people prefer to keep
all their VBA code for an application in a single VBA module; others like to split up the code into
several different modules.

Chapter 7: Introducing Visual Basic for Applications 147

Although you have lots of flexibility regarding where to store your VBA code, there are
some restrictions. Event handler procedures must be located in the Code window for the
object that responds to the event. For example, if you write a procedure that executes
when the workbook is opened, that procedure must be located in the Code window for
the ThisWorkbook object, and the procedure must have a special name. This concept
will become clearer when I discuss events (Chapter 19) and UserForms (Part IV).

Entering VBA code
Before you can do anything meaningful, you must have some VBA code in a Code window. This
VBA code must be within a procedure. A procedure consists of VBA statements. For now, I focus
on one type of Code window: a VBA module.

You can add code to a VBA module in three ways:

 Enter the code manually. Use your keyboard to type your code.

 Use the macro-recorder feature. Use Excel’s macro-recorder feature to record your
actions and convert them into VBA code.

 Copy and paste. Copy the code from another module and paste it into the module that
you’re working in.

Entering code manually
Sometimes, the most direct route is the best one. Entering code directly involves . . . well, enter-
ing the code directly. In other words, you type the code by using your keyboard. You can use the
Tab key to indent the lines that logically belong together — for example, the conditional state-
ments between the If and End If statements. Indenting isn’t necessary, but it makes the code
easier to read, so it’s a good habit to acquire.

Pause for a terminology break
Throughout this book, I use the terms routine, procedure, and macro. Programming people typi-
cally use the word procedure to describe an automated task. In Excel, a procedure is also known
as a macro. Technically, a procedure can be a Sub procedure or a Function procedure, both of
which are sometimes called routines. I use all these terms pretty much interchangeably. There is,
however, an important difference between Sub procedures and Function procedures. This
distinction becomes apparent in Chapters 9 and 10.

Part III: Understanding Visual Basic for Applications148

Entering and editing text in a VBA module works just as you would expect. You can select text,
copy it or cut it, and then paste it to another location.

A single instruction in VBA can be as long as you need it to be. For readability’s sake, however,
you may want to break a lengthy instruction into two or more lines. To do so, end the line with a
space followed by an underscore character and then press Enter and continue the instruction on
the following line. The following code, for example, is a single VBA statement split over four lines:

MsgBox “Can’t find “ & UCase(SHORTCUTMENUFILE) _
 & vbCrLf & vbCrLf & “The file should be located in “ _
 & ThisWorkbook.Path & vbCrLf & vbCrLf _
 & “You may need to reinstall BudgetMan”, vbCritical, APPNAME

Notice that I indented the last three lines of this statement. Doing so is optional, but it helps clar-
ify the fact that these four lines are, in fact, a single statement.

Like Excel, the VBE has multiple levels of Undo and Redo. Therefore, if you find that
you deleted an instruction that you shouldn’t have, you can click the Undo button (or
press Ctrl+Z) repeatedly until the instruction comes back. After undoing, you can click
the Redo button (or press Ctrl+Y) to redo changes that were previously undone. This
feature can be a lifesaver, so I recommend that you play around with it until you under-
stand how it works.

To get a feel for entering a VBA procedure, try this: Insert a VBA module into a project and then
enter the following procedure into the Code window of the module:

Sub SayHello()
 Msg = “Is your name “ & Application.UserName & “?”
 Ans = MsgBox(Msg, vbYesNo)
 If Ans = vbNo Then
 MsgBox “Oh, never mind.”
 Else
 MsgBox “I must be clairvoyant!”
 End If
End Sub

Figure 7-4 shows how this code looks in a VBA module.

While you enter the code, notice that the VBE makes some adjustments to the text that
you enter. For example, if you omit the space before or after an equal sign (=), VBE
inserts the space for you. Also, the color of some of the text is changed. These adjust-
ments are all perfectly normal, and you’ll appreciate them later.

Chapter 7: Introducing Visual Basic for Applications 149

Figure 7-4: Your first VBA procedure.

To execute the SayHello procedure, make sure that the cursor is located anywhere within the
text that you typed. Then do any of the following:

 Press F5.

 Choose Run➜Run Sub/UserForm.

 Click the Run Sub/UserForm button on the Standard toolbar.

If you entered the code correctly, the procedure executes, and you can respond to a simple dialog
box (see Figure 7-5) that displays the username, as listed in the Excel Options dialog box. Notice
that Excel is activated when the macro executes. At this point, it’s not important that you under-
stand how the code works; that becomes clear later in this chapter and in subsequent chapters.

Figure 7-5: The result of running the procedure in Figure 7-4.

Part III: Understanding Visual Basic for Applications150

Most of the time, you’ll be executing your macros from Excel. However, it’s often more
efficient to test your macro by running it directly from the VBE.

What you did in this exercise was write a VBA Sub procedure (also known as a macro). When you
issued the command to execute the macro, the VBE quickly compiled the code and executed it. In
other words, each instruction was evaluated, and Excel simply did what it was told to do. You can
execute this macro any number of times, although it tends to lose its appeal after a while.

For the record, this simple procedure uses the following concepts (all of which I cover later in the
book):

 Declaring a procedure (the first line)

 Assigning a value to variables (Msg and Ans)

 Concatenating strings (using the & operator)

 Using a built-in VBA function (MsgBox)

 Using built-in VBA constants (vbYesNo and vbNo)

 Using an If-Then-Else construct

 Ending a procedure (the last line)

Not bad for a first effort, eh?

Using the macro recorder
Another way to get code into a VBA module is to record your actions by using the Excel macro
recorder.

No matter how hard you try, there is absolutely no way to record the SayHello procedure
shown in the previous section. As you’ll see, recording macros is very useful, but it has some limi-
tations. In fact, when you record a macro, you almost always need to make adjustments or enter
some code manually.

This next example shows how to record a macro that simply changes the page setup to land-
scape orientation. If you want to try these, start with a blank workbook:

 1. Activate a worksheet in the workbook (any worksheet will do).

 2. Choose Developer➜Code➜Record Macro.

 Excel displays its Record Macro dialog box.

 3. Click OK to accept the default setting for the macro.

 Excel automatically inserts a new VBA module into the workbook’s VBA project. From
this point on, Excel converts your actions into VBA code. Notice that Excel’s status bar
displays a blue square. You can click that control to stop recording.

Chapter 7: Introducing Visual Basic for Applications 151

 4. Choose Page Layout➜Page Setup➜Orientation➜Landscape.

 5. Select Developer➜Code➜Stop Recording (or click the blue square in the status bar).

 Excel stops recording your actions.

To view the macro, activate the VBE (pressing Alt+F11 is the easiest way) and locate the project
in the Project Explorer window. Double-click the Modules node to expand it. Then double-click
the Module1 item to display the code window. (If the project already had a Module1, the new
macro will be in Module2.) The code generated by this single Excel command is shown in Figure
7-6. Remember that code lines preceded by an apostrophe are comments and are not executed.

You may be surprised by the amount of code generated by this single command. (I know I was
the first time I tried something like this.) Although you changed only one simple setting in the
Page Setup tab, Excel generates more than 50 lines of code that affects dozens of print settings.

This code listing brings up an important concept. The Excel macro recorder is not the most effi-
cient way to generate VBA code. More often than not, the code produced when you record a
macro is overkill. Consider the recorded macro that switches to landscape mode. Practically
every statement in that macro is extraneous. You can simplify this macro considerably by delet-
ing the extraneous code. Deleting extraneous code makes the macro easier to read, and the
macro also runs a bit faster because it doesn’t do things that are unnecessary. In fact, you can
simplify this recorded macro to the following:

Sub Macro1()
 With ActiveSheet.PageSetup
 .Orientation = xlLandscape
 End With
End Sub

I deleted all the code except for the line that sets the Orientation property. Actually, you can
simplify this macro even more because the With-End With construct isn’t necessary when
you’re changing only one property:

Sub Macro1()
 ActiveSheet.PageSetup.Orientation = xlLandscape
End Sub

In this example, the macro changes the Orientation property of the PageSetup object on
the active sheet. By the way, xlLandscape is a built-in constant that’s provided to make things
easier for you. The variable xlLandscape has a value of 2, and xlPortrait has a value of 1.
The following macro works the same as the preceding Macro1:

Sub Macro1a()
 ActiveSheet.PageSetup.Orientation = 2
End Sub

Part III: Understanding Visual Basic for Applications152

Figure 7-6: Code generated by Excel’s macro recorder.

Most would agree that it’s easier to remember the name of the constant than the arbitrary num-
bers. You can use the Help system to learn the relevant constants for a particular command.

Chapter 7: Introducing Visual Basic for Applications 153

You could have entered this procedure directly into a VBA module. To do so, you would have to
know which objects, properties, and methods to use. Obviously, recording the macro is much
faster, and this example has a built-in bonus: You also learned that the PageSetup object has an
Orientation property.

A point that I make clear throughout this book is that recording your actions is perhaps
the best way to learn VBA. When in doubt, try recording. Although the result may not
be exactly what you want, chances are that it will steer you in the right direction. You
can use the Help system to check out the objects, properties, and methods that appear
in the recorded code.

I discuss the macro recorder in more detail later in this chapter. See the section “The
Macro Recorder.”

Copying VBA code
So far, I’ve covered typing code directly into a module and recording your actions to generate
VBA code. The final method of getting code into a VBA module is to copy it from another mod-
ule. For example, you may have written a procedure for one project that would also be useful in
your current project. Rather than re-enter the code, you can simply open the workbook, activate
the module, and use the normal Clipboard copy-and-paste procedures to copy it into your cur-
rent VBA module. After you’ve finished pasting, you can modify the code as necessary.

And don’t forget about the Internet. You’ll find thousands of VBA code examples at Web sites,
forums, and blogs. It’s a simple matter to copy code from a browser and paste it into a VBA module.

As I note previously in this chapter, you can also import an entire module that has been
exported.

Customizing the VBE Environment
If you’re serious about becoming an Excel programmer, you’ll be spending a lot of time with the
VBE window. To help make things as comfortable as possible, the VBE provides quite a few cus-
tomization options.

When the VBE is active, choose Tools➜Options. You see a dialog box with four tabs: Editor,
Editor Format, General, and Docking. I discuss some of the most useful options on these tabs in
the sections that follow. By the way, don’t confuse this Options dialog box with the Excel Options
dialog box, which you bring up by choosing Office➜Excel Options in Excel.

Part III: Understanding Visual Basic for Applications154

Using the Editor tab
Figure 7-7 shows the options that you access by clicking the Editor tab of the Options dialog box.

Figure 7-7: The Editor tab of the Options dialog box.

Auto Syntax Check option
The Auto Syntax Check setting determines whether the VBE pops up a dialog box if it discovers a
syntax error while you’re entering your VBA code. The dialog box tells you roughly what the
problem is. If you don’t choose this setting, VBE flags syntax errors by displaying them in a dif-
ferent color from the rest of the code, and you don’t have to deal with any dialog boxes popping
up on your screen.

I keep this setting turned off because I find the dialog boxes annoying, and I can usually figure
out what’s wrong with an instruction. But if you’re new to VBA, you might find the Auto Syntax
Check assistance helpful.

Require Variable Declaration option
If the Require Variable Declaration option is set, VBE inserts the following statement at the
beginning of each new VBA module that you insert:

Option Explicit

If this statement appears in your module, you must explicitly define each variable that you use.
Variable declaration is an excellent habit to get into, although it does require additional effort on
your part. If you don’t declare your variables, they will all be of the Variant data type, which is
flexible but not efficient in terms of storage or speed. I discuss variable declaration in more depth
in Chapter 8.

Chapter 7: Introducing Visual Basic for Applications 155

Changing the Require Variable Declaration option affects only new modules, not exist-
ing modules.

Auto List Members option
If the Auto List Members option is set, VBE provides help when you’re entering your VBA code
by displaying a list of member items for an object. These items include methods and properties
for the object that you typed.

This option is very helpful, and I always keep it turned on. Figure 7-8 shows an example of Auto
List Members (which will make a lot more sense when you actually start writing VBA code). In
this example, VBE is displaying a list of members for the Application object. The list changes
as you type additional characters, showing only the members that begin with the characters you
type. You can just select an item from the list and press Tab (or double-click the item), thus
avoiding typing it. Using the Auto List Members list also ensures that the item is spelled correctly.

Figure 7-8: An example of Auto List Members.

Auto Quick Info option
If the Auto Quick Info option is set, the VBE displays information about the arguments available
for functions, properties, and methods while you type. This information can be very helpful, and I
always leave this setting on. Figure 7-9 shows this feature in action. It’s displaying the syntax for
the Cells property.

Figure 7-9: An example of Auto Quick Info offering help about the Cells property.

Part III: Understanding Visual Basic for Applications156

Auto Data Tips option
If the Auto Data Tips option is set, you can hover your mouse pointer over a variable, and VBE
displays the value of the variable. This technique works only when the procedure is paused while
debugging. When you enter the wonderful world of debugging, you’ll definitely appreciate this
option. I always keep this option turned on.

Auto Indent option
The Auto Indent setting determines whether VBE automatically indents each new line of code by
the same amount as the previous line. I’m a big fan of using indentations in my code, so I keep
this option on. You can also specify the number of characters to indent; the default is four.

Use the Tab key, not the space bar, to indent your code. Using the Tab key results in
more consistent spacing. In addition, you can use Shift+Tab to unindent a line of code.
These keys also work if you select more than one statement.

Drag-and-Drop Text Editing option
The Drag-and-Drop Text Editing option, when enabled, lets you copy and move text by dragging
and dropping. I keep this option turned on, but I never use drag-and-drop editing. I prefer to use
keyboard shortcuts for copying and pasting.

Default to Full Module View option
The Default to Full Module View option specifies how procedures are viewed. If this option is set,
procedures in the code window appear as a single scrollable window. If this option is turned off,
you can see only one procedure at a time. I keep this setting turned on.

Procedure Separator option
When the Procedure Separator option is turned on, the VBE displays separator bars between pro-
cedures in a code window (assuming that the Default to Full Module View option is also selected).
I like the visual cues that show where my procedures end, so I keep this option turned on.

Using the Editor Format tab
Figure 7-10 shows the Editor Format tab of the Options dialog box. The options on this tab con-
trol the appearance of the VBE itself.

 Code Colors option: The Code Colors option lets you set the text color (foreground and
background) and the indicator color displayed for various elements of VBA code.
Choosing these colors is largely a matter of individual preference. Personally, I find the
default colors to be just fine. But for a change of scenery, I occasionally play around with
these settings.

Chapter 7: Introducing Visual Basic for Applications 157

 Font option: The Font option lets you select the font that’s used in your VBA modules.
For best results, stick with a fixed-width font (monofont) such as Courier New. In a fixed-
width font, all characters are exactly the same width. Using fixed-width characters makes
your code much more readable because the characters are nicely aligned vertically and
you can easily distinguish multiple spaces.

 Size setting: The Size setting specifies the size of the font in the VBA modules. This set-
ting is a matter of personal preference determined by your video display resolution and
your eyesight. The default size of 10 (points) works for me.

 Margin Indicator Bar option: The Margin Indicator Bar option controls the display of the
vertical margin indicator bar in your modules. You should keep this turned on; otherwise,
you won’t be able to see the helpful graphical indicators when you’re debugging your
code.

Figure 7-10: The Editor Format tab of the Options dialog box.

Using the General tab
Figure 7-11 shows the following options available under the General tab in the Options dialog box:

 Form Grid Settings: The options in this section are for UserForms (custom dialog boxes);
they let you specify a grid to help align controls on the UserForm. When you have some
experience designing UserForms, you can determine whether a grid display is helpful or not.

 Show ToolTips check box: This checkbox refers to toolbar buttons. There’s no reason to
turn off the ToolTips display.

 Collapse Proj. Hides Windows option: If checked, this setting causes the windows to
close automatically when you collapse a project in the Project window. I keep this setting
turned on.

Part III: Understanding Visual Basic for Applications158

 Edit and Continue section: This area contains one option, which may be useful for
debugging. When checked, VBA displays a message if your variables are about to lose
their values because of a problem.

 Error Trapping settings: These settings determine what happens when an error is
encountered. If you write any error-handling code, make sure that the Break on
Unhandled Errors option is set. If the Break on All Errors option is set, error-handling
code is ignored (which is hardly ever what you want). I discuss error-handling techniques
in Chapter 9.

 Compile settings: The two Compile settings deal with compiling your code. I keep both
of these options turned on. Compiling code is virtually instantaneous unless the project is
extremely large.

Figure 7-11: The General tab of the Options dialog box.

Using the Docking tab
Figure 7-12 shows the Docking tab of the Options dialog box. These options determine how the
various windows in the VBE behave. When a window is docked, it’s fixed in place along one of
the edges of the VBE window. Docking windows makes it much easier to identify and locate a
particular window. If you turn off all docking, you have a big mess of windows that are very con-
fusing. Generally, you’ll find that the default settings work fine.

To dock a window, just drag it to the desired location. For example, you might want to dock the
Project Explorer window to the left side of the screen. Just drag its title bar to the left, and you
see an outline that shows it docked. Release the mouse, and the window is docked.

Chapter 7: Introducing Visual Basic for Applications 159

Docking windows in the VBE has always been a bit problematic. Often, you find that
some windows simply refuse to be docked. I’ve found that if you persist long enough,
the procedure will eventually work. Unfortunately, I don’t have any secret window-
docking techniques.

Figure 7-12: The Docking tab of the Options dialog box.

The Macro Recorder
Earlier in this chapter, I discuss the macro recorder, which is a tool that converts your Excel
actions into VBA code. This section covers the macro recorder in more detail.

This is another reminder to make sure that Excel displays the Developer tab in the
Ribbon. If you don’t see this tab, refer to “Displaying Excel’s Developer tab” earlier in
this chapter.

The macro recorder is an extremely useful tool, but remember the following points:

 The macro recorder is appropriate only for simple macros or for recording a small part of
a more complex macro.

 Not all the actions you make in Excel get recorded.

 The macro recorder can’t generate code that performs looping (that is, repeating state-
ments), assigns variables, executes statements conditionally, displays dialog boxes, and
so on.

Part III: Understanding Visual Basic for Applications160

 The macro recorder always creates Sub procedures. You can’t create a Function pro-
cedure by using the macro recorder.

 The code that is generated depends on certain settings that you specify.

 You’ll often want to clean up the recorded code to remove extraneous commands.

What the macro recorder actually records
The Excel macro recorder translates your mouse and keyboard actions into VBA code. I could
probably write several pages describing how this translation occurs, but the best way to show
you is by example. Follow these steps:

 1. Start with a blank workbook.

 2. Make sure that the Excel window isn’t maximized.

 You don’t want it to fill the entire screen.

 3. Press Alt+F11 to activate the VBE window.

 Note: Make sure that this window isn’t maximized. Otherwise, you won’t be able to see
the VBE window and Excel’s window at the same time.

 4. Resize and arrange Excel’s window and the VBE window so that both are visible. (For
best results, minimize any other applications that are running.)

 5. Activate Excel, choose Developer➜Code➜Record Macro and then click OK to start the
macro recorder.

 6. Activate the VBE window.

 7. In the Project Explorer window, double-click Module1 to display that module in the code
window.

 8. Close the Project Explorer window in the VBE to maximize the view of the code window.

Your screen layout should look something like the example in Figure 7-13. The size of the win-
dows depends on your video resolution. If you happen to have a dual display system, just put the
VBA window on one display and the Excel window on the other display.

Now move around in the worksheet and select various Excel commands. Watch while the code is
generated in the window that displays the VBA module. Select cells, enter data, format cells, use
the Ribbon commands, create a chart, manipulate graphic objects, and so on. I guarantee that
you’ll be enlightened while you watch the code being spit out before your very eyes.

Chapter 7: Introducing Visual Basic for Applications 161

Figure 7-13: A convenient window arrangement for watching the macro recorder do its thing.

Relative or absolute recording?
When recording your actions, Excel normally records absolute references to cells. In other words,
when you select a cell, it will remember that exact cell (not the cell relative to the current active
cell). To demonstrate how absolute references work, perform these steps and examine the code:

 1. Activate a worksheet and start the macro recorder.

 2. Activate cell B1.

 3. Enter Jan into cell B1.

 4. Move to cell C1 and enter Feb.

 5. Continue this process until you’ve entered the first six months of the year in B1:G1.

 6. Click cell B1 to activate it again.

 7. Stop the macro recorder and examine the new code in the VBE.

Excel generates the following code:

Sub Macro1()
 Range(“B1”).Select
 ActiveCell.FormulaR1C1 = “Jan”
 Range(“C1”).Select
 ActiveCell.FormulaR1C1 = “Feb”
 Range(“D1”).Select

Part III: Understanding Visual Basic for Applications162

 ActiveCell.FormulaR1C1 = “Mar”
 Range(“E1”).Select
 ActiveCell.FormulaR1C1 = “Apr”
 Range(“F1”).Select
 ActiveCell.FormulaR1C1 = “May”
 Range(“G1”).Select
 ActiveCell.FormulaR1C1 = “Jun”
 Range(“B1”).Select
End Sub

To execute this macro from within Excel, choose Developer➜Code➜Macros (or press Alt+F8)
and select Macro1 (or whatever the macro is named) and click the Run button.

The macro, when executed, re-creates the actions that you performed when you recorded it.
These same actions occur regardless of which cell is active when you execute the macro.
Recording a macro using absolute references always produces the exact same results.

In some cases, however, you want your recorded macro to work with cell locations in a relative
manner. For example, you’d probably want such a macro to start entering the month names in
the active cell. In such a case, you want to use relative recording to record the macro.

You control how references are recorded by using the Developer➜Code➜Use Relative
References button. This button is a toggle. When the button appears in a different color, the
macro recorder records relative references. When the button appears in the standard color, the
macro recorder records absolute references. You can change the recording method at any time,
even in the middle of recording.

To see how relative referencing is recorded, erase the cells in B1:G1 and then perform the follow-
ing steps:

 1. Activate cell B1.

 2. Choose Developer➜Code➜Record Macro.

 3. Click OK to begin recording.

 4. Click the Use Relative Reference button to change the recording mode to relative.

 After you click this button, it appears in a different color.

 5. Enter the first six months’ names in B1:G1, as in the previous example.

 6. Select cell B1.

 7. Stop the macro recorder.

With the recording mode set to relative, the code that Excel generates is quite different:

Sub Macro2()
 ActiveCell.FormulaR1C1 = “Jan”
 ActiveCell.Offset(0, 1).Range(“A1”).Select
 ActiveCell.FormulaR1C1 = “Feb”

Chapter 7: Introducing Visual Basic for Applications 163

 ActiveCell.Offset(0, 1).Range(“A1”).Select
 ActiveCell.FormulaR1C1 = “Mar”
 ActiveCell.Offset(0, 1).Range(“A1”).Select
 ActiveCell.FormulaR1C1 = “Apr”
 ActiveCell.Offset(0, 1).Range(“A1”).Select
 ActiveCell.FormulaR1C1 = “May”
 ActiveCell.Offset(0, 1).Range(“A1”).Select
 ActiveCell.FormulaR1C1 = “Jun”
 ActiveCell.Offset(0, -5).Range(“A1”).Select
End Sub

To test this macro, start by activating a cell other than cell B1. Then choose the Developer➜
Code➜Macros command. Select the macro name and then click the Run button. The month
names are entered beginning at the active cell.

Notice that I varied the recording procedure slightly in this example: I activated the beginning
cell before I started recording. This step is important when you record macros that use the active
cell as a base.

Although it looks rather complicated, this macro is actually quite simple. The first statement sim-
ply enters Jan into the active cell. (It uses the active cell because it’s not preceded by a state-
ment that selects a cell.) The next statement uses the Select method (along with the Offset
property) to move the selection one cell to the right. The next statement inserts more text, and
so on. Finally, the original cell is selected by calculating a relative offset rather than an absolute
cell. Unlike the preceding macro, this one always starts entering text in the active cell.

You’ll notice that this macro generates code that appears to reference cell A1 — which
may seem strange because cell A1 wasn’t even involved in the macro. This code is sim-
ply a byproduct of how the macro recorder works. (I discuss the Offset property later
in this chapter.) At this point, all you need to know is that the macro works as it should.

The point here is that the recorder has two distinct modes, and you need to be aware of which
mode you’re recording in. Otherwise, the result may not be what you expected.

By the way, the code generated by Excel is more complex than it needs to be, and it’s not even
the most efficient way to code the operation. The macro that follows, which I entered manually, is
a simpler and faster way to perform this same operation. This example demonstrates that VBA
doesn’t have to select a cell before it puts information into it — an important concept that can
speed things up considerably.

Sub Macro3()
 ActiveCell.Offset(0, 0) = “Jan”
 ActiveCell.Offset(0, 1) = “Feb”
 ActiveCell.Offset(0, 2) = “Mar”
 ActiveCell.Offset(0, 3) = “Apr”
 ActiveCell.Offset(0, 4) = “May”
 ActiveCell.Offset(0, 5) = “Jun”
End Sub

Part III: Understanding Visual Basic for Applications164

In fact, this macro can be made even more efficient by using the With-End With construct:

Sub Macro4()
 With ActiveCell
 .Offset(0, 0) = “Jan”
 .Offset(0, 1) = “Feb”
 .Offset(0, 2) = “Mar”
 .Offset(0, 3) = “Apr”
 .Offset(0, 4) = “May”
 .Offset(0, 5) = “Jun”
 End With
End Sub

Or, if you’re a VBA guru, you can impress your colleagues by using a single statement:

Sub Macro5()
 ActiveCell.Resize(,6)=Array(“Jan”,”Feb”,”Mar”,”Apr”,”May”,”Jun”)
End Sub

Recording options
When you record your actions to create VBA code, you have several options in the Record Macro
dialog box. The following list describes your options.

 Macro name: You can enter a name for the procedure that you’re recording. By default,
Excel uses the names Macro1, Macro2, and so on for each macro that you record. I usu-
ally just accept the default name and change the name of the procedure later. You, how-
ever, might prefer to name the macro before you record it. The choice is yours.

 Shortcut key: The Shortcut key option lets you execute the macro by pressing a shortcut
key combination. For example, if you enter w (lowercase), you can execute the macro by
pressing Ctrl+W. If you enter W (uppercase), the macro comes alive when you press
Ctrl+Shift+W. Keep in mind that a shortcut key assigned to a macro overrides a built-in
shortcut key (if one exists). For example, if you assign Ctrl+B to a macro, you won’t be
able to use the key combination to toggle the bold attribute in cells.

 You can always add or change a shortcut key at any time, so you don’t need to set this
option while recording a macro.

 Store Macro In: The Store Macro In option tells Excel where to store the macro that it
records. By default, Excel puts the recorded macro in a module in the active workbook. If
you prefer, you can record it in a new workbook (Excel opens a blank workbook) or in
your Personal Macro Workbook. (Read more about this in the sidebar, “The Personal
Macro Workbook.”)

Chapter 7: Introducing Visual Basic for Applications 165

Excel remembers your choice, so the next time you record a macro, it defaults to the
same location you used previously.

 Description: If you like, you can enter a description for you macro in the Description box.
Text you enter here appears at the beginning of your macro as a comment.

Cleaning up recorded macros
Earlier in this chapter, you see how recording your actions while you issue a single command (the
Page Layout➜Page Setup➜Orientation command) produces an enormous amount of VBA code.
This example shows how, in many cases, the recorded code includes extraneous commands that
you can delete.

The macro recorder doesn’t always generate the most efficient code. If you examine the gener-
ated code, you see that Excel generally records what is selected (that is, an object) and then uses
the Selection object in subsequent statements. For example, here’s what is recorded if you
select a range of cells and then use some buttons on the Home tab to change the numeric for-
matting and apply bold and italic:

Range(“A1:C5”).Select
Selection.Style = “Comma”
Selection.Font.Bold = True
Selection.Font.Italic = True

The recorded VBA code works, but it’s just one way to perform these actions. You can also use
the more efficient With-End With construct, as follows:

Range(“A1:C5”).Select
With Selection
 .Style = “Comma”
 .Font.Bold = True
 .Font.Italic = True
End With

The Personal Macro Workbook
When you record a macro, one of your options is to record it to your Personal Macro Workbook.
If you create some VBA macros that you find particularly useful, you may want to store these
routines on your Personal Macro Workbook. This workbook is named Personal.xlsb and is
stored in your XLStart directory. Whenever you start Excel, this workbook is loaded, and you
have access to the macros stored in the workbook. Personal.xlsb is a hidden workbook, so
it’s out of your way when you’re working in Excel.

The Personal.xlsb file doesn’t exist until you record a macro to it.

Part III: Understanding Visual Basic for Applications166

Or you can avoid the Select method altogether and write the code even more efficiently:

With Range(“A1:C5”)
 .Style = “Comma” .Font.Bold = True
 .Font.Italic = True
End With

If speed is essential in your application, you always want to examine any recorded VBA code
closely to make sure that it’s as efficient as possible.

You, of course, need to understand VBA thoroughly before you start cleaning up your recorded
macros. But for now, just be aware that recorded VBA code isn’t always the best, most efficient
code.

About the code examples
Throughout this book, I present many small snippets of VBA code to make a point or to provide
an example. Often, this code might consist of just a single statement. In some cases, the example
consists of only an expression, which isn’t a valid instruction by itself.

For example, the following is an expression:

Range(“A1”).Value

To test an expression, you must evaluate it. The MsgBox function is a handy tool for this:

MsgBox Range(“A1”).Value

To try out these examples, put the statement within a procedure in a VBA module, like this:

Sub Test()
‘ statement goes here
End Sub

Then put the cursor anywhere within the procedure and press F5 to execute it. Also, make sure
that the code is being executed within the proper context. For example, if a statement refers to
Sheet1, make sure that the active workbook actually has a sheet named Sheet1.

If the code is just a single statement, you can use the VBE Immediate window. The Immediate
window is very useful for executing a statement “immediately” — without having to create a
procedure. If the Immediate window isn’t displayed, press Ctrl+G in the VBE.

Just type the VBA statement in the Immediate window and press Enter. To evaluate an expression
in the Immediate window, precede the expression with a question mark (?). The question mark is a
shortcut for Print. For example, you can type the following into the Immediate window:

? Range(“A1”).Value

The result of this expression is displayed in the next line of the Immediate window.

Chapter 7: Introducing Visual Basic for Applications 167

About Objects and Collections
If you’ve worked through the first part of this chapter, you have an overview of VBA, and you
know the basics of working with VBA modules in the VBE. You’ve also seen some VBA code and
were exposed to concepts like objects and properties. This section gives you additional details
about objects and collections of objects.

When you work with VBA, you must understand the concept of objects and Excel’s object model.
It helps to think of objects in terms of a hierarchy. At the top of this model is the Application
object — in this case, Excel itself. But if you’re programming in VBA with Microsoft Word, the
Application object is Word.

The object hierarchy
The Application object (that is, Excel) contains other objects. Here are a few examples of
objects contained in the Application object:

 Workbooks (a collection of all Workbook objects)

 Windows (a collection of all Window objects)

 AddIns (a collection of all AddIn objects)

Some objects can contain other objects. For example, the Workbooks collection consists of all
open Workbook objects, and a Workbook object contains other objects, a few of which are as
follows:

 Worksheets (a collection of Worksheet objects)

 Charts (a collection of Chart objects)

 Names (a collection of Name objects)

Each of these objects, in turn, can contain other objects. The Worksheets collection consists of
all Worksheet objects in a Workbook. A Worksheet object contains many other objects,
which include the following:

 ChartObjects (a collection of ChartObject objects)

 Range

 PageSetup

 PivotTables (a collection of PivotTable objects)

If this seems confusing, trust me, it will make sense, and you’ll eventually realize that this object
hierarchy setup is quite logical and well structured. By the way, the complete Excel object model
is covered in the Help system.

Part III: Understanding Visual Basic for Applications168

About collections
Another key concept in VBA programming is collections. A collection is a group of objects of the
same class, and a collection is itself an object. As I note earlier, Workbooks is a collection of all
Workbook objects currently open. Worksheets is a collection of all Worksheet objects con-
tained in a particular Workbook object. You can work with an entire collection of objects or with
an individual object in a collection. To reference a single object from a collection, you put the
object’s name or index number in parentheses after the name of the collection, like this:

Worksheets(“Sheet1”)

If Sheet1 is the first worksheet in the collection, you could also use the following reference:

Worksheets(1)

You refer to the second worksheet in a Workbook as Worksheets(2), and so on.

There is also a collection called Sheets, which is made up of all sheets in a workbook, whether
they’re worksheets or chart sheets. If Sheet1 is the first sheet in the workbook, you can refer-
ence it as follows:

Sheets(1)

Referring to objects
When you refer to an object using VBA, you often must qualify the object by connecting object
names with a period (also known as a dot operator). What if you had two workbooks open and
they both had a worksheet named Sheet1? The solution is to qualify the reference by adding
the object’s container, like this:

Workbooks(“Book1”).Worksheets(“Sheet1”)

Without the workbook qualifier, VBA would look for Sheet1 in the active workbook.

To refer to a specific range (such as cell A1) on a worksheet named Sheet1 in a workbook
named Book1, you can use the following expression:

Workbooks(“Book1”).Worksheets(“Sheet1”).Range(“A1”)

Chapter 7: Introducing Visual Basic for Applications 169

The fully qualified reference for the preceding example also includes the Application object,
as follows:

Application.Workbooks(“Book1”).Worksheets(“Sheet1”).Range(“A1”)

Most of the time, however, you can omit the Application object in your references; it is
assumed. If the Book1 object is the active workbook, you can even omit that object reference
and use this:

Worksheets(“Sheet1”).Range(“A1”)

And — I think you know where I’m going with this — if Sheet1 is the active worksheet, you can
use an even simpler expression:

Range(“A1”)

Contrary to what you might expect, Excel doesn’t have an object that refers to an indi-
vidual cell that is called Cell. A single cell is simply a Range object that happens to
consist of just one element.

Simply referring to objects (as in these examples) doesn’t do anything. To perform anything
meaningful, you must read or modify an object’s properties or specify a method to be used with
an object.

Properties and Methods
It’s easy to be overwhelmed with properties and methods; literally thousands are available. In this
section, I describe how to access properties and methods of objects.

Object properties
Every object has properties. For example, a Range object has a property called Value. You can
write VBA code to display the Value property or write VBA code to set the Value property to a
specific value. Here’s a procedure that uses the VBA MsgBox function to pop up a box that dis-
plays the value in cell A1 on Sheet1 of the active workbook:

Sub ShowValue()
 Msgbox Worksheets(“Sheet1”).Range(“A1”).Value
End Sub

Part III: Understanding Visual Basic for Applications170

The VBA MsgBox function provides an easy way to display results while your VBA code
is executing. I use it extensively throughout this book.

The code in the preceding example displays the current setting of the Value property of a spe-
cific cell: cell A1 on a worksheet named Sheet1 in the active workbook. Note that if the active
workbook doesn’t have a sheet named Sheet1, the macro generates an error.

What if you want to change the Value property? The following procedure changes the value
displayed in cell A1 by changing the cell’s Value property:

Sub ChangeValue()
 Worksheets(“Sheet1”).Range(“A1”).Value = 123.45
End Sub

After executing this routine, cell A1 on Sheet1 has the value 123.45.

You may want to enter these procedures into a module and experiment with them.

Most objects have a default property. For a Range object, the default property is the
Value property. Therefore, you can omit the .Value part from the preceding code,
and it has the same effect. However, it’s usually considered good programming prac-
tice to include the property in your code, even if it is the default property.

The statement that follows accesses the HasFormula and the Formula properties of a Range
object:

If Range(“A1”).HasFormula Then MsgBox Range(“A1”).Formula

I use an If-Then construct to display a message box conditionally: If the cell has a formula, then
display the formula by accessing the Formula property. If cell A1 doesn’t have a formula, noth-
ing happens.

The Formula property is a read-write property, so you can also specify a formula by using VBA:

Range(“D12”).Formula = “=RAND()*100”

Object methods
In addition to properties, objects also have methods. A method is an action that you perform with
an object. Here’s a simple example that uses the Clear method on a Range object. After you
execute this procedure, A1:C3 on Sheet1 is empty, and all cell formatting is removed.

Chapter 7: Introducing Visual Basic for Applications 171

Sub ZapRange()
 Worksheets(“Sheet1”).Range(“A1:C3”).Clear
End Sub

If you’d like to delete the values in a range but keep the formatting, use the ClearContents
method of the Range object.

Most methods also take arguments to define the action further. Here’s an example that copies
cell A1 to cell B1 by using the Copy method of the Range object. In this example, the Copy
method has one argument (the destination of the copy). Notice that I use the line continuation
character sequence (a space followed by an underscore) in this example. You can omit the line
continuation sequence and type the statement on a single line.

Sub CopyOne()
 Worksheets(“Sheet1”).Range(“A1”).Copy _
 Worksheets(“Sheet1”).Range(“B1”)
End Sub

Specifying arguments for methods and
properties

An issue that often leads to confusion among new VBA programmers concerns arguments for
methods and properties. Some methods use arguments to further clarify the action to be taken,
and some properties use arguments to further specify the property value. In some cases, one or
more of the arguments are optional.

If a method uses arguments, place the arguments after the name of the method, separated by
commas. If the method uses optional arguments, you can insert blank placeholders for the
optional arguments. Later in this sidebar, I show you how to insert these placeholders.

Consider the Protect method for a workbook object. Check the Help system, and you’ll find
that the Protect method takes three arguments: password, structure, and windows. These
arguments correspond to the three options in the Protect Structure and Windows dialog box.

continued

Part III: Understanding Visual Basic for Applications172

The Comment Object: A Case Study
To help you better understand the properties and methods available for an object, I focus on a
particular object: the Comment object. In Excel, you create a Comment object when you choose
the Review➜Comments➜New Comment command to enter a cell comment. In the sections that
follow, you get a feel for working with objects.

continued

If you want to protect a workbook named MyBook.xlsx, for example, you might use a state-
ment like this:

Workbooks(“MyBook.xlsx”).Protect “xyzzy”, True, False

In this case, the workbook is protected with a password (argument 1). Its structure is protected
(argument 2) but not its windows (argument 3).

If you don’t want to assign a password, you can use a statement like this:

Workbooks(“MyBook.xlsx”).Protect , True, False

Notice that the first argument is omitted and that I specified the placeholder by using a comma.

Another approach, which makes your code more readable, is to use named arguments. Here’s an
example of how you use named arguments for the preceding example:

Workbooks(“MyBook.xlsx”).Protect Structure:=True, Windows:=False

Using named arguments is a good idea, especially for methods that have many optional argu-
ments and also when you need to use only a few of them. When you use named arguments, you
don’t need to use a placeholder for missing arguments.

For properties (and methods) that return a value, you must use parentheses around the argu-
ments. For example, the Address property of a Range object takes five arguments, all of which
are optional. Because the Address property returns a value, the following statement isn’t valid
because the parentheses are omitted:

MsgBox Range(“A1”).Address False ‘ invalid

The proper syntax for such a statement requires parentheses, as follows:

MsgBox Range(“A1”).Address(False)

You can also write the statement using a named argument:

MsgBox Range(“A1”).Address(rowAbsolute:=False)

These nuances will become clearer as you gain more experience with VBA.

Chapter 7: Introducing Visual Basic for Applications 173

Viewing Help for the Comment object
One way to learn about a particular object is to look it up in the Help system. Figure 7-14 shows
some Help topics for the Comment object. I found this Help screen by typing comment in the
VBE Type a Question for Help box (to the right of the menu bar). Notice that the Help screen has
a link at the bottom labeled Comment Object Members. Click that link to view the properties and
methods for this object.

Figure 7-14: The main Help screen for the Comment object.

Using the Help system
The easiest way to get specific help about a particular object, property, or method is to type the
word in a code window and press F1. If there is any ambiguity about the word that you typed,
you get a dialog box like the one shown in the following figure.

continued

Part III: Understanding Visual Basic for Applications174

Properties of a Comment object
The Comment object has six properties. Table 7-1 contains a list of these properties, along with a
brief description of each. If a property is read-only, your VBA code can read the property but
can’t change it.

Table 7-1: Properties of a Comment Object

Property Read-Only Description

Application Yes Returns an object that represents the application that created the
comment (that is, Excel).

Author Yes Returns the name of the person who created the comment.

Creator Yes Returns an integer that indicates the application in which the object
was created.

Parent Yes Returns the parent object for the comment. (It is always a Range
object.)

Shape Yes Returns a Shape object that represents the shape attached to the
comment.

Visible No Is True if the comment is visible.

continued

Unfortunately, the items listed in the dialog box aren’t always clear, so locating the correct help
topic may require some trial and error. The dialog box in the figure appears when you type
Comment and then press F1. In this case, although Comment is an object, it may behave like a
property. Clicking the first item displays the help topic for the Comment object; clicking the sec-
ond item displays the help topic for the Comment property.

Chapter 7: Introducing Visual Basic for Applications 175

Methods of a Comment object
Table 7-2 shows the methods that you can use with a Comment object. Again, these methods
perform common operations that you may have performed manually with a comment at some
point . . . but you probably never thought of these operations as methods.

Table 7-2: Methods of a Comment Object

Method Description

Delete Deletes a comment.

Next Returns a Comment object that represents the next comment in the worksheet.

Previous Returns a Comment object that represents the previous comment in the worksheet.

Text Returns or sets the text in a comment (takes three arguments).

You may be surprised to see that Text is a method rather than a property, which leads
to an important point: The distinction between properties and methods isn’t always
clear-cut, and the object model isn’t perfectly consistent. In fact, it’s not really impor-
tant that you distinguish between properties and methods. As long as you get the syn-
tax correct, it doesn’t matter whether a word in your code is a property or a method.

The Comments collection
Recall that a collection is a group of like objects. Every worksheet has a Comments collection,
which consists of all Comment objects on the worksheet. If the worksheet has no comments, this
collection is empty. Comments appear in the collection based on their position in the worksheet:
left-to-right and then top-to-bottom.

For example, the following code refers to the first comment on Sheet1 of the active workbook:

Worksheets(“Sheet1”).Comments(1)

The following statement displays the text contained in the first comment on Sheet1:

MsgBox Worksheets(“Sheet1”).Comments(1).Text

Unlike most objects, a Comment object doesn’t have a Name property. Therefore, to refer to a
specific comment, you must either use an index number or (more frequently) use the Comment
property of a Range object to return a specific comment.

Part III: Understanding Visual Basic for Applications176

The Comments collection is also an object and has its own set of properties and methods. For
example, the Comments collection has a Count property that stores the number of items in the
collection — which is the number of Comment objects in the active worksheet. The following
statement displays the total number of comments on the active worksheet:

MsgBox ActiveSheet.Comments.Count

The next example shows the address of the cell that has the first comment:

MsgBox ActiveSheet.Comments(1).Parent.Address

Here, Comments(1) returns the first Comment object in the Comments collection. The Parent
property of the Comment object returns its container, which is a Range object. The message box
displays the Address property of the Range. The net effect is that the statement displays the
address of the cell that contains the first comment.

You can also loop through all the comments on a sheet by using the For Each-Next construct.
(Looping is explained in Chapter 8.) Here’s an example that displays a separate message box for
each comment on the active worksheet:

For Each cmt in ActiveSheet.Comments
 MsgBox cmt.Text
Next cmt

If you’d rather not deal with a series of message boxes, use this procedure to print the comments
to the Immediate window in the VBE:

For Each cmt in ActiveSheet.Comments
 Debug.Print cmt.Text
Next cmt

About the Comment property
In this section, I’ve been discussing the Comment object. If you dig through the Help system,
you’ll find that a Range object has a property named Comment. If the cell contains a comment,
the Comment property returns a Comment object. For example, the following code refers to the
Comment object in cell A1:

Range(“A1”).Comment

Chapter 7: Introducing Visual Basic for Applications 177

If this comment were the first one on the sheet, you could refer to the same Comment object as
follows:

ActiveSheet.Comments(1)

To display the comment in cell A1 in a message box, use a statement like this:

MsgBox Range(“A1”).Comment.Text

If cell A1 doesn’t contain a comment, this statement generates an error.

The fact that a property can return an object is a very important concept — a difficult
one to grasp, perhaps, but critical to mastering VBA.

Objects within a Comment object
Working with properties is confusing at first because some properties actually return objects.
Suppose that you want to determine the background color of a particular comment on Sheet1.
If you look through the list of properties for a Comment object, you won’t find anything that
relates to color. Rather, you must do these steps:

 1. Use the Comment object’s Shape property to return the Shape object that’s contained
in the comment.

 2. Use the Shape object’s Fill property to return a FillFormat object.

 3. Use the FillFormat object’s ForeColor property to return a ColorFormat object.

 4. Use the ColorFormat object’s RGB property to get the color value.

Put another way, getting at the interior color for a Comment object involves accessing other
objects contained in the Comment object. Here’s a look at the object hierarchy that’s involved:

Application (Excel)

 Workbook object

 Worksheet object

 Comment object

 Shape object

 FillFormat object

 ColorFormat object

Part III: Understanding Visual Basic for Applications178

I’ll be the first to admit it: This process can get very confusing! But, as an example of the ele-
gance of VBA, you can write a single statement to change the color of a comment:

Worksheets(“Sheet1”).Comments(1).Shape.Fill.ForeColor _
 .RGB = RGB(0, 255, 0)

Or, if you use the SchemeColor property (which ranges from 0 to 80), the code is

Worksheets(“Sheet1”).Comments(1).Shape.Fill.ForeColor _
 .SchemeColor = 12

This type of referencing is certainly not intuitive at first, but it will eventually make sense.
Fortunately, recording your actions in Excel almost always yields some insights regarding the
hierarchy of the objects involved.

By the way, to change the color of the text in a comment, you need to access the Comment
object’s TextFrame object, which contains the Characters object, which contains the Font
object. Then you have access to the Font object’s Color or ColorIndex properties. Here’s an
example that sets the ColorIndex property to 5:

Worksheets(“Sheet1”).Comments(1) _
 .Shape.TextFrame.Characters.Font.ColorIndex = 5

Refer to Chapter 30 for more information on colors.

Determining whether a cell has a comment
The following statement displays the comment in cell A1 of the active sheet:

MsgBox Range(“A1”).Comment.Text

If cell A1 doesn’t have a comment, executing this statement generates a cryptic error message:
Object variable or With block variable not set.

To determine whether a particular cell has a comment, you can write code to check whether the
Comment object is Nothing. (Yes, Nothing is a valid keyword.) The following statement dis-
plays True if cell A1 doesn’t have a comment:

MsgBox Range(“A1”).Comment Is Nothing

Chapter 7: Introducing Visual Basic for Applications 179

Note that I use the Is keyword and not an equal sign.

You can take this one step further and write a statement that displays the cell comment only if
the cell actually has a comment (and does not generate an error if the cell lacks a comment). The
statement that follows accomplishes this task:

If Not Range(“A1”).Comment Is Nothing Then _
 MsgBox Range(“A1”).Comment.Text

Notice that I used the Not keyword, which negates the True value that’s returned if the cell has
no comment. The statement, in essence, uses a double-negative to test a condition: If the com-
ment isn’t nothing, then display it. If this statement is confusing, think about it for a while, and it
will make sense.

Adding a new Comment object
You may have noticed that the list of methods for the Comment object doesn’t include a method
to add a new comment. This is because the AddComment method belongs to the Range object.
The following statement adds a comment (an empty comment) to cell A1 on the active worksheet:

Range(“A1”).AddComment

If you consult the Help system, you discover that the AddComment method takes an argument
that represents the text for the comment. Therefore, you can add a comment and then add text
to the comment with a single statement:

Range(“A1”).AddComment “Formula developed by JW.”

The AddComment method generates an error if the cell already contains a comment. To
avoid the error, your code can check whether the cell has a comment before adding
one.

If you’d like to see these Comment object properties and methods in action, check out
the example workbook on the companion CD-ROM. This workbook, named comment
object.xlsm, contains several examples that manipulate Comment objects with VBA
code. You probably won’t understand all the code at this point, but you will get a feel
for how you can use VBA to manipulate an object.

Part III: Understanding Visual Basic for Applications180

Some Useful Application Properties
When you’re working with Excel, only one workbook at a time can be active. And if the sheet is a
worksheet, one cell is the active cell (even if a multicell range is selected). VBA knows about
active workbooks, worksheets, and cells and lets you refer to these active objects in a simplified
manner. This method of referring to objects is often useful because you won’t always know the
exact workbook, worksheet, or range that you want to operate on. VBA makes it easy by provid-
ing properties of the Application object. For example, the Application object has an
ActiveCell property that returns a reference to the active cell. The following instruction
assigns the value 1 to the active cell:

ActiveCell.Value = 1

Notice that I omitted the reference to the Application object in the preceding example
because it’s assumed. It’s important to understand that this instruction will fail if the active sheet
isn’t a worksheet. For example, if VBA executes this statement when a chart sheet is active, the
procedure halts, and you get an error message.

If a range is selected in a worksheet, the active cell is a cell within the selected range. In other
words, the active cell is always a single cell (never a multicell range).

The Application object also has a Selection property that returns a reference to whatever
is selected, which may be a single cell (the active cell), a range of cells, or an object such as
ChartObject, TextBox, or Shape.

Table 7-3 lists the other Application properties that are useful when working with cells and
ranges.

Table 7-3: Some Useful Properties of the Application Object

Property Object Returned

ActiveCell The active cell.

ActiveChart The active chart sheet or chart contained in a ChartObject on a worksheet.
This property is Nothing if a chart isn’t active.

ActiveSheet The active sheet (worksheet or chart).

ActiveWindow The active window.

ActiveWorkbook The active workbook.

Selection The object selected. (It could be a Range object, Shape, ChartObject, and so
on.)

ThisWorkbook The workbook that contains the VBA procedure being executed. This object may
or may not be the same as the ActiveWorkbook object.

Chapter 7: Introducing Visual Basic for Applications 181

The advantage of using these properties to return an object is that you don’t need to know which
cell, worksheet, or workbook is active, and you don’t need to provide a specific reference to it.
This allows you to write VBA code that isn’t specific to a particular workbook, sheet, or range. For
example, the following instruction clears the contents of the active cell, even though the address
of the active cell isn’t known:

ActiveCell.ClearContents

The example that follows displays a message that tells you the name of the active sheet:

MsgBox ActiveSheet.Name

If you want to know the name and directory path of the active workbook, use a statement like this:

MsgBox ActiveWorkbook.FullName

If a range on a worksheet is selected, you can fill the entire range with a value by executing a sin-
gle statement. In the following example, the Selection property of the Application object
returns a Range object that corresponds to the selected cells. The instruction simply modifies the
Value property of this Range object, and the result is a range filled with a single value:

Selection.Value = 12

Note that if something other than a range is selected (such as a ChartObject or a Shape), the
preceding statement generates an error because ChartObject and Shape objects don’t have a
Value property.

The following statement, however, enters a value of 12 into the Range object that was selected
before a non-Range object was selected. If you look up the RangeSelection property in the
Help system, you find that this property applies only to a Window object.

ActiveWindow.RangeSelection.Value = 12

To find out how many cells are selected in the active window, access the Count property. Here’s
an example:

MsgBox ActiveWindow.RangeSelection.Count

Part III: Understanding Visual Basic for Applications182

Working with Range Objects
Much of the work that you will do in VBA involves cells and ranges in worksheets. The earlier dis-
cussion on relative versus absolute macro recording (see “Relative or absolute recording?”)
exposes you to working with cells in VBA, but you need to know a lot more.

A Range object is contained in a Worksheet object and consists of a single cell or range of cells
on a single worksheet. In the sections that follow, I discuss three ways of referring to Range
objects in your VBA code:

 The Range property of a Worksheet or Range class object

 The Cells property of a Worksheet object

 The Offset property of a Range object

The Range property
The Range property returns a Range object. If you consult the Help system for the Range prop-
erty, you learn that this property has two syntaxes:

object.Range(cell1)
object.Range(cell1, cell2)

The Range property applies to two types of objects: a Worksheet object or a Range object.
Here, cell1 and cell2 refer to placeholders for terms that Excel recognizes as identifying the
range (in the first instance) and delineating the range (in the second instance). Following are a
few examples of using the Range property.

You’ve already seen examples like the following one earlier in the chapter. The instruction that
follows simply enters a value into the specified cell. In this case, it puts the value 12.3 into cell
A1 on Sheet1 of the active workbook:

Worksheets(“Sheet1”).Range(“A1”).Value = 12.3

The Range property also recognizes defined names in workbooks. Therefore, if a cell is named
Input, you can use the following statement to enter a value into that named cell:

Worksheets(“Sheet1”).Range(“Input”).Value = 100

The example that follows enters the same value into a range of 20 cells on the active sheet. If the
active sheet isn’t a worksheet, the statement causes an error message:

ActiveSheet.Range(“A1:B10”).Value = 2

Chapter 7: Introducing Visual Basic for Applications 183

Working with merged cells
Working with merged cells can be tricky. If a range contains merged cells, you may need to take
some special action with the macros. For example, if cells A1:D1 are merged, the statement that
follows selects columns A through D (not just column B, as you might expect):

Columns(“B:B”).Select

I don’t know if this unexpected behavior is intentional or whether it’s a bug. However, it can
cause your macro to behave in a manner that you didn’t expect. Merged cells can also cause
problems with sorting.

To determine whether a particular range contains any merged cells, you can use the following
VBA function. The function returns True if any cell in the argument range is a merged cell.
(Refer to Chapter 10 for more information about Function procedures.)

Function ContainsMergedCells(rng As Range)
 Dim cell As Range
 ContainsMergedCells = False
 For Each cell In rng
 If cell.MergeCells Then
 ContainsMergedCells = True
 Exit Function
 End If
 Next cell
End Function

To refer to merged cells, you can reference the entire merged range or just the upper-left cell
within the merged range. For example, if a worksheet contains four cells merged into one (A1,
B1, A2, and B1), reference the merged cells using either of the following expressions:

Range(“A1:B2”)
Range(“A1”)

If you attempt to assign a value to a cell in a merged range that’s not the upper-left cell, VBA
ignores the instruction and doesn’t generate an error. For example, the following statement has
no effect if A1:B2 is merged:

Range(“B2”).Value = 43

Some operations cause Excel to display a confirmation message. For example, if A1:B2 is
merged, the following statement generates a message: This operation will cause
some merged cells to unmerge. Do you wish to continue?

Range(“B2”).Delete

Bottom line? Be careful with merged cells. Some have suggested that this feature wasn’t very
well thought-out before it was implemented. I tend to agree.

Part III: Understanding Visual Basic for Applications184

The next example produces exactly the same result as the preceding example:

Range(“A1”, “B10”) = 2

The sheet reference is omitted, however, so the active sheet is assumed. Also, the value property
is omitted, so the default property (which is Value for a Range object) is assumed. This example
also uses the second syntax of the Range property. With this syntax, the first argument is the cell
at the top left of the range, and the second argument is the cell at the lower right of the range.

The following example uses the Excel range intersection operator (a space) to return the inter-
section of two ranges. In this case, the intersection is a single cell, C6. Therefore, this statement
enters 3 into cell C6:

Range(“C1:C10 A6:E6”) = 3

And finally, this next example enters the value 4 into five cells: that is, a noncontiguous range.
The comma serves as the union operator.

Range(“A1,A3,A5,A7,A9”) = 4

So far, all the examples have used the Range property on a Worksheet object. As I mentioned,
you can also use the Range property on a Range object. This concept can be rather confusing,
but bear with me.

Following is an example of using the Range property on a Range object. (In this case, the Range
object is the active cell.) This example treats the Range object as if it were the upper-left cell in the
worksheet, and then it enters a value of 5 into the cell that would be B2. In other words, the refer-
ence returned is relative to the upper-left corner of the Range object. Therefore, the statement that
follows enters a value of 5 into the cell directly to the right and one row below the active cell:

ActiveCell.Range(“B2”) = 5

I said this is confusing. Fortunately, you can access a cell relative to a range in a much clearer
way: the Offset property. I discuss this property after the next section.

The Cells property
Another way to reference a range is to use the Cells property. You can use the Cells prop-
erty, like the Range property, on Worksheet objects and Range objects. Check the Help sys-
tem, and you see that the Cells property has three syntaxes:

object.Cells(rowIndex, columnIndex)
object.Cells(rowIndex)
object.Cells

Chapter 7: Introducing Visual Basic for Applications 185

Some examples demonstrate how to use the Cells property. The first example enters the value
9 into cell A1 on Sheet1. In this case, I’m using the first syntax, which accepts the index number
of the row (from 1 to 1048576) and the index number of the column (from 1 to 16384):

Worksheets(“Sheet1”).Cells(1, 1) = 9

Here’s an example that enters the value 7 into cell D3 (that is, row 3, column 4) in the active
worksheet:

ActiveSheet.Cells(3, 4) = 7

You can also use the Cells property on a Range object. When you do so, the Range object
returned by the Cells property is relative to the upper-left cell of the referenced Range.
Confusing? Probably. An example may help clear up any confusion. The following instruction
enters the value 5 into the active cell. Remember, in this case, the active cell is treated as if it
were cell A1 in the worksheet:

ActiveCell.Cells(1, 1) = 5

The real advantage of this type of cell referencing will be apparent when I discuss vari-
ables and looping (see Chapter 8). In most cases, you don’t use actual values for the
arguments; rather, you use variables.

To enter a value of 5 into the cell directly below the active cell, you can use the following
instruction:

ActiveCell.Cells(2, 1) = 5

Think of the preceding example as though it said this: “Start with the active cell and consider this
cell as cell A1. Place 5 in the cell in the second row and the first column.”

The second syntax of the Cells method uses a single argument that can range from 1 to
17,179,869,184. This number is equal to the number of cells in an Excel 2010 worksheet. The cells
are numbered starting from A1 and continuing right and then down to the next row. The 16,384th
cell is XFD1; the 16,385th is A2.

The next example enters the value 2 into cell SZ1 (which is the 520th cell in the worksheet) of the
active worksheet:

ActiveSheet.Cells(520) = 2

Part III: Understanding Visual Basic for Applications186

To display the value in the last cell in a worksheet (XFD1048576), use this statement:

MsgBox ActiveSheet.Cells(17179869184)

You can also use this syntax with a Range object. In this case, the cell returned is relative to the
Range object referenced. For example, if the Range object is A1:D10 (40 cells), the Cells prop-
erty can have an argument from 1 to 40 and can return one of the cells in the Range object. In
the following example, a value of 2000 is entered into cell A2 because A2 is the fifth cell (count-
ing from the top, to the right, and then down) in the referenced range:

Range(“A1:D10”).Cells(5) = 2000

In the preceding example, the argument for the Cells property isn’t limited to values
between 1 and 40. If the argument exceeds the number of cells in the range, the count-
ing continues as if the range were taller than it actually is. Therefore, a statement like
the preceding one could change the value in a cell that’s outside of the range A1:D10.
The statement that follows, for example, changes the value in cell A11:

Range(“A1:D10”).Cells(41)=2000

Getting information from a cell
If you need to get the contents of a cell, VBA provides several properties. Following are the
most commonly used properties:

● The Formula property returns the formula, if the cell has one. If the cell doesn’t contain a
formula, it returns the value in the cell. The Formula property is a read/write property.
Variations on this property include FormulaR1C1, FormulaLocal, and FormulaArray.
(Consult the Help system for details.)

● The Value property returns the raw, unformatted value in the cell. This property is a read/
write property.

● The Text property returns the text that is displayed in the cell. If the cell contains a
numeric value, this property includes all the formatting, such as commas and currency
symbols. The Text property is a read-only property.

● The Value2 property is just like the Value property, except that it doesn’t use the Date
and Currency data types. Rather, this property converts Date and Currency data
types to Variants containing Doubles. If a cell contains the date 12/6/2010, the Value
property returns it as a Date, while the Value2 property returns it as a double (for exam-
ple, 40518).

Chapter 7: Introducing Visual Basic for Applications 187

The third syntax for the Cells property simply returns all cells on the referenced worksheet.
Unlike the other two syntaxes, in this one, the return data isn’t a single cell. This example uses the
ClearContents method on the range returned by using the Cells property on the active
worksheet. The result is that the content of every cell on the worksheet is cleared:

ActiveSheet.Cells.ClearContents

The Offset property
The Offset property, like the Range and Cells properties, also returns a Range object. But
unlike the other two methods that I discussed, the Offset property applies only to a Range
object and no other class. Its syntax is as follows:

object.Offset(rowOffset, columnOffset)

The Offset property takes two arguments that correspond to the relative position from the
upper-left cell of the specified Range object. The arguments can be positive (down or to the
right), negative (up or to the left), or zero. The example that follows enters a value of 12 into the
cell directly below the active cell:

ActiveCell.Offset(1,0).Value = 12

The next example enters a value of 15 into the cell directly above the active cell:

ActiveCell.Offset(-1,0).Value = 15

If the active cell is in row 1, the Offset property in the preceding example generates an error
because it can’t return a Range object that doesn’t exist.

The Offset property is quite useful, especially when you use variables within looping proce-
dures. I discuss these topics in the next chapter.

When you record a macro using the relative reference mode, Excel uses the Offset property to
reference cells relative to the starting position (that is, the active cell when macro recording
begins). For example, I used the macro recorder to generate the following code. I started with
the cell pointer in cell B1, entered values into B1:B3, and then returned to B1.

Sub Macro1()
 ActiveCell.FormulaR1C1 = “1”
 ActiveCell.Offset(1, 0).Range(“A1”).Select
 ActiveCell.FormulaR1C1 = “2”
 ActiveCell.Offset(1, 0).Range(“A1”).Select

Part III: Understanding Visual Basic for Applications188

 ActiveCell.FormulaR1C1 = “3”
 ActiveCell.Offset(-2, 0).Range(“A1”).Select
End Sub

Notice that the macro recorder uses the FormulaR1C1 property. Normally, you want to use the
Value property to enter a value into a cell. However, using FormulaR1C1 or even Formula
produces the same result.

Also notice that the generated code references cell A1 — a cell that was even involved in the
macro. This notation is a quirk in the macro recording procedure that makes the code more com-
plex than necessary. You can delete all references to Range(“A1”), and the macro still works
perfectly:

Sub Modified_Macro1()
 ActiveCell.FormulaR1C1 = “1”
 ActiveCell.Offset(1, 0).Select
 ActiveCell.FormulaR1C1 = “2”
 ActiveCell.Offset(1, 0).Select
 ActiveCell.FormulaR1C1 = “3”
 ActiveCell.Offset(-2, 0).Select
End Sub

In fact, here’s a much more efficient version of the macro (which I wrote myself) that doesn’t do
any selecting:

Sub Macro1()
 ActiveCell = 1
 ActiveCell.Offset(1, 0) = 2
 ActiveCell.Offset(2, 0) = 3
End Sub

Things to Know about Objects
The preceding sections introduced you to objects (including collections), properties, and meth-
ods. But I’ve barely scratched the surface.

Essential concepts to remember
In this section, I note some additional concepts that are essential for would-be VBA gurus. These
concepts become clearer when you work with VBA and read subsequent chapters:

Chapter 7: Introducing Visual Basic for Applications 189

 Objects have unique properties and methods. Each object has its own set of properties
and methods. Some objects, however, share some properties (for example, Name) and
some methods (such as Delete).

 You can manipulate objects without selecting them. This idea may be contrary to how
you normally think about manipulating objects in Excel. The fact is that it’s usually more
efficient to perform actions on objects without selecting them first. When you record a
macro, Excel generally selects the object first. This step isn’t necessary and may actually
make your macro run more slowly.

 It’s important that you understand the concept of collections. Most of the time, you refer
to an object indirectly by referring to the collection that it’s in. For example, to access a
Workbook object named Myfile, reference the Workbooks collection as follows:

Workbooks(“Myfile.xlsx”)

 This reference returns an object, which is the workbook with which you’re concerned.

 Properties can return a reference to another object. For example, in the following state-
ment, the Font property returns a Font object contained in a Range object. Bold is a
property of the Font object, not the Range object.

Range(“A1”).Font.Bold = True

 You can refer to the same object in many different ways. Assume that you have a work-
book named Sales, and it’s the only workbook open. Then assume that this workbook
has one worksheet, named Summary. You can refer to the sheet in any of the following
ways:

Workbooks(“Sales.xlsx”).Worksheets(“Summary”)
Workbooks(1).Worksheets(1)
Workbooks(1).Sheets(1)
Application.ActiveWorkbook.ActiveSheet
ActiveWorkbook.ActiveSheet
ActiveSheet

 The method that you use is usually determined by how much you know about the work-
space. For example, if more than one workbook is open, the second and third methods
aren’t reliable. If you want to work with the active sheet (whatever it may be), any of the
last three methods would work. To be absolutely sure that you’re referring to a specific
sheet on a specific workbook, the first method is your best choice.

Learning more about objects and properties
If this is your first exposure to VBA, you’re probably a bit overwhelmed by objects, properties,
and methods. I don’t blame you. If you try to access a property that an object doesn’t have, you
get a runtime error, and your VBA code grinds to a screeching halt until you correct the problem.

Fortunately, there are several good ways to learn about objects, properties, and methods.

Part III: Understanding Visual Basic for Applications190

Read the rest of the book
Don’t forget, the name of this chapter is “Introducing Visual Basic for Applications.” The remainder
of this book covers many additional details and provides many useful and informative examples.

Record your actions
The absolute best way to become familiar with VBA, without question, is to simply turn on the
macro recorder and record some actions that you perform in Excel. This approach is a quick way
to learn the relevant objects, properties, and methods for a task. It’s even better if the VBA mod-
ule in which the code is being recorded is visible while you’re recording.

Use the Help system
The main source of detailed information about Excel’s objects, methods, and procedures is the
Help system. Many people forget about this resource.

Use the Object Browser
The Object Browser is a handy tool that lists every property and method for every object available.
When the VBE is active, you can bring up the Object Browser in any of the following three ways:

 Press F2.

 Choose the View➜Object Browser command from the menu.

 Click the Object Browser tool on the Standard toolbar.

The Object Browser is shown in Figure 7-15.

The drop-down list in the upper-left corner of the Object Browser includes a list of all object
libraries that you have access to:

 Excel itself

 MSForms (used to create custom dialog boxes)

 Office (objects common to all Microsoft Office applications)

 Stdole (OLE automation objects)

 VBA

 The current project (the project that’s selected in the Project Explorer) and any work-
books referenced by that project

Your selection in this upper-left drop-down list determines what is displayed in the Classes window,
and your selection in the Classes window determines what is visible in the Members Of panel.

Chapter 7: Introducing Visual Basic for Applications 191

Figure 7-15: The Object Browser is a great reference source.

After you select a library, you can search for a particular text string to get a list of properties and
methods that contain the text. You do so by entering the text in the second drop-down list and
then clicking the binoculars (Search) icon. For example, assume that you’re working on a project
that manipulates cell comments:

 1. Select the library of interest.

 If you’re not sure which object library is appropriate, you can select <All Libraries>.

 2. Enter Comment in the drop-down list below the library list.

 3. Click the binoculars icon to begin the text search.

The Search Results window displays the matching text. Select an object to display its classes in
the Classes window. Select a class to display its members (properties, methods, and constants).
Pay attention to the bottom pane, which shows more information about the object. You can
press F1 to go directly to the appropriate help topic.

The Object Browser may seem complex at first, but its usefulness to you will increase over time.

Part III: Understanding Visual Basic for Applications192

Experiment with the Immediate window
As I describe in the sidebar earlier in this chapter (see “About the code examples”), the
Immediate window of the VBE is very useful for testing statements and trying out various VBA
expressions. I generally keep the Immediate window visible at all times, and I use it frequently to
test various expressions and to help in debugging code.

193

8
VBA Programming
Fundamentals
In This Chapter

● Understanding VBA language elements, including variables, data types, constants, and
arrays

● Using VBA built-in functions

● Manipulating objects and collections

● Controlling the execution of your procedures

VBA Language Elements: An Overview
If you’ve used other programming languages, much of the information in this chapter may sound
familiar. However, VBA has a few unique wrinkles, so even experienced programmers may find
some new information.

In Chapter 7, I present an overview of objects, properties, and methods, but I don’t tell you much
about how to manipulate objects so that they do meaningful things. This chapter gently nudges
you in that direction by exploring the VBA language elements, which are the keywords and con-
trol structures that you use to write VBA routines.

To get the ball rolling, I start by presenting a simple VBA Sub procedure. The following code,
which is stored in a VBA module, calculates the sum of the first 100 positive integers. When the
code finishes executing, the procedure displays a message with the result.

Sub VBA_Demo()
‘ This is a simple VBA Example
 Dim Total As Long, i As Long
 Total = 0
 For i = 1 To 100

Part III: Understanding Visual Basic for Applications194

 Total = Total + i
 Next i
 MsgBox Total
End Sub

This procedure uses some common VBA language elements, including:

 A comment (the line that begins with an apostrophe)

 A variable declaration statement (the line that begins with Dim)

 Two variables (Total and i)

 Two assignment statements (Total = 0 and Total = Total + i)

 A looping structure (For-Next)

 A VBA function (MsgBox)

All these language elements are discussed in subsequent sections of this chapter.

VBA procedures need not manipulate any objects. The preceding procedure, for exam-
ple, doesn’t do anything with objects. It simply works with numbers.

Entering VBA code
VBA code, which resides in a VBA module, consists of instructions. The accepted practice is to
use one instruction per line. This standard isn’t a requirement, however; you can use a colon to
separate multiple instructions on a single line. The following example combines four instructions
on one line:

Sub OneLine()
 x= 1: y= 2: z= 3: MsgBox x + y + z
End Sub

Most programmers agree that code is easier to read if you use one instruction per line:

Sub MultipleLines()
 x = 1
 y = 2
 z = 3
 MsgBox x + y + z
End Sub

Chapter 8: VBA Programming Fundamentals 195

Comments
A comment is descriptive text embedded within your code and ignored by VBA. It’s a good idea
to use comments liberally to describe what you’re doing because an instruction’s purpose isn’t
always obvious.

Each line can be as long as you like; the VBA module window scrolls to the left when you reach
the right side. For lengthy lines, you may want to use VBA’s line continuation sequence: a space
followed by an underscore (_). For example:

Sub LongLine()
 SummedValue = _
 Worksheets(“Sheet1”).Range(“A1”).Value + _
 Worksheets(“Sheet2”).Range(“A1”).Value
End Sub

When you record macros, Excel often uses underscores to break long statements into multiple
lines.

After you enter an instruction, VBA performs the following actions to improve readability:

● It inserts spaces between operators. If you enter Ans=1+2 (without spaces), for example,
VBA converts it to

 Ans = 1 + 2

● It adjusts the case of the letters for keywords, properties, and methods. If you enter the
following text: Result=activesheet.range(“a1”).value=12

 VBA converts it to
 Result = ActiveSheet.Range(“a1”).Value = 12

 Notice that text within quotation marks (in this case, “a1”) isn’t changed.
● Because VBA variable names aren’t case-sensitive, the interpreter by default adjusts the

names of all variables with the same letters so that their case matches the case of letters
that you most recently typed. For example, if you first specify a variable as myvalue (all
lowercase) and then enter the variable as MyValue (mixed case), VBA changes all other
occurrences of the variable to MyValue. An exception occurs if you declare the variable
with Dim or a similar statement; in this case, the variable name always appears as it was
declared.

● VBA scans the instruction for syntax errors. If VBA finds an error, it changes the color of
the line and might display a message describing the problem. Choose the Visual Basic
Editor Tools➜Options command to display the Options dialog box, where you control the
error color (use the Editor Format tab) and whether the error message is displayed (use
the Auto Syntax Check option in the Editor tab).

Part III: Understanding Visual Basic for Applications196

You can use a complete line for your comment, or you can insert a comment after an instruction
on the same line. A comment is indicated by an apostrophe. VBA ignores any text that follows an
apostrophe — except when the apostrophe is contained within quotation marks — up until the
end of the line. For example, the following statement doesn’t contain a comment, even though it
has an apostrophe:

Msg = “Can’t continue”

The following example shows a VBA procedure with three comments:

Sub CommentDemo()
‘ This procedure does nothing of value
 x = 0 ‘x represents nothingness
‘ Display the result
 MsgBox x
End Sub

Although the apostrophe is the preferred comment indicator, you can also use the Rem keyword
to mark a line as a comment. For example:

Rem -- The next statement prompts the user for a filename

The Rem keyword (short for Remark) is essentially a holdover from older versions of BASIC and is
included in VBA for the sake of compatibility. Unlike the apostrophe, Rem can be written only at
the beginning of a line, not on the same line as another instruction.

Using comments is definitely a good idea, but not all comments are equally beneficial.
To be useful, comments should convey information that’s not immediately obvious
from reading the code. Otherwise, you’re just chewing up valuable bytes and increasing
the size of your workbook.

Following are a few general tips on making the best use of comments:

 Use comments to describe briefly the purpose of each procedure that you write.

 Use comments to describe changes that you make to a procedure.

 Use comments to indicate that you’re using functions or constructs in an unusual or non-
standard manner.

 Use comments to describe the purpose of variables so that you and other people can
decipher otherwise cryptic names.

Chapter 8: VBA Programming Fundamentals 197

 Use comments to describe workarounds that you develop to overcome Excel bugs or
limitations.

 Write comments while you code rather than after.

In some cases, you may want to test a procedure without including a particular instruc-
tion or group of instructions. Instead of deleting the instruction, simply turn it into a
comment by inserting an apostrophe at the beginning. VBA then ignores the
instruction(s) when the routine is executed. To convert the comment back to an
instruction, just delete the apostrophe.

The Visual Basic Editor (VBE) Edit toolbar contains two very useful buttons. (The Edit
toolbar isn’t displayed by default. To display this toolbar, choose
View➜Toolbars➜Edit.) Select a group of instructions and then click the Comment
Block button to convert the instructions to comments. The Uncomment Block button
converts a group of comments back to instructions.

Variables, Data Types, and Constants
VBA’s main purpose in life is to manipulate data. Some data resides in objects, such as worksheet
ranges. Other data is stored in variables that you create.

A variable is simply a named storage location in your computer’s memory. Variables can accom-
modate a wide variety of data types — from simple Boolean values (True or False) to large,
double-precision values (see the following section). You assign a value to a variable by using the
equal sign operator (more about this process in the upcoming section, “Assignment
Statements”).

You make your life easier if you get into the habit of making your variable names as descriptive
as possible. VBA does, however, have a few rules regarding variable names:

 You can use alphabetic characters, numbers, and some punctuation characters, but the
first character must be alphabetic.

 VBA doesn’t distinguish between case. To make variable names more readable, program-
mers often use mixed case (for example, InterestRate rather than interestrate).

 You can’t use spaces or periods. To make variable names more readable, programmers
often use the underscore character (Interest_Rate).

 You can’t embed special type declaration characters (#, $, %, &, or !) in a variable name.

 Variable names can be as long as 254 characters — but using such long variable names
isn’t recommended.

Part III: Understanding Visual Basic for Applications198

The following list contains some examples of assignment expressions that use various types of
variables. The variable names are to the left of the equal sign. Each statement assigns the value
to the right of the equal sign to the variable on the left.

x = 1
InterestRate = 0.075
LoanPayoffAmount = 243089.87
DataEntered = False
x = x + 1
MyNum = YourNum * 1.25
UserName = “Bob Johnson”
DateStarted = #12/14/2009#

VBA has many reserved words, which are words that you can’t use for variable or procedure
names. If you attempt to use one of these words, you get an error message. For example,
although the reserved word Next might make a very descriptive variable name, the following
instruction generates a syntax error:

Next = 132

Unfortunately, syntax error messages aren’t always descriptive. If the Auto Syntax Check option
is turned on you get the error: Compile error: Expected: variable. If Auto Syntax
Check is turned off, attempting to execute this statement results in: Compile error: Syntax
error. It would be more helpful if the error message were something like Reserved word
used as a variable. So if an instruction produces a strange error message, check the VBA
Help system to ensure that your variable name doesn’t have a special use in VBA.

Defining data types
VBA makes life easy for programmers because it can automatically handle all the details involved
in dealing with data. Not all programming languages make it so easy. For example, some lan-
guages are strictly typed, which means that the programmer must explicitly define the data type
for every variable used.

Data type refers to how data is stored in memory — as integers, real numbers, strings, and so on.
Although VBA can take care of data typing automatically, it does so at a cost: slower execution
and less efficient use of memory. As a result, letting VBA handle data typing may present prob-
lems when you’re running large or complex applications. Another advantage of explicitly declar-
ing your variables as a particular data type is that VBA can perform some additional error
checking at the compile stage. These errors might otherwise be difficult to locate.

Table 8-1 lists VBA’s assortment of built-in data types. (Note that you can also define custom
data types, which I describe later in this chapter in “User-Defined Data Types.”)

Chapter 8: VBA Programming Fundamentals 199

Table 8-1: VBA Built-In Data Types

Data Type Bytes Used Range of Values

Byte 1 byte 0 to 255

Boolean 2 bytes True or False

Integer 2 bytes –32,768 to 32,767

Long 4 bytes –2,147,483,648 to 2,147,483,647

Single 4 bytes –3.402823E38 to –1.401298E-45 (for negative values);
1.401298E-45 to 3.402823E38 (for positive values)

Double 8 bytes –1.79769313486232E308 to –4.94065645841247E-324
(negative values);
4.94065645841247E-324 to 1.79769313486232E308 (for
positive values)

Currency 8 bytes –922,337,203,685,477.5808 to
922,337,203,685,477.5807

Decimal 12 bytes +/–79,228,162,514,264,337,593,543,950,335 with
no decimal point;
+/–7.9228162514264337593543950335 with 28 places to
the right of the decimal

Date 8 bytes January 1, 0100 to December 31, 9999

Object 4 bytes Any object reference

String (variable
length)

10 bytes + string
length

0 to approximately 2 billion characters

String (fixed
length)

Length of string 1 to approximately 65,400 characters

Variant (with
numbers)

16 bytes Any numeric value up to the range of a double data type. It can
also hold special values, such as Empty, Error, Nothing, and Null.

Variant (with
characters)

22 bytes + string
length

0 to approximately 2 billion

User-defined Varies Varies by element

The Decimal data type is rather unusual because you can’t actually declare it. In fact, it
is a subtype of a variant. You need to use the VBA CDec function to convert a variant to
the Decimal data type.

Generally, it’s best to use the data type that uses the smallest number of bytes yet still can han-
dle all the data that will be assigned to it. When VBA works with data, execution speed is par-
tially a function of the number of bytes that VBA has at its disposal. In other words, the fewer
bytes used by data, the faster VBA can access and manipulate the data.

For worksheet calculation, Excel uses the Double data type, so that’s a good choice for process-
ing numbers in VBA when you don’t want to lose any precision. For integer calculations, you can

Part III: Understanding Visual Basic for Applications200

use the Integer type (which is limited to values less than or equal to 32,767). Otherwise, use
the Long data type. In fact, using the Long data type even for values less than 32,767 is recom-
mended, because this data type may be a bit faster than using the Integer type. When dealing
with Excel worksheet row numbers, you want to use the Long data type because the number of
rows in a worksheet exceeds the maximum value for the Integer data type.

Benchmarking variant data types
To test whether data typing is important, I developed the following routine, which performs
more than 300 million meaningless calculations in a loop and then displays the procedure’s total
execution time:

Sub TimeTest()
 Dim x As Long, y As Long
 Dim A As Double, B As Double, C As Double
 Dim i As Long, j As Long
 Dim StartTime As Date, EndTime As Date
‘ Store the starting time
 StartTime = Timer
‘ Perform some calculations
 x = 0
 y = 0
 For i = 1 To 10000
 x = x + 1
 y = x + 1
 For j = 1 To 10000
 A = x + y + i
 B = y - x - i
 C = x / y * i
 Next j
 Next i
‘ Get ending time
 EndTime = Timer
‘ Display total time in seconds
 MsgBox Format(EndTime - StartTime, “0.0”)
End Sub

On my system, this routine took 7.7 seconds to run. (The time will vary, depending on your sys-
tem’s processor speed.) I then commented out the Dim statements, which declare the data
types. That is, I turned the Dim statements into comments by adding an apostrophe at the
beginning of the lines. As a result, VBA used the default data type, Variant. I ran the proce-
dure again. It took 25.4 seconds, more than three times as long as before.

The moral is simple: If you want your VBA applications to run as fast as possible, declare your
variables!

A workbook that contains this code is available on the companion CD-ROM in a file named tim-
ing text.xlsm.

Chapter 8: VBA Programming Fundamentals 201

Declaring variables
If you don’t declare the data type for a variable that you use in a VBA routine, VBA uses the
default data type, Variant. Data stored as a Variant acts like a chameleon: It changes type,
depending on what you do with it.

The following procedure demonstrates how a variable can assume different data types:

Sub VariantDemo()
 MyVar = “123”
 MyVar = MyVar / 2
 MyVar = ”Answer: ” & MyVar
 MsgBox MyVar
End Sub

In the VariantDemo procedure, MyVar starts out as a three-character string. Then this string is
divided by two and becomes a numeric data type. Next, MyVar is appended to a string, convert-
ing MyVar back to a string. The MsgBox statement displays the final string: Answer: 61.5.

To further demonstrate the potential problems in dealing with Variant data types, try execut-
ing this procedure:

Sub VariantDemo2()
 MyVar = “123”
 MyVar = MyVar + MyVar
 MyVar = ”Answer: ” & MyVar
 MsgBox MyVar
End Sub

The message box displays Answer: 123123. This is probably not what you wanted. When
dealing with variants that contain text strings, the + operator performs string concatenation.

Determining a data type
You can use the VBA TypeName function to determine the data type of a variable. Here’s a modified
version of the previous procedure. This version displays the data type of MyVar at each step. You
see that it starts out as a string, is then converted to a double, and finally ends up as a string again.

Sub VariantDemo2()
 MyVar = “123”
 MsgBox TypeName(MyVar)
 MyVar = MyVar / 2
 MsgBox TypeName(MyVar)
 MyVar = “Answer: “ & MyVar
 MsgBox TypeName(MyVar)
 MsgBox MyVar
End Sub

Part III: Understanding Visual Basic for Applications202

Thanks to VBA, the data type conversion of undeclared variables is automatic. This process may
seem like an easy way out, but remember that you sacrifice speed and memory — and you run
the risk of errors that you may not even know about.

Declaring each variable in a procedure before you use it is an excellent habit. Declaring a variable
tells VBA its name and data type. Declaring variables provides two main benefits:

 Your programs run faster and use memory more efficiently. The default data type,
Variant, causes VBA to repeatedly perform time-consuming checks and reserve more
memory than necessary. If VBA knows the data type, it doesn’t have to investigate, and it
can reserve just enough memory to store the data.

 You avoid problems involving misspelled variable names. This benefit assumes that you
use Option Explicit to force yourself to declare all variables (see the next section).
Say that you use an undeclared variable named CurrentRate. At some point in your
routine, however, you insert the statement CurentRate = .075. This misspelled vari-
able name, which is very difficult to spot, will likely cause your routine to give incorrect
results.

Forcing yourself to declare all variables
To force yourself to declare all the variables that you use, include the following as the first
instruction in your VBA module:

Option Explicit

When this statement is present, VBA won’t even execute a procedure if it contains an undeclared
variable name. VBA issues the error message shown in Figure 8-1, and you must declare the vari-
able before you can proceed.

Figure 8-1: VBA’s way of telling you that your procedure contains an undeclared variable.

Chapter 8: VBA Programming Fundamentals 203

To ensure that the Option Explicit statement is inserted automatically whenever
you insert a new VBA module, enable the Require Variable Declaration option in the
Editor tab of the VBE Options dialog box (choose Tools➜Options). I highly recommend
doing so. Be aware, however, that this option doesn’t affect existing modules.

Scoping variables
A variable’s scope determines in which modules and procedures you can use the variable. Table
8-2 lists the three ways in which a variable can be scoped.

Table 8-2: Variable Scope

Scope How a Variable with This Scope Is Declared

Single procedure Include a Dim or Static statement within the procedure.

Single module Include a Dim or Private statement before the first procedure in a module.

All modules Include a Public statement before the first procedure in a module.

I discuss each scope further in the following sections.

Local variables
A local variable is a variable declared within a procedure. You can use local variables only in the
procedure in which they’re declared. When the procedure ends, the variable no longer exists, and
Excel frees up the memory that the variable used. If you need the variable to retain its value
when the procedure ends, declare it as a Static variable. (See “Static variables,” later in this
section.)

The most common way to declare a local variable is to place a Dim statement between a Sub
statement and an End Sub statement. Dim statements usually are placed right after the Sub
statement, before the procedure’s code.

If you’re curious about this word, Dim is a shortened form of Dimension. In old versions
of BASIC, this statement was used exclusively to declare the dimensions for an array. In
VBA, the Dim keyword is used to declare any variable, not just arrays.

A note about the examples in this chapter
This chapter contains many examples of VBA code, usually presented in the form of simple pro-
cedures. These examples demonstrate various concepts as simply as possible. Most of these
examples don’t perform any particularly useful task; in fact, the task can often be performed in a
different (perhaps more efficient) way. In other words, don’t use these examples in your own
work. Subsequent chapters provide many more code examples that are useful.

Part III: Understanding Visual Basic for Applications204

The following procedure uses six local variables declared by using Dim statements:

Sub MySub()
 Dim x As Integer
 Dim First As Long
 Dim InterestRate As Single
 Dim TodaysDate As Date
 Dim UserName As String
 Dim MyValue
‘ - [The procedure’s code goes here] -
End Sub

Notice that the last Dim statement in the preceding example doesn’t declare a data type; it sim-
ply names the variable. As a result, that variable becomes a variant.

You also can declare several variables with a single Dim statement. For example:

Dim x As Integer, y As Integer, z As Integer
Dim First As Long, Last As Double

Unlike some languages, VBA doesn’t let you declare a group of variables to be a partic-
ular data type by separating the variables with commas. For example, the following
statement, although valid, does not declare all the variables as integers:

Dim i, j, k As Integer

In VBA, only k is declared to be an integer; the other variables are declared variants. To
declare i, j, and k as integers, use this statement:

Dim i As Integer, j As Integer, k As Integer

If a variable is declared with a local scope, other procedures in the same module can use the
same variable name, but each instance of the variable is unique to its own procedure.

In general, local variables are the most efficient because VBA frees up the memory that they use
when the procedure ends.

Module-wide variables
Sometimes, you want a variable to be available to all procedures in a module. If so, just declare
the variable before the module’s first procedure (outside of any procedures or functions).

Chapter 8: VBA Programming Fundamentals 205

In the following example, the Dim statement is the first instruction in the module. Both
Procedure1 and Procedure2 have access to the CurrentValue variable.

Dim CurrentValue as Long
Sub Procedure1()
‘ - [Code goes here] -
End Sub
Sub Procedure2()
‘ - [Code goes here] -
End Sub

The value of a module-wide variable retains its value when a procedure ends normally (that is,
when it reaches the End Sub or End Function statement). An exception is if the procedure is
halted with an End statement. When VBA encounters an End statement, all module-wide vari-
ables in all modules lose their values.

Another way of data-typing variables
Like most other dialects of BASIC, VBA lets you append a character to a variable’s name to indi-
cate the data type. For example, you can declare the MyVar variable as an integer by tacking %
onto the name:

Dim MyVar%

Type-declaration characters exist for most VBA data types. Data types not listed in the following
table don’t have type-declaration characters.

Data Type Type-Declaration Character

Integer %

Long &

Single !

Double #

Currency @

String $

This method of data typing is essentially a holdover from BASIC; it’s better to declare your vari-
ables by using the other techniques described in this chapter. I list these type declaration char-
acters here just in case you encounter them in an older program.

Part III: Understanding Visual Basic for Applications206

Public variables
To make a variable available to all the procedures in all the VBA modules in a project, declare the
variable at the module level (before the first procedure declaration) by using the Public key-
word rather than Dim. Here’s an example:

Public CurrentRate as Long

The Public keyword makes the CurrentRate variable available to any procedure in the VBA
project, even those in other modules within the project. You must insert this statement before
the first procedure in a module (any module). This type of declaration must appear in a standard
VBA module, not in a code module for a sheet or a UserForm.

Static variables
Static variables are a special case. They’re declared at the procedure level, and they retain their
value when the procedure ends normally. However, if the procedure is halted by an End state-
ment, static variables do lose their values.

You declare static variables by using the Static keyword:

Sub MySub()
 Static Counter as Long
 ‘- [Code goes here] -
End Sub

Working with constants
A variable’s value may change while a procedure is executing (that’s why it’s called a variable).
Sometimes, you need to refer to a named value or string that never changes: a constant.

Using constants throughout your code in place of hard-coded values or strings is an excellent
programming practice. For example, if your procedure needs to refer to a specific value (such as
an interest rate) several times, it’s better to declare the value as a constant and use the con-
stant’s name rather than its value in your expressions. This technique not only makes your code
more readable, it also makes it easier to change should the need arise — you have to change only
one instruction rather than several.

Declaring constants
You declare constants with the Const statement. Here are some examples:

Const NumQuarters as Integer = 4
Const Rate = .0725, Period = 12
Const ModName as String = “Budget Macros”
Public Const AppName as String = “Budget Application”

Chapter 8: VBA Programming Fundamentals 207

The second example doesn’t declare a data type. Consequently, VBA determines the data type
from the value. The Rate variable is a Double, and the Period variable is an Integer.
Because a constant never changes its value, you normally want to declare your constants as a
specific data type.

Like variables, constants also have a scope. If you want a constant to be available within a single
procedure only, declare it after the Sub or Function statement to make it a local constant. To
make a constant available to all procedures in a module, declare it before the first procedure in
the module. To make a constant available to all modules in the workbook, use the Public key-
word and declare the constant before the first procedure in a module. For example:

Public Const InterestRate As Double = 0.0725

If your VBA code attempts to change the value of a constant, you get an error
(Assignment to constant not permitted). This message is what you would
expect. A constant is a constant, not a variable.

Variable naming conventions
Some programmers name variables so that users can identify their data types by just looking at
their names. Personally, I don’t use this technique very often because I think it makes the code
more difficult to read, but you might find it helpful.

The naming convention involves using a standard lowercase prefix for the variable’s name. For
example, if you have a Boolean variable that tracks whether a workbook has been saved, you
might name the variable bWasSaved. That way, it’s clear that the variable is a Boolean variable.
The following table lists some standard prefixes for data types:

Data Type Prefix

Boolean b

Integer i

Long l

Single s

Double d

Currency c

Date/Time dt

String str

Object obj

Variant v

User-defined u

Part III: Understanding Visual Basic for Applications208

Using predefined constants
Excel and VBA make available many predefined constants, which you can use without declaring.
In fact, you don’t even need to know the value of these constants to use them. The macro
recorder generally uses constants rather than actual values. The following procedure uses a built-
in constant (xlLandscape) to set the page orientation to landscape for the active sheet:

Sub SetToLandscape()
 ActiveSheet.PageSetup.Orientation = xlLandscape
End Sub

I discovered the xlLandscape constant by recording a macro. I also could have found this
information in the Help system. And, if you have the AutoList Members option turned on, you
can often get some assistance while you enter your code (see Figure 8-2). In many cases, VBA
lists all the constants that you can assign to a property.

Figure 8-2: VBA displays a list of constants that you can assign to a property.

The actual value for xlLandscape is 2 (which you can discover by using the Immediate win-
dow). The other built-in constant for changing paper orientation is xlPortrait, which has a
value of 1. Obviously, if you use the built-in constants, you don’t really need to know their values.

The Object Browser, which I discuss briefly in Chapter 7, can display a list of all Excel
and VBA constants. In the VBE, press F2 to bring up the Object Browser.

Chapter 8: VBA Programming Fundamentals 209

Working with strings
Like Excel, VBA can manipulate both numbers and text (strings). There are two types of strings
in VBA:

 Fixed-length strings are declared with a specified number of characters. The maximum
length is 65,535 characters.

 Variable-length strings theoretically can hold up to 2 billion characters.

Each character in a string requires 1 byte of storage, plus a small amount of storage for the
header of each string. When you declare a variable with a Dim statement as data type String,
you can specify the length if you know it (that is, a fixed-length string), or you can let VBA han-
dle it dynamically (a variable-length string).

In the following example, the MyString variable is declared to be a string with a maximum
length of 50 characters. YourString is also declared as a string; but it’s a variable-length string,
so its length is unfixed.

Dim MyString As String * 50
Dim YourString As String

Working with dates
You can use a string variable to store a date, but if you do, it’s not a real date (meaning you can’t
perform date calculations with it). Using the Date data type is a better way to work with dates.

A variable defined as a date uses 8 bytes of storage and can hold dates ranging from January 1,
0100, to December 31, 9999. That’s a span of nearly 10,000 years — more than enough for even
the most aggressive financial forecast! The Date data type is also useful for storing time-related
data. In VBA, you specify dates and times by enclosing them between two hash marks (#).

The range of dates that VBA can handle is much larger than Excel’s own date range,
which begins with January 1, 1900, and extends through December 31, 1999. Therefore,
be careful that you don’t attempt to use a date in a worksheet that is outside of Excel’s
acceptable date range.

In Chapter 10, I describe some relatively simple VBA functions that enable you to create
formulas that work with pre-1900 dates in a worksheet.

Part III: Understanding Visual Basic for Applications210

Here are some examples of declaring variables and constants as Date data types:

Dim Today As Date
Dim StartTime As Date
Const FirstDay As Date = #1/1/2010#
Const Noon = #12:00:00#

Dates are always defined using month/day/year format, even if your system is set up to
display dates in a different format (for example, day/month/year).

If you use a message box to display a date, it’s displayed according to your system’s short date
format. Similarly, a time is displayed according to your system’s time format (either 12- or
24-hour). You can modify these system settings by using the Regional Settings option in the
Windows Control Panel.

Assignment Statements
An assignment statement is a VBA instruction that makes a mathematical evaluation and assigns
the result to a variable or an object. Excel’s Help system defines expression as “a combination of
keywords, operators, variables, and constants that yields a string, number, or object. An expres-
sion can perform a calculation, manipulate characters, or test data.”

I couldn’t have said it better myself. Much of the work done in VBA involves developing (and
debugging) expressions. If you know how to create formulas in Excel, you’ll have no trouble creat-
ing expressions in VBA. With a worksheet formula, Excel displays the result in a cell. The result of a
VBA expression, on the other hand, can be assigned to a variable or used as a property value.

About Excel’s date bug
It is commonly known that Excel has a date bug: It incorrectly assumes that the year 1900 is a
leap year. Even though there was no February 29, 1900, Excel accepts the following formula and
displays the result as the 29th day of February, 1900:

=Date(1900,2,29)

VBA doesn’t have this date bug. The VBA equivalent of Excel’s DATE function is DateSerial.
The following expression (correctly) returns March 1, 1900:

DateSerial(1900,2,29)

Therefore, Excel’s date serial number system doesn’t correspond exactly to the VBA date serial
number system. These two systems return different values for dates between January 1, 1900,
and February 28, 1900.

Chapter 8: VBA Programming Fundamentals 211

VBA uses the equal sign (=) as its assignment operator. The following are examples of assign-
ment statements (the expressions are to the right of the equal sign):

x = 1
x = x + 1
x = (y * 2) / (z * 2)
FileOpen = True
FileOpen = Not FileOpen
Range(“TheYear”).Value = 2010

Expressions can be very complex. You may want to use the line continuation sequence
(space followed by an underscore) to make lengthy expressions easier to read.

Often, expressions use functions. These functions can be built-in VBA functions, Excel’s work-
sheet functions, or custom functions that you develop in VBA. I discuss built-in VBA functions
later in this chapter (see the upcoming section “Built-in Functions”).

Operators play a major role in VBA. Familiar operators describe mathematical operations, includ-
ing addition (+), multiplication (*), division (/), subtraction (–), exponentiation (^), and string
concatenation (&). Less familiar operators are the backslash (\) (used in integer division) and the
Mod operator (used in modulo arithmetic). The Mod operator returns the remainder of one num-
ber divided by another. For example, the following expression returns 2:

17 Mod 3

VBA also supports the same comparison operators used in Excel formulas: equal to (=), greater than
(>), less than (<), greater than or equal to (>=), less than or equal to (<=), and not equal to (<>).

With one exception, the order of precedence for operators in VBA is exactly the same as in Excel
(see Table 8-3). And, of course, you can use parentheses to change the natural order of precedence.

The negation operator (a minus sign) is handled differently in VBA. In Excel, the follow-
ing formula returns 25:

=-5^2

In VBA, x equals –25 after this statement is executed:

x = -5 ^ 2

VBA performs the exponentiation operation first and then applies the negation opera-
tor. The following statement returns 25:

x = (-5) ^ 2

Part III: Understanding Visual Basic for Applications212

Table 8-3: Operator Precedence

Operator Operation Order of Precedence

^ Exponentiation 1

* and / Multiplication and division 2

+ and - Addition and subtraction 3

& Concatenation 4

=, <, >, <=, >=, <> Comparison 5

In the statement that follows, x is assigned the value 10 because the multiplication operator has
a higher precedence than the addition operator.

x = 4 + 3 * 2

To avoid ambiguity, you may prefer to write the statement as follows:

x = 4 + (3 * 2)

In addition, VBA provides a full set of logical operators, shown in Table 8-4. For complete details
on these operators (including examples), use the VBA Help system.

Table 8-4: VBA Logical Operators

Operator What It Does

Not Performs a logical negation on an expression.

And Performs a logical conjunction on two expressions.

Or Performs a logical disjunction on two expressions.

Xor Performs a logical exclusion on two expressions.

Eqv Performs a logical equivalence on two expressions.

Imp Performs a logical implication on two expressions.

The following instruction uses the Not operator to toggle the gridline display in the active win-
dow. The DisplayGridlines property takes a value of either True or False. Therefore,
using the Not operator changes False to True and True to False.

ActiveWindow.DisplayGridlines = _
 Not ActiveWindow.DisplayGridlines

Chapter 8: VBA Programming Fundamentals 213

The following expression performs a logical And operation. The MsgBox statement displays
True only when Sheet1 is the active sheet and the active cell is in Row 1. If either or both of
these conditions aren’t true, the MsgBox statement displays False.

MsgBox ActiveSheet.Name = “Sheet1” And ActiveCell.Row = 1

The following expression performs a logical Or operation. The MsgBox statement displays True
when either Sheet1 or Sheet2 is the active sheet.

MsgBox ActiveSheet.Name = “Sheet1” Or ActiveSheet.Name = “Sheet2”

Arrays
An array is a group of elements of the same type that have a common name. You refer to a spe-
cific element in the array by using the array name and an index number. For example, you can
define an array of 12 string variables so that each variable corresponds to the name of a month. If
you name the array MonthNames, you can refer to the first element of the array as
MonthNames(0), the second element as MonthNames(1), and so on, up to
MonthNames(11).

Declaring arrays
You declare an array with a Dim or Public statement, just as you declare a regular variable. You
can also specify the number of elements in the array. You do so by specifying the first index
number, the keyword To, and the last index number — all inside parentheses. For example, here’s
how to declare an array comprising exactly 100 integers:

Dim MyArray(1 To 100) As Integer

When you declare an array, you need specify only the upper index, in which case VBA
assumes that 0 is the lower index. Therefore, the two statements that follow have the
same effect:

Dim MyArray(0 to 100) As Integer
Dim MyArray(100) As Integer

In both cases, the array consists of 101 elements.

Part III: Understanding Visual Basic for Applications214

By default, VBA assumes zero-based arrays. If you would like VBA to assume that 1 is the lower
index for all arrays that declare only the upper index, include the following statement before any
procedures in your module:

Option Base 1

Declaring multidimensional arrays
The array examples in the preceding section are one-dimensional arrays. VBA arrays can have up
to 60 dimensions, although you’ll rarely need more than three dimensions (a 3-D array). The fol-
lowing statement declares a 100-integer array with two dimensions (2-D):

Dim MyArray(1 To 10, 1 To 10) As Integer

You can think of the preceding array as occupying a 10-x-10 matrix. To refer to a specific element
in a 2-D array, you need to specify two index numbers. For example, here’s how you can assign a
value to an element in the preceding array:

MyArray(3, 4) = 125

Following is a declaration for a 3-D array that contains 1,000 elements (visualize this array as a
cube):

Dim MyArray(1 To 10, 1 To 10, 1 To 10) As Integer

Reference an item within the array by supplying three index numbers:

MyArray(4, 8, 2) = 0

Declaring dynamic arrays
A dynamic array doesn’t have a preset number of elements. You declare a dynamic array with a
blank set of parentheses:

Dim MyArray() As Integer

Before you can use a dynamic array in your code, however, you must use the ReDim statement to tell
VBA how many elements are in the array. You can use a variable to assign the number of elements in

Chapter 8: VBA Programming Fundamentals 215

an array. Often the value of the variable isn’t known until the procedure is executing. For example, if
the variable x contains a number, you can define the array’s size by using this statement:

ReDim MyArray (1 to x)

You can use the ReDim statement any number of times, changing the array’s size as often as you
need to. When you change an array’s dimensions the existing values are destroyed. If you want
to preserve the existing values, use ReDim Preserve. For example:

ReDim Preserve MyArray (1 to y)

Arrays crop up later in this chapter when I discuss looping (“Looping blocks of instructions”).

Object Variables
An object variable is a variable that represents an entire object, such as a range or a worksheet.
Object variables are important for two reasons:

 They can simplify your code significantly.

 They can make your code execute more quickly.

Object variables, like normal variables, are declared with the Dim or Public statement. For
example, the following statement declares InputArea as a Range object variable:

Dim InputArea As Range

Use the Set keyword to assign an object to the variable. For example:

Set InputArea = Range(“C16:E16”)

To see how object variables simplify your code, examine the following procedure, which doesn’t
use an object variable:

Sub NoObjVar()
 Worksheets(“Sheet1”).Range(“A1”).Value = 124
 Worksheets(“Sheet1”).Range(“A1”).Font.Bold = True
 Worksheets(“Sheet1”).Range(“A1”).Font.Italic = True
 Worksheets(“Sheet1”).Range(“A1”).Font.Size = 14
 Worksheets(“Sheet1”).Range(“A1”).Font.Name = “Cambria”
End Sub

Part III: Understanding Visual Basic for Applications216

This routine enters a value into cell A1 of Sheet1 on the active workbook, applies some formatting,
and changes the fonts and size. That’s a lot of typing. To reduce wear and tear on your fingers
(and make your code more efficient), you can condense the routine with an object variable:

Sub ObjVar()
 Dim MyCell As Range
 Set MyCell = Worksheets(“Sheet1”).Range(“A1”)
 MyCell.Value = 124
 MyCell.Font.Bold = True
 MyCell.Font.Italic = True
 MyCell.Font.Size = 14
 MyCell.Font.Name = Cambria
End Sub

After the variable MyCell is declared as a Range object, the Set statement assigns an object to
it. Subsequent statements can then use the simpler MyCell reference in place of the lengthy
Worksheets(“Sheet1”).Range(“A1”) reference.

After an object is assigned to a variable, VBA can access it more quickly than it can a
normal, lengthy reference that has to be resolved. So when speed is critical, use object
variables. One way to think about code efficiency is in terms of dot processing. Every
time VBA encounters a dot, as in Sheets(1).Range(“A1”), it takes time to resolve
the reference. Using an object variable reduces the number of dots to be processed.
The fewer the dots, the faster the processing time. Another way to improve the speed
of your code is by using the With-End With construct, which also reduces the number
of dots to be processed. I discuss this construct later in this chapter.

The true value of object variables becomes apparent when I discuss looping later in this chapter.

User-Defined Data Types
VBA lets you create custom, or user-defined, data types. A user-defined data type can ease your
work with some types of data. For example, if your application deals with customer information,
you may want to create a user-defined data type named CustomerInfo:

Type CustomerInfo
 Company As String
 Contact As String
 RegionCode As Long
 Sales As Double
End Type

Chapter 8: VBA Programming Fundamentals 217

You define custom data types at the top of your module, before any procedures.

After you create a user-defined data type, you use a Dim statement to declare a variable as that
type. Usually, you define an array. For example:

Dim Customers(1 To 100) As CustomerInfo

Each of the 100 elements in this array consists of four components (as specified by the user-
defined data type, CustomerInfo). You can refer to a particular component of the record as
follows:

Customers(1).Company = “Acme Tools”
Customers(1).Contact = “Tim Robertson”
Customers(1).RegionCode = 3
Customers(1).Sales = 150674.98

You can also work with an element in the array as a whole. For example, to copy the information
from Customers(1) to Customers(2), use this instruction:

Customers(2) = Customers(1)

The preceding example is equivalent to the following instruction block:

Customers(2).Company = Customers(1).Company
Customers(2).Contact = Customers(1).Contact
Customers(2).RegionCode = Customers(1).RegionCode
Customers(2).Sales = Customers(1).Sales

Built-in Functions
Like most programming languages, VBA has a variety of built-in functions that simplify calcula-
tions and operations. Many VBA functions are similar (or identical) to Excel worksheet functions.
For example, the VBA function UCase, which converts a string argument to uppercase, is equiva-
lent to the Excel worksheet function UPPER.

Appendix B contains a complete list of VBA functions, with a brief description of each.
All are thoroughly described in the VBA Help system.

Part III: Understanding Visual Basic for Applications218

To get a list of VBA functions while you’re writing your code, type VBA followed by a
period (.). The VBE displays a list of all its members, including functions (see Figure
8-3). The functions are preceded by a green icon.

If this technique doesn’t work for you, make sure that the Auto List Members option is
selected. Choose Tools➜Options and then click the Editor tab.

Figure 8-3: Displaying a list of VBA functions in the VBE.

You use functions in VBA expressions in much the same way that you use functions in worksheet
formulas. Here’s a simple procedure that calculates the square root of a variable (using the VBA
Sqr function), stores the result in another variable, and then displays the result:

Sub ShowRoot()
 Dim MyValue As Double
 Dim SquareRoot As Double
 MyValue = 25
 SquareRoot = Sqr(MyValue)
 MsgBox SquareRoot
End Sub

The VBA Sqr function is equivalent to the Excel SQRT worksheet function.

You can use many (but not all) of Excel’s worksheet functions in your VBA code. The
WorksheetFunction object, which is contained in the Application object, holds all the
worksheet functions that you can call from your VBA procedures.

To use a worksheet function in a VBA statement, just precede the function name with

Application.WorksheetFunction

Chapter 8: VBA Programming Fundamentals 219

The MsgBox function
The MsgBox function is one of the most useful VBA functions. Many of the examples in this
chapter use this function to display the value of a variable.

This function often is a good substitute for a simple custom dialog box. It’s also an excellent
debugging tool because you can insert MsgBox functions at any time to pause your code and
display the result of a calculation or assignment.

Most functions return a single value, which you assign to a variable. The MsgBox function not
only returns a value but also displays a dialog box that the user can respond to. The value
returned by the MsgBox function represents the user’s response to the dialog box. You can use
the MsgBox function even when you have no interest in the user’s response but want to take
advantage of the message display.

The official syntax of the MsgBox function has five arguments (those in square brackets are
optional):

MsgBox(prompt[, buttons][, title][, helpfile, context])

● prompt: (Required) The message displayed in the pop-up display.
● buttons: (Optional) A value that specifies which buttons and which icons, if any, appear

in the message box. Use built-in constants — for example, vbYesNo.
● title: (Optional) The text that appears in the message box’s title bar. The default is

Microsoft Excel.
● helpfile: (Optional) The name of the Help file associated with the message box.
● context: (Optional) The context ID of the Help topic. This represents a specific Help topic

to display. If you use the context argument, you must also use the helpfile argument.

You can assign the value returned to a variable, or you can use the function by itself without an
assignment statement. This example assigns the result to the variable Ans:

Ans = MsgBox(“Continue?”, vbYesNo + vbQuestion, “Tell me”)
If Ans = vbNo Then Exit Sub

Notice that I used the sum of two built-in constants (vbYesNo + vbQuestion) for the but-
tons argument. Using vbYesNo displays two buttons in the message box: one labeled Yes and
one labeled No. Adding vbQuestion to the argument also displays a question mark icon. When
the first statement is executed, Ans contains one of two values, represented by the constant
vbYes or vbNo. In this example, if the user clicks the No button, the procedure ends.

See Chapter 12 for more information about the MsgBox function.

The following example demonstrates how to use an Excel worksheet function in a VBA proce-
dure. Excel’s infrequently used ROMAN function converts a decimal number into a Roman
numeral.

Part III: Understanding Visual Basic for Applications220

Sub ShowRoman()
 Dim DecValue As Long
 Dim RomanValue As String
 DecValue = 1939
 RomanValue = Application.WorksheetFunction.Roman(DecValue)
 MsgBox RomanValue
End Sub

When you execute this procedure, the MsgBox function displays the string MCMXXXIX. Fans of
old movies are often dismayed when they learn that Excel doesn’t have a function to convert a
Roman numeral to its decimal equivalent.

Keep in mind that you can’t use worksheet functions that have an equivalent VBA function. For
example, VBA can’t access the Excel SQRT worksheet function because VBA has its own version
of that function: Sqr. Therefore, the following statement generates an error:

MsgBox Application.WorksheetFunction.Sqrt(123) ‘error

As I describe in Chapter 10, you can use VBA to create custom worksheet functions that
work just like Excel’s built-in worksheet functions.

Manipulating Objects and Collections
As an Excel programmer, you’ll spend a lot of time working with objects and collections.
Therefore, you want to know the most efficient ways to write your code to manipulate these
objects and collections. VBA offers two important constructs that can simplify working with
objects and collections:

 With-End With constructs

 For Each-Next constructs

With-End With constructs
The With-End With construct enables you to perform multiple operations on a single object.
To start understanding how the With-End With construct works, examine the following proce-
dure, which modifies six properties of a selection’s formatting (the selection is assumed to be a
Range object):

Sub ChangeFont1()
 Selection.Font.Name = “Cambria”
 Selection.Font.Bold = True

Chapter 8: VBA Programming Fundamentals 221

 Selection.Font.Italic = True
 Selection.Font.Size = 12
 Selection.Font.Underline = xlUnderlineStyleSingle
 Selection.Font.ThemeColor = xlThemeColorAccent1
End Sub

You can rewrite this procedure using the With-End With construct. The following procedure
performs exactly like the preceding one:

Sub ChangeFont2()
 With Selection.Font
 .Name = “Cambria”
 .Bold = True
 .Italic = True
 .Size = 12
 .Underline = xlUnderlineStyleSingle
 .ThemeColor = xlThemeColorAccent1
 End With
End Sub

Some people think that the second incarnation of the procedure is actually more difficult to read.
Remember, though, that the objective is increased speed. Although the first version may be more
straightforward and easier to understand, a procedure that uses the With-End With construct
to change several properties of an object can be faster than the equivalent procedure that explic-
itly references the object in each statement.

When you record a VBA macro, Excel uses the With-End With construct every chance
it gets. To see a good example of this construct, try recording your actions while you
change the page orientation using the Page Layout➜Page Setup➜Orientation com-
mand.

For Each-Next constructs
Recall from the preceding chapter that a collection is a group of related objects. For example, the
Workbooks collection is a collection of all open Workbook objects, and there are many other
collections that you can work with.

Suppose that you want to perform some action on all objects in a collection. Or suppose that you
want to evaluate all objects in a collection and take action under certain conditions. These occa-
sions are perfect for the For Each-Next construct because you don’t have to know how many
elements are in a collection to use the For Each-Next construct.

Part III: Understanding Visual Basic for Applications222

The syntax of the For Each-Next construct is

For Each element In collection
 [instructions]
 [Exit For]
 [instructions]
Next [element]

The following procedure uses the For Each-Next construct with the Worksheets collection
in the active workbook. When you execute the procedure, the MsgBox function displays each
worksheet’s Name property. (If five worksheets are in the active workbook, the MsgBox function
is called five times.)

Sub CountSheets()
 Dim Item as Worksheet
 For Each Item In ActiveWorkbook.Worksheets
 MsgBox Item.Name
 Next Item
End Sub

In the preceding example, Item is an object variable (more specifically, a Worksheet
object). There’s nothing special about the name Item; you can use any valid variable
name in its place.

The next example uses For Each-Next to cycle through all objects in the Windows collection
and count the number of windows that are hidden.

Sub HiddenWindows()
 Dim Cnt As Integer
 Dim Win As Window
 Cnt = 0
 For Each Win In Windows
 If Not Win.Visible Then Cnt = Cnt + 1
 Next Win
 MsgBox Cnt & “ hidden windows.”
End Sub

For each window, if the window is hidden, the Cnt variable is incremented. When the loop ends,
the message box displays the value of Cnt.

Here’s an example that closes all workbooks except the active workbook. This procedure uses the
If-Then construct to evaluate each workbook in the Workbooks collection.

Chapter 8: VBA Programming Fundamentals 223

Sub CloseInactive()
 Dim Book as Workbook
 For Each Book In Workbooks
 If Book.Name <> ActiveWorkbook.Name Then Book.Close
 Next Book
End Sub

A common use for the For Each-Next construct is to loop through all cells in a range. The
next example of For Each-Next is designed to be executed after the user selects a range of
cells. Here, the Selection object acts as a collection that consists of Range objects because
each cell in the selection is a Range object. The procedure evaluates each cell and uses the VBA
UCase function to convert its contents to uppercase. (Numeric cells are not affected.)

Sub MakeUpperCase()
 Dim Cell as Range
 For Each Cell In Selection
 Cell.Value = UCase(Cell.Value)
 Next Cell
End Sub

VBA provides a way to exit a For-Next loop before all the elements in the collection are evalu-
ated. Do this with an Exit For statement. The example that follows selects the first negative
value in Row 1 of the active sheet:

Sub SelectNegative()
 Dim Cell As Range
 For Each Cell In Range(“1:1”)
 If Cell.Value < 0 Then
 Cell.Select
 Exit For
 End If
 Next Cell
End Sub

This example uses an If-Then construct to check the value of each cell. If a cell is negative, it’s
selected, and then the loop ends when the Exit For statement is executed.

Controlling Code Execution
Some VBA procedures start at the top and progress line by line to the bottom. Macros that you
record, for example, always work in this fashion. Often, however, you need to control the flow of
your routines by skipping over some statements, executing some statements multiple times, and
testing conditions to determine what the routine does next.

Part III: Understanding Visual Basic for Applications224

The preceding section describes the For Each-Next construct, which is a type of loop. This
section discusses the additional ways of controlling the execution of your VBA procedures:

 GoTo statements

 If-Then constructs

 Select Case constructs

 For-Next loops

 Do While loops

 Do Until loops

GoTo statements
The most straightforward way to change the flow of a program is to use a GoTo statement. This
statement simply transfers program execution to a new instruction, which must be preceded by a
label (a text string followed by a colon, or a number with no colon). VBA procedures can contain
any number of labels, but a GoTo statement can’t branch outside of a procedure.

The following procedure uses the VBA InputBox function to get the user’s name. If the name is
not Howard, the procedure branches to the WrongName label and ends. Otherwise, the proce-
dure executes some additional code. The Exit Sub statement causes the procedure to end.

Sub GoToDemo()
 UserName = InputBox(“Enter Your Name:”)
 If UserName <> “Howard” Then GoTo WrongName
 MsgBox (“Welcome Howard...”)
‘ -[More code here] -
 Exit Sub
WrongName:
 MsgBox “Sorry. Only Howard can run this macro.”
End Sub

This simple procedure works, but it’s not an example of good programming. In general, you should
use the GoTo statement only when you have no other way to perform an action. In fact, the only
time you really need to use a GoTo statement in VBA is for error handling (refer to Chapter 9).

Finally, it goes without saying that the preceding example is not intended to demonstrate an
effective security technique!

If-Then constructs
Perhaps the most commonly used instruction grouping in VBA is the If-Then construct. This
common instruction is one way to endow your applications with decision-making capability.
Good decision-making is the key to writing successful programs.

Chapter 8: VBA Programming Fundamentals 225

The basic syntax of the If-Then construct is

If condition Then true_instructions [Else false_instructions]

The If-Then construct is used to execute one or more statements conditionally. The Else
clause is optional. If included, the Else clause lets you execute one or more instructions when
the condition that you’re testing isn’t True.

The following procedure demonstrates an If-Then structure without an Else clause. The
example deals with time, and VBA uses a date-and-time serial number system similar to Excel’s.
The time of day is expressed as a fractional value — for example, noon is represented as .5. The
VBA Time function returns a value that represents the time of day, as reported by the system
clock. In the following example, a message is displayed if the time is before noon. If the current
system time is greater than or equal to .5, the procedure ends, and nothing happens.

Sub GreetMe1()
 If Time < 0.5 Then MsgBox “Good Morning”
End Sub

Another way to code this routine is to use multiple statements, as follows:

Sub GreetMe1a()
 If Time < 0.5 Then
 MsgBox “Good Morning”
 End If
End Sub

Notice that the If statement has a corresponding End If statement. In this example, only one
statement is executed if the condition is True. You can, however, place any number of state-
ments between the If and End If statements.

If you want to display a different greeting when the time of day is after noon, add another
If-Then statement, like so:

Sub GreetMe2()
 If Time < 0.5 Then MsgBox “Good Morning”
 If Time >= 0.5 Then MsgBox “Good Afternoon”
End Sub

Notice that I used >= (greater than or equal to) for the second If-Then statement. This covers
the remote chance that the time is precisely 12:00 noon.

Part III: Understanding Visual Basic for Applications226

Another approach is to use the Else clause of the If-Then construct. For example,

Sub GreetMe3()
 If Time < 0.5 Then MsgBox “Good Morning” Else _
 MsgBox “Good Afternoon”
End Sub

Notice that I used the line continuation sequence; If-Then-Else is actually a single statement.

If you need to execute multiple statements based on the condition, use this form:

Sub GreetMe3a()
 If Time < 0.5 Then
 MsgBox “Good Morning”
 ‘ Other statements go here
 Else
 MsgBox “Good Afternoon”
 ‘ Other statements go here
 End If
End Sub

If you need to expand a routine to handle three conditions (for example, morning, afternoon, and
evening), you can use either three If-Then statements or a form that uses ElseIf. The first
approach is simpler:

Sub GreetMe4()
 If Time < 0.5 Then MsgBox “Good Morning”
 If Time >= 0.5 And Time < 0.75 Then MsgBox “Good Afternoon”
 If Time >= 0.75 Then MsgBox “Good Evening”
End Sub

The value 0.75 represents 6:00 p.m. — three-quarters of the way through the day and a good
point at which to call it an evening.

In the preceding examples, every instruction in the procedure gets executed, even if the first con-
dition is satisfied (that is, it’s morning). A more efficient procedure would include a structure that
ends the routine when a condition is found to be True. For example, it might display the Good
Morning message in the morning and then exit without evaluating the other, superfluous condi-
tions. True, the difference in speed is inconsequential when you design a procedure as small as
this routine. But for more complex applications, you need another syntax:

If condition Then
 [true_instructions]
[ElseIf condition-n Then
 [alternate_instructions]]

Chapter 8: VBA Programming Fundamentals 227

[Else
 [default_instructions]]
End If

Here’s how you can use this syntax to rewrite the GreetMe procedure:

Sub GreetMe5()
 If Time < 0.5 Then
 MsgBox “Good Morning”
 ElseIf Time >= 0.5 And Time < 0.75 Then
 MsgBox “Good Afternoon”
 Else
 MsgBox “Good Evening”
 End If
End Sub

With this syntax, when a condition is True, the conditional statements are executed, and the
If-Then construct ends. In other words, the extraneous conditions aren’t evaluated. Although
this syntax makes for greater efficiency, some find the code to be more difficult to understand.

The following procedure demonstrates yet another way to code this example. It uses nested
If-Then-Else constructs (without using ElseIf). This procedure is efficient and also easy to
understand. Note that each If statement has a corresponding End If statement.

Sub GreetMe6()
 If Time < 0.5 Then
 MsgBox “Good Morning”
 Else
 If Time >= 0.5 And Time < 0.75 Then
 MsgBox “Good Afternoon”
 Else
 If Time >= 0.75 Then
 MsgBox “Good Evening”
 End If
 End If
 End If
End Sub

The following is another example that uses the simple form of the If-Then construct. This pro-
cedure prompts the user for a value for Quantity and then displays the appropriate discount
based on that value. Note that Quantity is declared as a Variant data type. This is because
Quantity contains an empty string (not a numeric value) if the InputBox is cancelled. To keep
it simple, this procedure doesn’t perform any other error checking. For example, it doesn’t ensure
that the quantity entered is a non-negative numeric value.

Part III: Understanding Visual Basic for Applications228

Sub Discount1()
 Dim Quantity As Variant
 Dim Discount As Double
 Quantity = InputBox(“Enter Quantity: “)
 If Quantity = “” Then Exit Sub
 If Quantity >= 0 Then Discount = 0.1
 If Quantity >= 25 Then Discount = 0.15
 If Quantity >= 50 Then Discount = 0.2
 If Quantity >= 75 Then Discount = 0.25
 MsgBox “Discount: “ & Discount
End Sub

Notice that each If-Then statement in this procedure is always executed, and the value for
Discount can change. The final value, however, is the desired value.

The following procedure is the previous one rewritten to use the alternate syntax. In this case, the
procedure ends after executing the True instruction block.

Sub Discount2()
 Dim Quantity As Variant
 Dim Discount As Double
 Quantity = InputBox(“Enter Quantity: “)
 If Quantity = “” Then Exit Sub
 If Quantity >= 0 And Quantity < 25 Then
 Discount = 0.1
 ElseIf Quantity < 50 Then
 Discount = 0.15
 ElseIf Quantity < 75 Then
 Discount = 0.2
 Else
 Discount = 0.25
 End If
 MsgBox “Discount: “ & Discount
End Sub

I find nested If-Then structures rather cumbersome. As a result, I usually use the If-Then
structure only for simple binary decisions. When you need to choose among three or more alter-
natives, the Select Case structure (discussed next) is often a better construct to use.

Chapter 8: VBA Programming Fundamentals 229

Select Case constructs
The Select Case construct is useful for choosing among three or more options. this construct
also works with two options and is a good alternative to If-Then-Else. The syntax for
Select Case is as follows:

Select Case testexpression
 [Case expressionlist-n
 [instructions-n]]
 [Case Else
 [default_instructions]]
End Select

The following example of a Select Case construct shows another way to code the GreetMe
examples that I presented in the preceding section:

Sub GreetMe()
 Dim Msg As String
 Select Case Time
 Case Is < 0.5
 Msg = “Good Morning”

VBA’s IIf function
VBA offers an alternative to the If-Then construct: the IIf function. This function takes three
arguments and works much like Excel’s IF worksheet function. The syntax is

IIf(expr, truepart, falsepart)

● expr: (Required) Expression you want to evaluate.
● truepart: (Required) Value or expression returned if expr is True.
● falsepart: (Required) Value or expression returned if expr is False.

The following instruction demonstrates the use of the IIf function. The message box displays
Zero if cell A1 contains a zero or is empty and displays Nonzero if cell A1 contains anything
else.

MsgBox IIf(Range(“A1”) = 0, “Zero”, “Nonzero”)

It’s important to understand that the third argument (falsepart) is always evaluated, even if
the first argument (expr) is True. Therefore, the following statement generates a Division By
Zero error if the value of n is 0 (zero):

MsgBox IIf(n = 0, 0, 1 / n)

Part III: Understanding Visual Basic for Applications230

 Case 0.5 To 0.75
 Msg = “Good Afternoon”
 Case Else
 Msg = “Good Evening”
 End Select
 MsgBox Msg
End Sub

And here’s a rewritten version of the Discount example using a Select Case construct. This
procedure assumes that Quantity is always an integer value. For simplicity, the procedure per-
forms no error checking.

Sub Discount3()
 Dim Quantity As Variant
 Dim Discount As Double
 Quantity = InputBox(“Enter Quantity: “)
 Select Case Quantity
 Case “”
 Exit Sub
 Case 0 To 24
 Discount = 0.1
 Case 25 To 49
 Discount = 0.15
 Case 50 To 74
 Discount = 0.2
 Case Is >= 75
 Discount = 0.25
 End Select
 MsgBox “Discount: “ & Discount
End Sub

The Case statement also can use a comma to separate multiple values for a single case. The fol-
lowing procedure uses the VBA WeekDay function to determine whether the current day is a
weekend (that is, the Weekday function returns 1 or 7). The procedure then displays an appro-
priate message.

Sub GreetUser1()
 Select Case Weekday(Now)
 Case 1, 7
 MsgBox “This is the weekend”
 Case Else
 MsgBox “This is not the weekend”
 End Select
End Sub

Chapter 8: VBA Programming Fundamentals 231

The following example shows another way to code the previous procedure:

Sub GreetUser2()
 Select Case Weekday(Now)
 Case 2, 3, 4, 5, 6
 MsgBox “This is not the weekend”
 Case Else
 MsgBox “This is the weekend”
 End Select
End Sub

Any number of instructions can be written below each Case statement, and they’re all executed
if that case evaluates to True. If you use only one instruction per case, as in the preceding exam-
ple, you might want to put the instruction on the same line as the Case keyword (but don’t for-
get the VBA statement-separator character, the colon). This technique makes the code more
compact. For example:

Sub Discount3()
 Dim Quantity As Variant
 Dim Discount As Double
 Quantity = InputBox(“Enter Quantity: “)
 Select Case Quantity
 Case “”: Exit Sub
 Case 0 To 24: Discount = 0.1
 Case 25 To 49: Discount = 0.15
 Case 50 To 74: Discount = 0.2
 Case Is >= 75: Discount = 0.25
 End Select
 MsgBox “Discount: “ & Discount
End Sub

VBA exits a Select Case construct as soon as a True case is found. Therefore, for
maximum efficiency, you should check the most likely case first.

Select Case structures can also be nested. The following procedure, for example, uses the
VBA TypeName function to determine what is selected (a range, nothing, or anything else). If a
range is selected, the procedure executes a nested Select Case and tests for the number of
cells in the range. If one cell is selected, it displays One cell is selected. Otherwise, it dis-
plays a message with the number of selected rows.

Sub SelectionType()
 Select Case TypeName(Selection)
 Case “Range”
 Select Case Selection.Count

Part III: Understanding Visual Basic for Applications232

 Case 1
 MsgBox “One cell is selected”
 Case Else
 MsgBox Selection.Rows.Count & “ rows”
 End Select
 Case “Nothing”
 MsgBox “Nothing is selected”
 Case Else
 MsgBox “Something other than a range”
 End Select
End Sub

This procedure also demonstrates the use of Case Else, a catch-all case. You can nest Select
Case constructs as deeply as you need, but make sure that each Select Case statement has a
corresponding End Select statement.

This procedure demonstrates the value of using indentation in your code to clarify the structure.
For example, take a look at the same procedure without the indentations:

Sub SelectionType()
Select Case TypeName(Selection)
Case “Range”
Select Case Selection.Count
Case 1
MsgBox “One cell is selected”
Case Else
MsgBox Selection.Rows.Count & “ rows”
End Select
Case “Nothing”
MsgBox “Nothing is selected”
Case Else
MsgBox “Something other than a range”
End Select
End Sub

Fairly incomprehensible, eh?

Looping blocks of instructions
Looping is the process of repeating a block of instructions. You might know the number of times
to loop, or the number may be determined by the values of variables in your program.

The following code, which enters consecutive numbers into a range, demonstrates what I call a
bad loop. The procedure uses two variables to store a starting value (StartVal) and the total
number of cells to fill (NumToFill). This loop uses the GoTo statement to control the flow. If the
Cnt variable, which keeps track of how many cells are filled, is less than the value of
NumToFill, the program control loops back to DoAnother.

Chapter 8: VBA Programming Fundamentals 233

Sub BadLoop()
 Dim StartVal As Integer
 Dim NumToFill As Integer
 Dim Cnt As Integer
 StartVal = 1
 NumToFill = 100
 ActiveCell.Value = StartVal
 Cnt = 1
DoAnother:
 ActiveCell.Offset(Cnt, 0).Value = StartVal + Cnt
 Cnt = Cnt + 1
 If Cnt < NumToFill Then GoTo DoAnother Else Exit Sub
End Sub

This procedure works as intended, so why is it an example of bad looping? Programmers generally
frown on using a GoTo statement when not absolutely necessary. Using GoTo statements to loop
is contrary to the concept of structured coding. (See the “What is structured programming?” side-
bar.) In fact, a GoTo statement makes the code much more difficult to read because representing
a loop using line indentations is almost impossible. In addition, this type of unstructured loop
makes the procedure more susceptible to error. Furthermore, using lots of labels results in
spaghetti code — code that appears to have little or no structure and flows haphazardly.

Because VBA has several structured looping commands, you almost never have to rely on GoTo
statements for your decision-making.

For-Next loops
The simplest type of a good loop is a For-Next loop. Its syntax is

For counter = start To end [Step stepval]
 [instructions]
 [Exit For]
 [instructions]
Next [counter]

Following is an example of a For-Next loop that doesn’t use the optional Step value or the
optional Exit For statement. This routine executes the Sum = Sum + Sqr(Count) statement
100 times and displays the result — that is, the sum of the square roots of the first 100 integers.

Sub SumSquareRoots()
 Dim Sum As Double
 Dim Count As Integer
 Sum = 0
 For Count = 1 To 100
 Sum = Sum + Sqr(Count)
 Next Count
 MsgBox Sum
End Sub

Part III: Understanding Visual Basic for Applications234

In this example, Count (the loop counter variable) starts out as 1 and increases by 1 each time
the loop repeats. The Sum variable simply accumulates the square roots of each value of Count.

When you use For-Next loops, it’s important to understand that the loop counter is a
normal variable — nothing special. As a result, it’s possible to change the value of the
loop counter within the block of code executed between the For and Next statements.
Changing the loop counter inside of a loop, however, is a bad practice and can cause
unpredictable results. In fact, you should take precautions to ensure that your code
doesn’t change the loop counter.

You can also use a Step value to skip some values in the loop. Here’s the same procedure rewrit-
ten to sum the square roots of the odd numbers between 1 and 100:

Sub SumOddSquareRoots()
 Dim Sum As Double
 Dim Count As Integer
 Sum = 0
 For Count = 1 To 100 Step 2
 Sum = Sum + Sqr(Count)
 Next Count
 MsgBox Sum
End Sub

What is structured programming?
Hang around with programmers, and sooner or later you’ll hear the term structured programming.
You’ll also discover that structured programs are considered superior to unstructured programs.

So what is structured programming? And can you do it with VBA?

The basic premise of structured programming is that a routine or code segment should have
only one entry point and one exit point. In other words, a body of code should be a stand-alone
unit, and program control should not jump into or exit from the middle of this unit. As a result,
structured programming rules out the GoTo statement. When you write structured code, your
program progresses in an orderly manner and is easy to follow — as opposed to spaghetti code,
in which a program jumps around.

A structured program is easier to read and understand than an unstructured one. More impor-
tant, it’s also easier to modify.

VBA is a structured language. It offers standard structured constructs, such as If-Then-Else
and Select Case and the For-Next, Do Until, and Do While loops. Furthermore, VBA
fully supports modular code construction.

If you’re new to programming, forming good structured-programming habits early is a good idea.

Chapter 8: VBA Programming Fundamentals 235

In this procedure, Count starts out as 1 and then takes on values of 3, 5, 7, and so on. The final
value of Count used within the loop is 99. When the loop ends, the value of Count is 101.

A Step value in a For-Next loop can also be negative. The procedure that follows deletes
Rows 2, 4, 6, 8, and 10 of the active worksheet:

Sub DeleteRows()
 Dim RowNum As Long
 For RowNum = 10 To 2 Step -2
 Rows(RowNum).Delete
 Next RowNum
End Sub

You may wonder why I used a negative Step value in the DeleteRows procedure. If you use a posi-
tive Step value, as shown in the following procedure, incorrect rows are deleted. That’s because the
row numbers below a deleted row get a new row number. For example, when Row 2 is deleted, Row
3 becomes the new Row 2. Using a negative Step value ensures that the correct rows are deleted.

Sub DeleteRows2()
 Dim RowNum As Long
 For RowNum = 2 To 10 Step 2
 Rows(RowNum).Delete
 Next RowNum
End Sub

The following procedure performs the same task as the BadLoop example found at the begin-
ning of the “Looping blocks of instructions” section. I eliminate the GoTo statement, however,
converting a bad loop into a good loop that uses the For-Next structure.

Sub GoodLoop()
 Dim StartVal As Integer
 Dim NumToFill As Integer
 Dim Cnt As Integer
 StartVal = 1
 NumToFill = 100
 For Cnt = 0 To NumToFill - 1
 ActiveCell.Offset(Cnt, 0).Value = StartVal + Cnt
 Next Cnt
End Sub

For-Next loops can also include one or more Exit For statements within the loop. When this
statement is encountered, the loop terminates immediately and control passes to the statement
following the Next statement of the current For-Next loop. The following example demon-
strates use of the Exit For statement. This procedure determines which cell has the largest
value in Column A of the active worksheet:

Part III: Understanding Visual Basic for Applications236

Sub ExitForDemo()
 Dim MaxVal As Double
 Dim Row As Long
 MaxVal = Application.WorksheetFunction.Max(Range(“A:A”))
 For Row = 1 To 1048576
 If Cells(Row, 1).Value = MaxVal Then
 Exit For
 End If
 Next Row
 MsgBox “Max value is in Row “ & Row
 Cells(Row, 1).Activate
End Sub

The maximum value in the column is calculated by using the Excel MAX function, and the value is
assigned to the MaxVal variable. The For-Next loop checks each cell in the column. If the cell
being checked is equal to MaxVal, the Exit For statement terminates the loop and the state-
ments following the Next statement are executed. These statements display the row of the max-
imum value and activate the cell.

The ExitForDemo procedure is presented to demonstrate how to exit from a For-
Next loop. However, it’s not the most efficient way to activate the largest value in a
range. In fact, a single statement does the job:

Range(“A:A”).Find(Application.WorksheetFunction.Max _
 (Range(“A:A”))).Activate

The previous examples use relatively simple loops. But you can have any number of statements
in the loop, and you can even nest For-Next loops inside other For-Next loops. Here’s an
example that uses nested For-Next loops to initialize a 10 x 10 x 10 array with the value –1.
When the procedure is finished, each of the 1,000 elements in MyArray contains –1.

Sub NestedLoops()
 Dim MyArray(1 to 10, 1 to 10, 1 to 10)
 Dim i As Integer, j As Integer, k As Integer
 For i = 1 To 10
 For j = 1 To 10
 For k = 1 To 10
 MyArray(i, j, k) = -1
 Next k
 Next j
 Next i
’ [More code goes here]
End Sub

Chapter 8: VBA Programming Fundamentals 237

Do While loops
This section describes another type of looping structure available in VBA. Unlike a For-Next
loop, a Do While loop executes as long as a specified condition is met.

A Do While loop can have either of two syntaxes:

Do [While condition]
 [instructions]
 [Exit Do]
 [instructions]
Loop

or

Do
 [instructions]
 [Exit Do]
 [instructions]
Loop [While condition]

As you can see, VBA lets you put the While condition at the beginning or the end of the loop.
The difference between these two syntaxes involves the point in time when the condition is eval-
uated. In the first syntax, the contents of the loop may never be executed. In the second syntax,
the statements inside the loop are always executed at least one time.

The following examples insert a series of dates into the active worksheet. The dates correspond to
the days in the current month, and the dates are entered in a column beginning at the active cell.

These examples use some VBA date-related functions:
● Date returns the current date.
● Month returns the month number for a date supplied as its argument.
● DateSerial returns a date for the year, month, and day supplied as arguments.

The first example demonstrates a Do While loop that tests the condition at the beginning of the
loop: The EnterDates1 procedure writes the dates of the current month to a worksheet col-
umn, beginning with the active cell.

Sub EnterDates1()
‘ Do While, with test at the beginning
 Dim TheDate As Date
 TheDate = DateSerial(Year(Date), Month(Date), 1)
 Do While Month(TheDate) = Month(Date)
 ActiveCell = TheDate

Part III: Understanding Visual Basic for Applications238

 TheDate = TheDate + 1
 ActiveCell.Offset(1, 0).Activate
 Loop
End Sub

This procedure uses a variable, TheDate, which contains the dates that are written to the work-
sheet. This variable is initialized with the first day of the current month. Inside of the loop, the value
of TheDate is entered into the active cell, TheDate is incremented, and the next cell is activated.
The loop continues while the month of TheDate is the same as the month of the current date.

The following procedure has the same result as the EnterDates1 procedure, but it uses the
second Do While loop syntax, which checks the condition at the end of the loop.

Sub EnterDates2()
‘ Do While, with test at the end
 Dim TheDate As Date
 TheDate = DateSerial(Year(Date), Month(Date), 1)
 Do
 ActiveCell = TheDate
 TheDate = TheDate + 1
 ActiveCell.Offset(1, 0).Activate
 Loop While Month(TheDate) = Month(Date)
End Sub

The following is another Do While loop example. This procedure opens a text file, reads each
line, converts the text to uppercase, and then stores it in the active sheet, beginning with cell A1
and continuing down the column. The procedure uses the VBA EOF function, which returns True
when the end of the file has been reached. The final statement closes the text file.

Sub DoWhileDemo1()
 Dim LineCt As Long
 Dim LineOfText As String
 Open “c:\data\textfile.txt” For Input As #1
 LineCt = 0
 Do While Not EOF(1)
 Line Input #1, LineOfText
 Range(“A1”).Offset(LineCt, 0) = UCase(LineOfText)
 LineCt = LineCt + 1
 Loop
 Close #1
End Sub

For additional information about reading and writing text files using VBA, see
Chapter 27.

Chapter 8: VBA Programming Fundamentals 239

Do While loops can also contain one or more Exit Do statements. When an Exit Do state-
ment is encountered, the loop ends immediately and control passes to the statement following
the Loop statement.

Do Until loops
The Do Until loop structure is very similar to the Do While structure. The difference is evi-
dent only when the condition is tested. In a Do While loop, the loop executes while the condi-
tion is True; in a Do Until loop, the loop executes until the condition is True.

Do Until also has two syntaxes:

Do [Until condition]
 [instructions]
 [Exit Do]
 [instructions]
Loop

or

Do
 [instructions]
 [Exit Do]
 [instructions]
Loop [Until condition]

The two examples that follow perform the same action as the Do While date entry examples in
the previous section. The difference in these two procedures is where the condition is evaluated
(at the beginning or the end of the loop).

Sub EnterDates3()
‘ Do Until, with test at beginning
 Dim TheDate As Date
 TheDate = DateSerial(Year(Date), Month(Date), 1)
 Do Until Month(TheDate) <> Month(Date)
 ActiveCell = TheDate
 TheDate = TheDate + 1
 ActiveCell.Offset(1, 0).Activate
 Loop
End Sub

Sub EnterDates4()
‘ Do Until, with test at end
 Dim TheDate As Date
 TheDate = DateSerial(Year(Date), Month(Date), 1)

Part III: Understanding Visual Basic for Applications240

 Do
 ActiveCell = TheDate
 TheDate = TheDate + 1
 ActiveCell.Offset(1, 0).Activate
 Loop Until Month(TheDate) <> Month(Date)
End Sub

The following example was originally presented for the Do While loop but has been rewritten
to use a Do Until loop. The only difference is the line with the Do statement. This example
makes the code a bit clearer because it avoids the negative required in the Do While example.

Sub DoUntilDemo1()
 Dim LineCt As Long
 Dim LineOfText As String
 Open “c:\data\textfile.txt” For Input As #1
 LineCt = 0
 Do Until EOF(1)
 Line Input #1, LineOfText
 Range(“A1”).Offset(LineCt, 0) = UCase(LineOfText)
 LineCt = LineCt + 1
 Loop
 Close #1
End Sub

VBA supports yet another type of loop, While Wend. This looping structure is included
primarily for compatibility purposes. I mention it here in case you ever encounter such
a loop. Here’s how the date entry procedure looks when it’s coded to use a While
Wend loop:

Sub EnterDates5()
 Dim TheDate As Date
 TheDate = DateSerial(Year(Date), Month(Date), 1)
 While Month(TheDate) = Month(Date)
 ActiveCell = TheDate
 TheDate = TheDate + 1
 ActiveCell.Offset(1, 0).Activate
 Wend
End Sub

241

9
Working with VBA
Sub Procedures
In This Chapter

● Declaring and creating VBA Sub procedures

● Executing procedures

● Passing arguments to a procedure

● Using error-handling techniques

● An example of developing a useful procedure

About Procedures
A procedure is a series of VBA statements that resides in a VBA module, which you access in the
Visual Basic Editor (VBE). A module can hold any number of procedures. A procedure holds a
group of VBA statements that accomplishes a desired task. Most VBA code is contained in
procedures.

You have a number of ways to call, or execute, procedures. A procedure is executed from begin-
ning to end, but it can also be ended prematurely.

A procedure can be any length, but many people prefer to avoid creating extremely
long procedures that perform many different operations. You may find it easier to write
several smaller procedures, each with a single purpose. Then, design a main procedure
that calls those other procedures. This approach can make your code easier to maintain.

Some procedures are written to receive arguments. An argument is simply information that is
used by the procedure and that is passed to the procedure when it is executed. Procedure argu-
ments work much like the arguments that you use in Excel worksheet functions. Instructions

Part III: Understanding Visual Basic for Applications242

within the procedure generally perform logical operations on these arguments, and the results of
the procedure are usually based on those arguments.

Although this chapter focuses on Sub procedures, VBA also supports Function proce-
dures, which I discuss in Chapter 10. Chapter 11 has many additional examples of proce-
dures, both Sub and Function, that you can incorporate into your work.

Declaring a Sub procedure
A procedure declared with the Sub keyword must adhere to the following syntax:

[Private | Public][Static] Sub name ([arglist])
 [instructions]
 [Exit Sub]
 [instructions]
End Sub

Here’s a description of the elements that make up a Sub procedure:

 Private: (Optional) Indicates that the procedure is accessible only to other procedures
in the same module.

 Public: (Optional) Indicates that the procedure is accessible to all other procedures in
all other modules in the workbook. If used in a module that contains an Option
Private Module statement, the procedure is not available outside the project.

 Static: (Optional) Indicates that the procedure’s variables are preserved when the pro-
cedure ends.

 Sub: (Required) The keyword that indicates the beginning of a procedure.

 name: (Required) Any valid procedure name.

 arglist: (Optional) Represents a list of variables, enclosed in parentheses, that receive
arguments passed to the procedure. Use a comma to separate arguments. If the proce-
dure uses no arguments, a set of empty parentheses is required.

 instructions: (Optional) Represents valid VBA instructions.

 Exit Sub: (Optional) A statement that forces an immediate exit from the procedure
prior to its formal completion.

 End Sub: (Required) Indicates the end of the procedure.

With a few exceptions, all VBA instructions in a module must be contained within pro-
cedures. Exceptions include module-level variable declarations, user-defined data type
definitions, and a few other instructions that specify module-level options (for example,
Option Explicit).

Chapter 9: Working with VBA Sub Procedures 243

Scoping a procedure
In the preceding chapter, I note that a variable’s scope determines the modules and procedures
in which you can use the variable. Similarly, a procedure’s scope determines which other proce-
dures can call it.

Public procedures
By default, procedures are public — that is, they can be called by other procedures in any module
in the workbook. It’s not necessary to use the Public keyword, but programmers often include
it for clarity. The following two procedures are both public:

Sub First()
‘ ... [code goes here] ...
End Sub

Public Sub Second()
‘ ... [code goes here] ...
End Sub

Private procedures
Private procedures can be called by other procedures in the same module but not by procedures
in other modules.

When a user displays the Macro dialog box, Excel shows only the public procedures.
Therefore, if you have procedures that are designed to be called only by other proce-
dures in the same module, you should make sure that those procedures are declared as
Private. Doing so prevents the user from running these procedures from the Macro
dialog box.

Naming procedures
Every procedure must have a name. The rules governing procedure names are generally the
same as those for variable names. Ideally, a procedure’s name should describe what its con-
tained processes do. A good rule is to use a name that includes a verb and a noun (for example,
ProcessDate, PrintReport, Sort_Array, or CheckFilename). Unless you’re writing a
quick and dirty procedure that you’ll use once and delete, avoid meaningless names such as
DoIt, Update, and Fix.

Some programmers use sentence-like names that describe the procedure (for example,
WriteReportToTextFile and Get_Print_Options_ and_Print_Report).

Part III: Understanding Visual Basic for Applications244

The following example declares a private procedure named MySub:

Private Sub MySub()
‘ ... [code goes here] ...
End Sub

You can force all procedures in a module to be private — even those declared with the
Public keyword — by including the following statement before your first Sub statement:

Option Private Module

If you write this statement in a module, you can omit the Private keyword from your
Sub declarations.

Excel’s macro recorder normally creates new Sub procedures called Macro1, Macro2, and so
on. Unless you modify the recorded code, these procedures are all public procedures, and they
will never use any arguments.

Executing Sub Procedures
In this section, I describe the various ways to execute, or call, a VBA Sub procedure:

 With the Run➜Run Sub/UserForm command (in the VBE menu). Or you can press the F5
shortcut key, or click the Run Sub/UserForm button on the Standard toolbar.

 From Excel’s Macro dialog box.

 By using the Ctrl key shortcut assigned to the procedure (assuming that you assigned
one).

 By clicking a button or a shape on a worksheet. The button or shape must have the pro-
cedure assigned to it.

 From another procedure that you write. Sub and Function procedures can execute
other procedures.

 From a custom control in the Ribbon. In addition, built-in Ribbon controls can be “repur-
posed” to execute a macro.

 From a customized shortcut menu.

 When an event occurs. These events include opening the workbook, saving the work-
book, closing the workbook, changing a cell’s value, activating a sheet, and many other
things.

 From the Immediate window in the VBE. Just type the name of the procedure, including
any arguments that may apply, and press Enter.

Chapter 9: Working with VBA Sub Procedures 245

I discuss these methods of executing procedures in the following sections.

In many cases, a procedure won’t work properly unless it’s executed in the appropriate
context. For example, if a procedure is designed to work with the active worksheet, it
will fail if a chart sheet is active. A good procedure incorporates code that checks for
the appropriate context and exits gracefully if it can’t proceed.

Executing a procedure with the Run Sub/UserForm command
The VBE Run➜Run Sub/UserForm menu command is used primarily to test a procedure while
you’re developing it. You would never require a user to activate the VBE to execute a procedure.
Choose Run➜Run Sub/UserForm in the VBE to execute the current procedure (in other words,
the procedure that contains the cursor). Or, press F5, or use the Run Sub/UserForm button on
the Standard toolbar.

If the cursor isn’t located within a procedure when you issue the Run Sub/UserForm command,
VBE displays its Macro dialog box so that you can select a procedure to execute.

Executing a procedure from the Macro dialog box
Choosing Excel’s Developer➜Code➜Macros command displays the Macro dialog box, as shown
in Figure 9-1. (You can also press Alt+F8 to access this dialog box.) Use the Macros In drop-down
box to limit the scope of the macros displayed (for example, show only the macros in the active
workbook).

The Macro dialog box does not display

 Function procedures

 Sub procedures declared with the Private keyword

 Sub procedures that require one or more arguments

 Sub procedures contained in add-ins

Even though procedures stored in an add-in are not listed in the Macro dialog box, you
still can execute such a procedure if you know the name. Simply type the procedure
name in the Macro Name field in the Macro dialog box and then click Run.

Part III: Understanding Visual Basic for Applications246

Figure 9-1: The Macro dialog box.

Executing a procedure with a Ctrl+shortcut key combination
You can assign a Ctrl+shortcut key combination to any procedure that doesn’t use any argu-
ments. If you assign the Ctrl+U key combo to a procedure named UpdateCustomerList, for
example, pressing Ctrl+U executes that procedure.

When you begin recording a macro, the Record Macro dialog box gives you the opportunity to
assign a shortcut key. However, you can assign a shortcut key at any time. To assign a Ctrl short-
cut key to a procedure (or to change a procedure’s shortcut key), follow these steps:

 1. Activate Excel and choose Developer➜Code➜Macros.

 2. Select the appropriate procedure from the list box in the Macro dialog box.

 3. Click the Options button to display the Macro Options dialog box (see Figure 9-2).

Figure 9-2: The Macro Options dialog box lets you assign a Ctrl key shortcut and an optional
description to a procedure.

Chapter 9: Working with VBA Sub Procedures 247

 4. Enter a character into the Ctrl+ text box.

 Note: The character that you enter into the Ctrl+ text box is case-sensitive. If you enter a
lowercase s, the shortcut key combo is Ctrl+S. If you enter an uppercase S, the shortcut
key combo is Ctrl+Shift+S.

 5. Enter a description (optional). If you enter a description for a macro, it’s displayed at the
bottom of the Macro dialog box when the procedure is selected in the list box.

 6. Click OK to close the Macro Options dialog box and then click Cancel to close the Macro
dialog box.

If you assign one of Excel’s predefined shortcut key combinations to a procedure, your
key assignment takes precedence over the predefined key assignment. For example,
Ctrl+S is the Excel predefined shortcut key for saving the active workbook. But if you
assign Ctrl+S to a procedure, pressing Ctrl+S no longer saves the active workbook.

The following keyboard keys are not used by Excel 2010 for Ctrl+key combinations: E,
J, M, and Q. Excel doesn’t use too many Ctrl+Shift+key combinations. In fact, you can
use any of them except F, L, N, O, P, and W.

Executing a procedure from the Ribbon
Excel’s Ribbon user interface was introduced in Excel 2007. In that version, customizing the
Ribbon required writing XML code to add a new button (or other control) to the Ribbon. Note
that you modify the Ribbon in this way outside of Excel, and you can’t do it using VBA.

Excel 2010 allows users to modify the Ribbon directly from Excel. It’s a simple matter
to add a new control to the Ribbon and assign a VBA macro to the control.

Refer to Chapter 22 for more information about customizing the Ribbon.

Executing a procedure from a customized shortcut menu
You can also execute a macro by clicking a menu item in a customized shortcut menu. A shortcut
menu appears when you right-click an object or range in Excel.

Refer to Chapter 23 for more information about customizing shortcut menus.

Part III: Understanding Visual Basic for Applications248

Executing a procedure from another procedure
One of the most common ways to execute a procedure is from another VBA procedure. You have
three ways to do this:

 Enter the procedure’s name, followed by its arguments (if any) separated by commas.

 Use the Call keyword followed by the procedure’s name and then its arguments (if any)
enclosed in parentheses and separated by commas.

 Use the Run method of the Application object. The Run method is useful when you
need to run a procedure whose name is assigned to a variable. You can then pass the
variable as an argument to the Run method.

The following example demonstrates the first method. In this case, the MySub procedure pro-
cesses some statements (not shown), executes the UpdateSheet procedure, and then executes
the rest of the statements.

Sub MySub()
‘ ... [code goes here] ...
 UpdateSheet
‘ ... [code goes here] ...
End Sub

Sub UpdateSheet()
‘ ... [code goes here] ...
End Sub

The following example demonstrates the second method. The Call keyword executes the
Update procedure, which requires one argument; the calling procedure passes the argument to
the called procedure. I discuss procedure arguments later in this chapter (see “Passing
Arguments to Procedures”).

Sub MySub()
 MonthNum = InputBox(“Enter the month number: “)
 Call UpdateSheet(MonthNum)
‘ ... [code goes here] ...
End Sub

Sub UpdateSheet(MonthSeq)
‘ ... [code goes here] ...
End Sub

Even though it’s optional, some programmers always use the Call keyword just to
make it perfectly clear that another procedure is being called.

Chapter 9: Working with VBA Sub Procedures 249

The next example uses the Run method to execute the UpdateSheet procedure and then to
pass MonthNum as the argument.

Sub MySub()
 MonthNum = InputBox(“Enter the month number: “)
 Application.Run “UpdateSheet”, MonthNum
‘ ... [code goes here] ...
End Sub

Sub UpdateSheet(MonthSeq)
‘ ... [code goes here] ...
End Sub

Perhaps the best reason to use the Run method is when the procedure name is assigned to a
variable. In fact, it’s the only way to execute a procedure in such a way. The following example
demonstrates this. The Main procedure uses the VBA WeekDay function to determine the day of
the week (an integer between 1 and 7, beginning with Sunday). The SubToCall variable is
assigned a string that represents a procedure name. The Run method then calls the appropriate
procedure (either WeekEnd or Daily).

Sub Main()
 Dim SubToCall As String
 Select Case WeekDay(Now)
 Case 1, 7: SubToCall = “WeekEnd”
 Case Else: SubToCall = “Daily”
 End Select
 Application.Run SubToCall
End Sub

Sub WeekEnd()
 MsgBox “Today is a weekend”
‘ Code to execute on the weekend
‘ goes here
End Sub

Sub Daily()
 MsgBox “Today is not a weekend”
‘ Code to execute on the weekdays
‘ goes here
End Sub

Calling a procedure in a different module
If VBA can’t locate a called procedure in the current module, it looks for public procedures in
other modules in the same project.

If you need to call a private procedure from another procedure, both procedures must reside in
the same module.

Part III: Understanding Visual Basic for Applications250

You can’t have two procedures with the same name in the same module, but you can have iden-
tically named procedures in different modules within the project. You can force VBA to execute
an ambiguously named procedure — that is, another procedure in a different module that has the
same name. To do so, precede the procedure name with the module name and a dot. For exam-
ple, say that you define procedures named MySub in Module1 and Module2. If you want a pro-
cedure in Module2 to call the MySub in Module1, you can use either of the following
statements:

Module1.MySub
Call Module1.MySub

If you do not differentiate between procedures that have the same name, you get an
Ambiguous name detected error message.

Calling a procedure in a different workbook
In some cases, you may need your procedure to execute another procedure defined in a different
workbook. To do so, you have two options: Either establish a reference to the other workbook or
use the Run method and specify the workbook name explicitly.

To add a reference to another workbook, choose the VBE’s Tools➜References command. Excel
displays the References dialog box (see Figure 9-3), which lists all available references, including
all open workbooks. Simply check the box that corresponds to the workbook that you want to
add as a reference and then click OK. After you establish a reference, you can call procedures in
the workbook as if they were in the same workbook as the calling procedure.

A referenced workbook doesn’t have to be open when you create the reference; it’s treated like a
separate object library. Use the Browse button in the References dialog box to establish a refer-
ence to a workbook that isn’t open.

Figure 9-3: The References dialog box lets you establish a reference to another workbook.

Chapter 9: Working with VBA Sub Procedures 251

When you open a workbook that contains a reference to another workbook, the referenced
workbook is opened automatically.

the workbook names that appear in the list of references are listed by their VBE project
names. By default, every project is initially named VBAProject. Therefore, the list may
contain several identically named items. To distinguish a project, change its name in
the Project Properties dialog box. Click the project name in the Project window and
then choose Tools➜xxxx Properties (where xxxx is the current project name). In the
Project Properties dialog box, click the General tab and change the name displayed in
the Project Name field.

The list of references displayed in the References dialog box also includes object libraries and
ActiveX controls that are registered on your system. Your Excel workbooks always include refer-
ences to the following object libraries:

 Visual Basic for Applications

 Microsoft Excel 14.0 Object Library

 OLE Automation

 Microsoft Office 14.0 Object Library

 Microsoft Forms 2.0 Object Library (this reference is included only if your project includes
a UserForm)

Any additional references to other workbooks that you add are also listed in your proj-
ect outline in the Project Explorer window in the VBE. These references are listed under
a node called References.

If you’ve established a reference to a workbook that contains the procedure MySub, for example,
you can use either of the following statements to call MySub:

YourSub
Call YourSub

To precisely identify a procedure in a different workbook, specify the project name, module
name, and procedure name by using the following syntax:

MyProject.MyModule.MySub

Alternatively, you can use the Call keyword:

Call MyProject.MyModule.MySub

Part III: Understanding Visual Basic for Applications252

Another way to call a procedure in a different workbook is to use the Run method of the
Application object. This technique doesn’t require that you establish a reference, but the
workbook that contains the procedure must be open. The following statement executes the
Consolidate procedure located in a workbook named budget macros.xlsm:

Application.Run “’budget macros.xlsm’!Consolidate”

Why call other procedures?
If you’re new to programming, you may wonder why anyone would ever want to call a proce-
dure from another procedure. You may ask, “Why not just put the code from the called proce-
dure into the calling procedure and keep things simple?”

One reason is to clarify your code. The simpler your code, the easier it is to maintain and modify.
Smaller routines are easier to decipher and then debug. Examine the accompanying procedure,
which does nothing but call other procedures. This procedure is very easy to follow.

Sub Main()
 Call GetUserOptions
 Call ProcessData
 Call CleanUp
 Call CloseItDown
End Sub

Calling other procedures also eliminates redundancy. Suppose that you need to perform an
operation at ten different places in your routine. Rather than enter the code ten times, you can
write a procedure to perform the operation and then simply call the procedure ten times. Also, if
you need to make a change, you make it only one time rather that ten times.

Also, you may have a series of general-purpose procedures that you use frequently. If you store
these in a separate module, you can import the module to your current project and then call
these procedures as needed — which is much easier than copying and pasting the code into
your new procedures.

Creating several small procedures rather than a single large one is often considered good pro-
gramming practice. A modular approach not only makes your job easier but also makes life eas-
ier for the people who wind up working with your code.

Chapter 9: Working with VBA Sub Procedures 253

Executing a procedure by clicking an object
Excel provides a variety of objects that you can place on a worksheet or chart sheet, and you can
attach a macro to any of these objects. These objects fall into several classes:

 ActiveX controls

 Forms controls

 Inserted objects (Shapes, SmartArt, WordArt, charts, and pictures)

The Developer➜Controls➜Insert drop-down list contains two types of controls that
you can insert on a worksheet: Form controls and ActiveX controls. The ActiveX con-
trols are similar to the controls that you use in a UserForm. The Forms controls were
designed for Excel 5 and Excel 95, but you can still use them in later versions (which
may be preferable in some cases).

Unlike the Form controls, you can’t use the ActiveX controls to execute an arbitrary
macro. An ActiveX control executes a specially named macro. For example, if you insert
an ActiveX button control named CommandButton1, clicking the button executes a
macro named CommandButton1_Click, which must be located in the code module for
the sheet on which the control was inserted.

Refer to Chapter 13 for information about using controls on worksheets.

To assign a procedure to a Button object from the Form controls, follow these steps:

 1. Select Developer➜Controls➜Insert and click the button icon in the Form Controls group.

 2. Click the worksheet to create the button.

 Or, you can drag your mouse on the worksheet to change the default size of the button.

 Excel jumps right in and displays the Assign Macro dialog box (see Figure 9-4). It pro-
poses a macro that’s based on the button’s name.

 3. Select or enter the macro that you want to assign to the button and then click OK.

You can always change the macro assignment by right-clicking the button and choosing Assign
Macro.

To assign a macro to a Shape, SmartArt, WordArt, chart, or picture, right-click the object and
choose Assign Macro from the shortcut menu.

Part III: Understanding Visual Basic for Applications254

Figure 9-4: Assigning a macro to a button.

Executing a procedure when an event occurs
You might want a procedure to execute when a particular event occurs. Examples of events
include opening a workbook, entering data into a worksheet, saving a workbook, clicking a
CommandButton ActiveX control, and many others. A procedure that is executed when an event
occurs is an event handler procedure. Event handler procedures are characterized by the following:

 They have special names that are made up of an object, an underscore, and the event
name. For example, the procedure that is executed when a workbook is opened is
Workbook_Open.

 They’re stored in the Code module for the particular object.

Chapter 19 is devoted to event handler procedures.

Executing a procedure from the Immediate window
You also can execute a procedure by entering its name in the Immediate window of the VBE. If
the Immediate window isn’t visible, press Ctrl+G. The Immediate window executes VBA state-
ments while you enter them. To execute a procedure, simply enter the name of the procedure in
the Immediate window and press Enter.

Chapter 9: Working with VBA Sub Procedures 255

This method can be quite useful when you’re developing a procedure because you can insert
commands to display results in the Immediate window. The following procedure demonstrates
this technique:

Sub ChangeCase()
 Dim MyString As String
 MyString = “This is a test”
 MyString = UCase(MyString)
 Debug.Print MyString
End Sub

Figure 9-5 shows what happens when you enter ChangeCase in the Immediate window: The
Debug.Print statement displays the result immediately.

Figure 9-5: Executing a procedure by entering its name in the Immediate window.

Passing Arguments to Procedures
A procedure’s arguments provide it with data that it uses in its instructions. The data that’s
passed by an argument can be any of the following:

 A variable

 A constant

Part III: Understanding Visual Basic for Applications256

 An array

 An object

The use of arguments by procedures is very similar to their use of worksheet functions in the fol-
lowing respects:

 A procedure may not require any arguments.

 A procedure may require a fixed number of arguments.

 A procedure may accept an indefinite number of arguments.

 A procedure may require some arguments, leaving others optional.

 A procedure may have all optional arguments.

For example, a few of Excel’s worksheet functions, such as RAND and NOW, use no arguments.
Others, such as COUNTIF, require two arguments. Others still, such as SUM, can use up to 255
arguments. Still other worksheet functions have optional arguments. The PMT function, for exam-
ple, can have five arguments (three are required; two are optional).

Most of the procedures that you’ve seen so far in this book have been declared without argu-
ments. They were declared with just the Sub keyword, the procedure’s name, and a set of empty
parentheses. Empty parentheses indicate that the procedure does not accept arguments.

The following example shows two procedures. The Main procedure calls the ProcessFile pro-
cedure three times (the Call statement is in a For-Next loop). Before calling ProcessFile,
however, a three-element array is created. Inside the loop, each element of the array becomes
the argument for the procedure call. The ProcessFile procedure takes one argument (named
TheFile). Notice that the argument goes inside parentheses in the Sub statement. When
ProcessFile finishes, program control continues with the statement after the Call statement.

Sub Main()
 Dim File(1 To 3) As String
 Dim i as Integer
 File(1) = “dept1.xlsx”
 File(2) = “dept2.xlsx”
 File(3) = “dept3.xlsx”
 For i = 1 To 3
 Call ProcessFile(File(i))
 Next i
End Sub

Sub ProcessFile(TheFile)
 Workbooks.Open FileName:=TheFile
‘ ...[more code here]...
End Sub

Chapter 9: Working with VBA Sub Procedures 257

You can also, of course, pass literals (that is, not variables) to a procedure. For example:

Sub Main()
 Call ProcessFile(“budget.xlsx”)
End Sub

You can pass an argument to a procedure in two ways:

 By reference: Passing an argument by reference simply passes the memory address of
the variable. Changes to the argument within the procedure are made to the original vari-
able. This is the default method of passing an argument.

 By value: Passing an argument by value passes a copy of the original variable. Consequently,
changes to the argument within the procedure are not reflected in the original variable.

The following example demonstrates this concept. The argument for the Process procedure is
passed by reference (the default method). After the Main procedure assigns a value of 10 to
MyValue, it calls the Process procedure and passes MyValue as the argument. The Process
procedure multiplies the value of its argument (named YourValue) by 10. When Process ends
and program control passes back to Main, the MsgBox function displays MyValue: 100.

Sub Main()
 Dim MyValue As Integer
 MyValue = 10
 Call Process(MyValue)
 MsgBox MyValue
End Sub

Sub Process(YourValue)
 YourValue = YourValue * 10
End Sub

If you don’t want the called procedure to modify any variables passed as arguments, you can mod-
ify the called procedure’s argument list so that arguments are passed to it by value rather than by
reference. To do so, precede the argument with the ByVal keyword. This technique causes the
called routine to work with a copy of the passed variable’s data — not the data itself. In the follow-
ing procedure, for example, the changes made to YourValue in the Process procedure do not
affect the MyValue variable in Main. As a result, the MsgBox function displays 10 and not 100.

Sub Process(ByVal YourValue)
 YourValue = YourValue * 10
End Sub

In most cases, you’ll be content to use the default reference method of passing arguments.
However, if your procedure needs to use data passed to it in an argument — and you must keep
the original data intact — you’ll want to pass the data by value.

Part III: Understanding Visual Basic for Applications258

A procedure’s arguments can mix and match by value and by reference. Arguments preceded
with ByVal are passed by value; all others are passed by reference.

If you pass a variable defined as a user-defined data type to a procedure, it must be
passed by reference. Attempting to pass it by value generates an error.

Because I didn’t declare a data type for any of the arguments in the preceding examples, all the
arguments have been of the Variant data type. But a procedure that uses arguments can
define the data types directly in the argument list. The following is a Sub statement for a proce-
dure with two arguments of different data types. The first is declared as an integer, and the sec-
ond is declared as a string.

Sub Process(Iterations As Integer, TheFile As String)

Using public variables versus passing
arguments to a procedure

In Chapter 8, I point out how a variable declared as Public (at the top of the module) is avail-
able to all procedures in the module. In some cases, you may want to access a Public variable
rather than pass the variable as an argument when calling another procedure.

For example, the procedure that follows passes the value of MonthVal to the ProcessMonth
procedure:

Sub MySub()
 Dim MonthVal as Integer
‘ ... [code goes here]
 MonthVal = 4
 Call ProcessMonth(MonthVal)
‘ ... [code goes here]
End Sub

An alternative approach, which doesn’t use an argument, is

Public MonthVal as Integer

Sub MySub()
‘ ... [code goes here]
 MonthVal = 4
 Call ProcessMonth2
‘ ... [code goes here]
End Sub

In the revised code, because MonthVal is a public variable, the ProcessMonth2 procedure
can access it, thus eliminating the need for an argument for the ProcessMonth2 procedure.

Chapter 9: Working with VBA Sub Procedures 259

When you pass arguments to a procedure, the data that is passed as the argument must match
the argument’s data type. For example, if you call Process in the preceding example and pass a
string variable for the first argument, you get an error: ByRef argument type mismatch.

Arguments are relevant to both Sub procedures and Function procedures. In fact,
arguments are more often used in Function procedures. In Chapter 10, where I focus
on Function procedures, I provide additional examples of using arguments with your
routines, including how to handle optional arguments.

Error-Handling Techniques
When a VBA procedure is running, errors can (and probably will) occur. These include either syn-
tax errors (which you must correct before you can execute a procedure) or runtime errors (which
occur while the procedure is running). This section deals with runtime errors.

for error-handling procedures to work, the Break on All Errors setting must be turned
off. In the VBE, choose Tools➜Options and click the General tab in the Options dialog
box. If Break on All Errors is selected, VBA ignores your error-handling code. You’ll usu-
ally want to use the Break on Unhandled Errors option.

Normally, a runtime error causes VBA to stop, and the user sees a dialog box that displays the
error number and a description of the error. A good application doesn’t make the user deal with
these messages. Rather, it incorporates error-handling code to trap errors and take appropriate
actions. At the very least, your error-handling code can display a more meaningful error message
than the one VBA pops up.

Appendix C lists all the VBA error codes and descriptions.

Trapping errors
You can use the On Error statement to specify what happens when an error occurs. Basically,
you have two choices:

 Ignore the error and let VBA continue. Your code can later examine the Err object to
determine what the error was and then take action, if necessary.

 Jump to a special error-handling section of your code to take action. This section is
placed at the end of the procedure and is also marked by a label.

Part III: Understanding Visual Basic for Applications260

To cause your VBA code to continue when an error occurs, insert the following statement in your
code:

On Error Resume Next

Some errors are inconsequential, and you can ignore them without causing a problem. But you
might want to determine what the error was. When an error occurs, you can use the Err object to
determine the error number. You can use the VBA Error function to display the text that corre-
sponds to the Err.Number value. For example, the following statement displays the same infor-
mation as the normal Visual Basic error dialog box (the error number and the error description):

MsgBox “Error “ & Err & “: “ & Error(Err.Number)

Figure 9-6 shows a VBA error message, and Figure 9-7 shows the same error displayed in a mes-
sage box. You can, of course, make the error message a bit more meaningful to your end users
by using more descriptive text.

Referencing Err is equivalent to accessing the Number property of the Err object.
Therefore, the following two statements have the same effect:

MsgBox Err
MsgBox Err.Number

You also use the On Error statement to specify a location in your procedure to jump to when
an error occurs. You use a label to mark the location. For example:

On Error GoTo ErrorHandler

Figure 9-6: VBA error messages aren’t always user friendly.

Chapter 9: Working with VBA Sub Procedures 261

Figure 9-7: You can create a message box to display the error code and description.

Error-handling examples
The first example demonstrates an error that you can safely ignore. The SpecialCells method
selects cells that meet a certain criterion.

The SpecialCells method is equivalent to choosing the Home➜Editing➜Find &
Select➜Go To Special command. The Go To Special dialog box provides you with a
number of choices. For example, you can select cells that contain a numeric constant
(nonformula).

In the example that follows, which doesn’t use any error handling, the SpecialCells method
selects all the cells in the current range selection that contain a formula that returns a number. If
no cells in the selection qualify, VBA displays the error message shown in Figure 9-8.

Figure 9-8: The SpecialCells method generates this error if no cells are found.

Sub SelectFormulas()
 Selection.SpecialCells(xlFormulas, xlNumbers).Select
‘ ...[more code goes here]
End Sub

Part III: Understanding Visual Basic for Applications262

Following is a variation that uses the On Error Resume Next statement to prevent the error
message from appearing:

Sub SelectFormulas2()
 On Error Resume Next
 Selection.SpecialCells(xlFormulas, xlNumbers).Select
 On Error GoTo 0
‘ ...[more code goes here]
End Sub

The On Error GoTo 0 statement restores normal error handling for the remaining statements
in the procedure.

The following procedure uses an additional statement to determine whether an error did occur. If
so, the user is informed by a message.

Sub SelectFormulas3()
 On Error Resume Next
 Selection.SpecialCells(xlFormulas, xlNumbers).Select
 If Err.Number = 1004 Then MsgBox “No formula cells were found.”
 On Error GoTo 0
‘ ...[more code goes here]
End Sub

If the Number property of Err is equal to anything other than 0, then an error occurred. The If
statement checks to see if Err.Number is equal to 1004 and displays a message box if it is. In
this example, the code is checking for a specific error number. To check for any error, use a state-
ment like this:

If Err.Number <> 0 Then MsgBox “An error occurred.”

The next example demonstrates error handling by jumping to a label.

Sub ErrorDemo()
 On Error GoTo Handler
 Selection.Value = 123
 Exit Sub
Handler:
 MsgBox “Cannot assign a value to the selection.”
End Sub

The procedure attempts to assign a value to the current selection. If an error occurs (for example,
a range isn’t selected or the sheet is protected), the assignment statement results in an error. The
On Error statement specifies a jump to the Handler label if an error occurs. Notice the use of

Chapter 9: Working with VBA Sub Procedures 263

the Exit Sub statement before the label. This statement prevents the error-handling code from
being executed if no error occurs. If this statement is omitted, the error message is displayed
even if an error does not occur.

Sometimes, you can take advantage of an error to get information. The example that follows sim-
ply checks whether a particular workbook is open. It doesn’t use any error handling.

Sub CheckForFile1()
 Dim FileName As String
 Dim FileExists As Boolean
 Dim book As Workbook
 FileName = “BUDGET.XLSX”
 FileExists = False
‘ Cycle through all open workbooks
 For Each book In Workbooks
 If UCase(book.Name) = FileName Then FileExists = True
 Next book
‘ Display appropriate message
 If FileExists Then
 MsgBox FileName & “ is open.”
 Else
 MsgBox FileName & “ is not open.”
 End If
End Sub

Here, a For Each-Next loop cycles through all objects in the Workbooks collection. If the
workbook is open, the FileExists variable is set to True. Finally, a message is displayed that
tells the user whether the workbook is open.

You can rewrite the preceding routine to use error handling to determine whether the file is
open. In the example that follows, the On Error Resume Next statement causes VBA to
ignore any errors. The next instruction attempts to reference the workbook by assigning the
workbook to an object variable (by using the Set keyword). If the workbook isn’t open, an error
occurs. The If-Then-Else structure checks the value property of Err and displays the appro-
priate message. This procedure uses no looping, so it’s slightly more efficient.

Sub CheckForFile()
 Dim FileName As String
 Dim x As Workbook
 FileName = “BUDGET.XLSX”
 On Error Resume Next
 Set x = Workbooks(FileName)
 If Err = 0 Then
 MsgBox FileName & “ is open.”
 Else
 MsgBox FileName & “ is not open.”
 End If
 On Error GoTo 0
End Sub

Part III: Understanding Visual Basic for Applications264

Chapter 11 presents several additional examples that use error handling.

A Realistic Example That Uses Sub Procedures
In this chapter, I describe the basics of creating Sub procedures. Most of the previous examples, I
will admit, have been rather wimpy. The remainder of this chapter is a real-life exercise that dem-
onstrates many of the concepts covered in this and the preceding two chapters.

This section describes the development of a useful utility that qualifies as an application as
defined in Chapter 5. More important, I demonstrate the process of analyzing a problem and then
solving it with VBA. I wrote this section with VBA newcomers in mind. As a result, I don’t simply
present the code, but I also show how to find out what you need to know to develop the code.

You can find the completed application, named sheet sorter.xlsm, on the compan-
ion CD-ROM.

The goal
The goal of this exercise is to develop a utility that rearranges a workbook by alphabetizing its
sheets (something that Excel can’t do on its own). If you tend to create workbooks that consist of
many sheets, you know that locating a particular sheet can be difficult. If the sheets are ordered
alphabetically, however, it’s easier to find a desired sheet.

Project requirements
Where to begin? One way to get started is to list the requirements for your application. When
you develop your application, you can check your list to ensure that you’re covering all the bases.

Here’s the list of requirements that I compiled for this example application:

 1. It should sort the sheets (that is, worksheets and chart sheets) in the active workbook in
ascending order of their names.

 2. It should be easy to execute.

 3. It should always be available. In other words, the user shouldn’t have to open a workbook
to use this utility.

 4. It should work properly for any workbook that’s open.

 5. It should not display any VBA error messages.

Chapter 9: Working with VBA Sub Procedures 265

What you know
Often, the most difficult part of a project is figuring out where to start. In this case, I started by
listing things that I know about Excel that may be relevant to the project requirements:

 Excel doesn’t have a command that sorts sheets, so I'm not re-inventing the wheel.

 I can’t create this type of macro by recording my actions. However, the macro might be
useful to provide some key information.

 I can move a sheet easily by dragging its sheet tab.

 Mental note: Turn on the macro recorder and drag a sheet to a new location to find out
what kind of code this action generates.

 Excel also has a Move or Copy dialog box, which is displayed when I right-click a sheet
tab and choose Move or Copy. Would recording a macro of this command generate dif-
ferent code than moving a sheet manually?

 I’ll need to know how many sheets are in the active workbook. I can get this information
with VBA.

 I’ll need to know the names of all the sheets. Again, I can get this information with VBA.

 Excel has a command that sorts data in worksheet cells.

 Mental note: Maybe I can transfer the sheet names to a range and use this feature. Or,
maybe VBA has a sorting method that I can take advantage of.

 Thanks to the Macro Options dialog box, it’s easy to assign a shortcut key to a macro.

 If a macro is stored in the Personal Macro Workbook, it will always be available.

 I need a way to test the application while I develop it. For certain, I don’t want to be test-
ing it using the same workbook in which I’m developing the code.

 Mental note: Create a dummy workbook for testing purposes.

 If I develop the code properly, VBA won’t display any errors.

 Mental note: Wishful thinking . . .

The approach
Although I still didn’t know exactly how to proceed, I could devise a preliminary, skeleton plan
that describes the general tasks required:

 1. Identify the active workbook.

 2. Get a list of all the sheet names in the workbook.

 3. Count the sheets.

Part III: Understanding Visual Basic for Applications266

 4. Sort the sheet names (somehow).

 5. Rearrange the sheets so they correspond to the sorted sheet names.

What you need to know
I saw a few holes in the plan. I knew that I had to determine the following:

 How to identify the active workbook

 How to count the sheets in the active workbook

 How to get a list of the sheet names

 How to sort the list

 How to rearrange the sheets according to the sorted list

When you lack critical information about specific methods or properties, you can con-
sult this book or the VBA Help system. You may eventually discover what you need to
know. Your best bet, however, is to turn on the macro recorder and examine the code
that it generates when you perform some relevant actions. You’ll almost always get
some clues as to how to proceed.

Some preliminary recording
Here’s an example of using the macro recorder to learn about VBA. I started with a workbook
that contained three worksheets. Then I turned on the macro recorder and specified my Personal
Macro Workbook as the destination for the macro. With the macro recorder running, I dragged
the third worksheet to the first sheet position. Here’s the code that was generated by the macro
recorder:

Sub Macro1()
 Sheets(“Sheet3”).Select
 Sheets(“Sheet3”).Move Before:=Sheets(1)
End Sub

I searched the VBA Help for Move and discovered that it’s a method that moves a sheet to a new
location in the workbook. It also takes an argument that specifies the location for the sheet. This
information is very relevant to the task at hand. Curious, I then turned on the macro recorder to
see whether using the Move or Copy dialog box would generate different code. It didn’t.

Chapter 9: Working with VBA Sub Procedures 267

Next, I needed to find out how many sheets were in the active workbook. I searched Help for the
word Count and found out that it’s a property of a collection. I activated the Immediate window
in the VBE and typed the following statement:

? ActiveWorkbook.Count

Error! After a little more thought, I realized that I needed to get a count of the sheets within a
workbook. So I tried this:

? ActiveWorkbook.Sheets.Count

Success. Figure 9-9 shows the result. More useful information.

Figure 9-9: Use the VBE Immediate window to test a statement.

What about the sheet names? Time for another test. I entered the following statement in the
Immediate window:

? ActiveWorkbook.Sheets(1).Name

This told me that the name of the first sheet is Sheet3, which is correct (because I’d moved it).
More good information to keep in mind.

Then I remembered something about the For Each-Next construct: It’s useful for cycling
through each member of a collection. After consulting the Help system, I created a short proce-
dure to test it:

Sub Test()
 For Each Sht In ActiveWorkbook.Sheets
 MsgBox Sht.Name
 Next Sht
End Sub

Another success. This macro displayed three message boxes, each showing a different sheet
name.

Part III: Understanding Visual Basic for Applications268

Finally, it was time to think about sorting options. From the Help system, I learned that the Sort
method applies to a Range object. So one option was to transfer the sheet names to a range and
then sort the range, but that seemed like overkill for this application. I thought that a better
option was to dump the sheet names into an array of strings and then sort the array by using
VBA code.

Initial setup
Now I knew enough to get started writing some serious code. Before doing so, however, I needed
to do some initial setup work. To re-create my steps, follow these instructions:

 1. Create an empty workbook with five worksheets, named Sheet1, Sheet2, Sheet3,
Sheet4, and Sheet5.

 2. Move the sheets around randomly so that they aren’t in any particular order.

 3. Save the workbook as Test.xlsx.

 4. Activate the VBE and select the Personal.xlsb project in the Project Window.

 If Personal.xlsb doesn’t appear in the Project window in the VBE, it means that
you’ve never used the Personal Macro Workbook. To have Excel create this workbook for
you, simply record a macro (any macro) and specify the Personal Macro Workbook as the
destination for the macro.

 5. Insert a new VBA module in Personal.xlsb (choose Insert➜Module).

 6. Create an empty Sub procedure called SortSheets (see Figure 9-10).

 Actually, you can store this macro in any module in the Personal Macro Workbook.
However, keeping each group of related macros in a separate module is a good idea.
That way, you can easily export the module and import it into a different project later on.

 7. Activate Excel and choose Developer➜Code➜Macros to display the Macro dialog box.

 8. In the Macro dialog box, select the SortSheets procedure and click the Options button to
assign a shortcut key to this macro.

 The Ctrl+Shift+S key combination is a good choice.

Chapter 9: Working with VBA Sub Procedures 269

Figure 9-10: An empty procedure in a module located in the Personal Macro Workbook.

Code writing
Now it’s time to write some code. I knew that I needed to put the sheet names into an array of
strings. Because I didn’t know yet how many sheets were in the active workbook, I used a Dim
statement with empty parentheses to declare the array. I knew that I could use ReDim afterward
to redimension the array for the actual number of elements.

I entered the following code, which inserted the sheet names into the SheetNames array. I also
added a MsgBox function within the loop just to assure me that the sheets’ names were indeed
being entered into the array.

Sub SortSheets()
‘ Sorts the sheets of the active workbook
 Dim SheetNames() as String
 Dim i as Long
 Dim SheetCount as Long
 SheetCount = ActiveWorkbook.Sheets.Count
 ReDim SheetNames(1 To SheetCount)
 For i = 1 To SheetCount
 SheetNames(i) = ActiveWorkbook.Sheets(i).Name
 MsgBox SheetNames(i)
 Next i
End Sub

Part III: Understanding Visual Basic for Applications270

To test the preceding code, I activated the Test.xlsx workbook and pressed Ctrl+Shift+S. Five
message boxes appeared, each displaying the name of a sheet in the active workbook. So far, so
good.

By the way, I’m a major proponent of testing your work as you go. I tend to work in small steps
and set things up so that I’m convinced that each small step is working properly before I con-
tinue. When you’re convinced that your code is working correctly, remove the MsgBox state-
ment. (These message boxes become annoying after a while.)

Rather than use the MsgBox function to test your work, you can use the Print method
of the Debug object to display information in the Immediate window. For this example,
use the following statement in place of the MsgBox statement:

Debug.Print SheetNames(i)

This technique is much less intrusive than using MsgBox statements. Just make sure
that you remember to remove the statement when you’re finished.

At this point, the SortSheets procedure simply creates an array of sheet names corresponding
to the sheets in the active workbook. Two steps remain: Sort the elements in the SheetNames
array and then rearrange the sheets to correspond to the sorted array.

Writing the Sort procedure
It was time to sort the SheetNames array. One option was to insert the sorting code in the
SortSheets procedure, but I thought a better approach was to write a general-purpose sorting
procedure that I could reuse with other projects. (Sorting arrays is a common operation.)

You might be a bit daunted by the thought of writing a sorting procedure. The good news is that
it’s relatively easy to find commonly used routines that you can use or adapt. The Internet, of
course, is a great source for such information.

You can sort an array in many ways. I chose the bubble sort method; although it’s not a particu-
larly fast technique, it’s easy to code. Blazing speed isn’t really a requirement in this particular
application.

The bubble sort method uses a nested For-Next loop to evaluate each array element. If the
array element is greater than the next element, the two elements swap positions. The code
includes a nested loop, so this evaluation is repeated for every pair of items (that is, n – 1 times).

In Chapter 11, I present some other sorting routines and compare them in terms of
speed.

Chapter 9: Working with VBA Sub Procedures 271

Here’s the sorting procedure I developed (after consulting a few programming Web sites to get
some ideas):

Sub BubbleSort(List() As String)
‘ Sorts the List array in ascending order
 Dim First As Long, Last As Long
 Dim i As Long, j As Long
 Dim Temp As String
 First = LBound(List)
 Last = UBound(List)
 For i = First To Last - 1
 For j = i + 1 To Last
 If List(i) > List(j) Then
 Temp = List(j)
 List(j) = List(i)
 List(i) = Temp
 End If
 Next j
 Next i
End Sub

This procedure accepts one argument: a one-dimensional array named List. An array passed to
a procedure can be of any length. I used the LBound and UBound functions to assign the lower
bound and upper bound of the array to the variables First and Last, respectively.

Here’s a little temporary procedure that I used to test the BubbleSort procedure:

Sub SortTester()
 Dim x(1 To 5) As String
 Dim i As Long
 x(1) = “dog”
 x(2) = “cat”
 x(3) = “elephant”
 x(4) = “aardvark”
 x(5) = “bird”
 Call BubbleSort(x)
 For i = 1 To 5
 Debug.Print i, x(i)
 Next i
End Sub

The SortTester routine creates an array of five strings, passes the array to BubbleSort, and
then displays the sorted array in the Immediate window. I eventually deleted this code because it
served its purpose.

Part III: Understanding Visual Basic for Applications272

After I was satisfied that this procedure worked reliably, I modified SortSheets by adding a call
to the BubbleSort procedure, passing the SheetNames array as an argument. At this point,
my module looked like this:

Sub SortSheets()
 Dim SheetNames() As String
 Dim SheetCount as Long
 Dim i as Long
 SheetCount = ActiveWorkbook.Sheets.Count
 ReDim SheetNames(1 To SheetCount)
 For i = 1 To SheetCount
 SheetNames(i) = ActiveWorkbook.Sheets(i).Name
 Next i
 Call BubbleSort(SheetNames)
End Sub

Sub BubbleSort(List() As String)
‘ Sorts the List array in ascending order
 Dim First As Long, Last As Long
 Dim i As Long, j As Long
 Dim Temp As String
 First = LBound(List)
 Last = UBound(List)
 For i = First To Last - 1
 For j = i + 1 To Last
 If List(i) > List(j) Then
 Temp = List(j)
 List(j) = List(i)
 List(i) = Temp
 End If
 Next j
 Next i
End Sub

When the SheetSort procedure ends, it contains an array that consists of the sorted sheet
names in the active workbook. To verify this, you can display the array contents in the VBE
Immediate window by adding the following code at the end of the SortSheets procedure (if
the Immediate window is not visible, press Ctrl+G):

For i = 1 To SheetCount
 Debug.Print SheetNames(i)
Next i

So far, so good. Next step: Write some code to rearrange the sheets to correspond to the sorted
items in the SheetNames array.

Chapter 9: Working with VBA Sub Procedures 273

The code that I recorded earlier proved useful. Remember the instruction that was recorded
when I moved a sheet to the first position in the workbook?

Sheets(“Sheet3”).Move Before:=Sheets(1)

After a little thought, I was able to write a For-Next loop that would go through each sheet and
move it to its corresponding sheet location, specified in the SheetNames array:

For i = 1 To SheetCount
 Sheets(SheetNames(i)).Move Before:=Sheets(i)
Next i

For example, the first time through the loop, the loop counter i is 1. The first element in the
SheetNames array is (in this example) Sheet1. Therefore, the expression for the Move method
within the loop evaluates to

Sheets(“Sheet1”).Move Before:= Sheets(1)

The second time through the loop, the expression evaluates to

Sheets(“Sheet2”).Move Before:= Sheets(2)

I then added the new code to the SortSheets procedure:

Sub SortSheets()
 Dim SheetNames() As String
 Dim SheetCount as Long
 Dim i as Long
 SheetCount = ActiveWorkbook.Sheets.Count
 ReDim SheetNames(1 To SheetCount)
 For i = 1 To SheetCount
 SheetNames(i) = ActiveWorkbook.Sheets(i).Name
 Next i
 Call BubbleSort(SheetNames)
 For i = 1 To SheetCount
 ActiveWorkbook.Sheets(SheetNames(i)).Move _
 Before:=ActiveWorkbook.Sheets(i)
 Next i
End Sub

I did some testing, and it seemed to work just fine for the Test.xlsx workbook.

Part III: Understanding Visual Basic for Applications274

Time to clean things up. I made sure that all the variables used in the procedures were declared,
and then I added a few comments and blank lines to make the code easier to read. The
SortSheets procedure looked like the following:

Sub SortSheets()
‘ This routine sorts the sheets of the
‘ active workbook in ascending order.
‘ Use Ctrl+Shift+S to execute

 Dim SheetNames() As String
 Dim SheetCount As Long
 Dim i As Long

‘ Determine the number of sheets & ReDim array
 SheetCount = ActiveWorkbook.Sheets.Count
 ReDim SheetNames(1 To SheetCount)

‘ Fill array with sheet names
 For i = 1 To SheetCount
 SheetNames(i) = ActiveWorkbook.Sheets(i).Name
 Next i

‘ Sort the array in ascending order
 Call BubbleSort(SheetNames)

‘ Move the sheets
 For i = 1 To SheetCount
 ActiveWorkbook.Sheets(SheetNames(i)).Move _
 Before:= ActiveWorkbook.Sheets(i)
 Next i
End Sub

Everything seemed to be working. To test the code further, I added a few more sheets to Test.
xlsx and changed some of the sheet names. It worked like a charm.

More testing
I was tempted to call it a day. However, just because the procedure worked with the Test.xlsx
workbook didn’t mean that it would work with all workbooks. To test it further, I loaded a few
other workbooks and retried the routine. I soon discovered that the application wasn’t perfect. In
fact, it was far from perfect. I identified the following problems:

 Workbooks with many sheets took a long time to sort because the screen was continually
updated during the move operations.

Chapter 9: Working with VBA Sub Procedures 275

 The sorting didn’t always work. For example, in one of my tests, a sheet named SUMMARY
(all uppercase) appeared before a sheet named Sheet1. This problem was caused by
the BubbleSort procedure — an uppercase U is “greater than” a lowercase h.

 If Excel had no visible workbook windows, pressing the Ctrl+Shift+S shortcut key combo
caused the macro to fail.

 If the workbook’s structure was protected, the Move method failed.

 After sorting, the last sheet in the workbook became the active sheet. Changing the
user’s active sheet isn’t a good practice; it’s better to keep the user’s original sheet active.

 If I interrupted the macro by pressing Ctrl+Break, VBA displayed an error message.

 The macro can’t be reversed (that is, the Undo command is always disabled when a
macro is executed). If the user accidentally presses Ctrl+Shift+S, the workbook sheets are
sorted, and the only way to get them back to their original order is by doing it manually.

Fixing the problems
Fixing the screen-updating problem was a breeze. I inserted the following instruction to turn off
screen updating while the sheets were being moved:

Application.ScreenUpdating = False

This statement causes Excel’s windows to freeze while the macro is running. A beneficial side
effect is that it also speeds up the macro considerably. After the macro completes it operation,
screen updating is turned back on automatically.

It was also easy to fix the problem with the BubbleSort procedure: I used VBA’s UCase func-
tion to convert the sheet names to uppercase for the comparison. This caused all the compari-
sons to be made by using uppercase versions of the sheet names. The corrected line read as
follows:

If UCase(List(i)) > UCase(List(j)) Then

Another way to solve the “case” problem is to add the following statement to the top
of your module:

Option Compare Text

This statement causes VBA to perform string comparisons based on a case-insensitive
text sort order. In other words, A is considered the same as a.

Part III: Understanding Visual Basic for Applications276

To prevent the error message that appears when no workbooks are visible, I added some error
checking. I used On Error Resume Next to ignore the error and then checked the value of
Err. If Err is not equal to 0, it means that an error occurred. Therefore, the procedure ends. The
error-checking code is

On Error Resume Next
SheetCount = ActiveWorkbook.Sheets.Count
If Err <> 0 Then Exit Sub ‘ No active workbook

It occurred to me that I could avoid using On Error Resume Next. The following statement is
a more direct approach to determining whether a workbook isn’t visible and doesn’t require any
error handling. This statement can go at the top of the SortSheets procedure:

If ActiveWorkbook Is Nothing Then Exit Sub

There’s usually a good reason that a workbook’s structure is protected. I decided that the best
approach was to not attempt to unprotect the workbook. Rather, the code should display a mes-
sage box warning and let the user unprotect the workbook and re-execute the macro. Testing for
a protected workbook structure was easy — the ProtectStructure property of a Workbook
object returns True if a workbook is protected. I added the following block of code:

‘ Check for protected workbook structure
 If ActiveWorkbook.ProtectStructure Then
 MsgBox ActiveWorkbook.Name & “ is protected.”, _
 vbCritical, “Cannot Sort Sheets.”
 Exit Sub
 End If

If the workbook’s structure is protected, the user sees a message box like the one shown in
Figure 9-11.

Figure 9-11: This message box tells the user that the sheets cannot be sorted.

Chapter 9: Working with VBA Sub Procedures 277

To reactivate the original active sheet after the sorting was performed, I wrote code that
assigned the original sheet to an object variable (OldActiveSheet) and then activated that
sheet when the routine was finished. Here’s the statement that assigns the variable:

Set OldActive = ActiveSheet

This statement activates the original active worksheet:

OldActive.Activate

Pressing Ctrl+Break normally halts a macro, and VBA usually displays an error message. But
because one of my goals was to avoid VBA error messages, I inserted a command to prevent this
situation. From the VBA Help system, I discovered that the Application object has an
EnableCancelKey property that can disable Ctrl+Break. So I added the following statement at
the top of the routine:

Application.EnableCancelKey = xlDisabled

Be very careful when you disable the Cancel key. If your code gets caught in an infinite
loop, you can’t break out of it. For best results, insert this statement only after you’re
sure that everything is working properly.

To prevent the problem of accidentally sorting the sheets, I added the following statement to the
procedure, before the Ctrl+Break key is disabled:

 If MsgBox(“Sort the sheets in the active workbook?”, _
 vbQuestion + vbYesNo) <> vbYes Then Exit Sub

When the user executes the SortSheets procedure, he sees the message box in Figure 9-12.

Figure 9-12: This message box appears before the sheets are sorted.

Part III: Understanding Visual Basic for Applications278

After I made all these corrections, the SortSheets procedure looked like this:

Option Explicit
Sub SortSheets()
‘ This routine sorts the sheets of the
‘ active workbook in ascending order.
‘ Use Ctrl+Shift+S to execute

 Dim SheetNames() As String
 Dim i As Long
 Dim SheetCount As Long
 Dim OldActiveSheet As Object

 If ActiveWorkbook Is Nothing Then Exit Sub ‘ No active workbook
 SheetCount = ActiveWorkbook.Sheets.Count

‘ Check for protected workbook structure
 If ActiveWorkbook.ProtectStructure Then
 MsgBox ActiveWorkbook.Name & “ is protected.”, _
 vbCritical, “Cannot Sort Sheets.”
 Exit Sub
 End If
‘ Make user verify
 If MsgBox(“Sort the sheets in the active workbook?”, _
 vbQuestion + vbYesNo) <> vbYes Then Exit Sub
‘ Disable Ctrl+Break
 Application.EnableCancelKey = xlDisabled

‘ Get the number of sheets
 SheetCount = ActiveWorkbook.Sheets.Count

‘ Redimension the array
 ReDim SheetNames(1 To SheetCount)
‘ Store a reference to the active sheet
 Set OldActiveSheet = ActiveSheet

‘ Fill array with sheet names
 For i = 1 To SheetCount
 SheetNames(i) = ActiveWorkbook.Sheets(i).Name
 Next i

‘ Sort the array in ascending order
 Call BubbleSort(SheetNames)

‘ Turn off screen updating
 Application.ScreenUpdating = False

Chapter 9: Working with VBA Sub Procedures 279

‘ Move the sheets
 For i = 1 To SheetCount
 ActiveWorkbook.Sheets(SheetNames(i)).Move _
 Before:=ActiveWorkbook.Sheets(i)
 Next i
‘ Reactivate the original active sheet
 OldActiveSheet.Activate
End Sub

Utility availability
Because the SortSheets macro is stored in the Personal Macro Workbook, it’s available when-
ever Excel is running. At this point, you can execute the macro by selecting the macro’s name
from the Macro dialog box (Alt+F8 displays this dialog box) or by pressing Ctrl+Shift+S. Another
option is to add a command to the Ribbon.

To add a command, follow these steps:

 1. Right-click any area of the Ribbon and choose Customize the Ribbon.

 2. In the Customize Ribbon tab of the Excel Options dialog box, choose Macros from the
drop-down list labeled Choose Commands From.

 3. Click the item labeled PERSONAL.XLSB!SortSheets.

 4. Use the controls in the box on the right to specify the ribbon tab and create a new group.

 (You can’t add a command to an existing group.)

I created a group named Worksheets in the View tab, and renamed the new item to Short Sheets
(see Figure 9-13).

Evaluating the project
So there you have it. The utility meets all the original project requirements: It sorts all sheets in
the active workbook, it can be executed easily, it’s always available, it seems to work for any
workbook, and I have yet to see it display a VBA error message.

The procedure still has one slight problem: The sorting is strict and may not always be
“logical.” For example, after sorting, Sheet10 is placed before Sheet2. Most would
want Sheet2 to be listed before Sheet10. Solving that problem is the beyond the
scope of this introductory exercise.

Part III: Understanding Visual Basic for Applications280

Figure 9-13: Adding a new command to the ribbon.

281

10
Creating Function Procedures
In This Chapter

● Understanding the difference between Sub procedures and Function procedures

● Creating custom functions

● Looking at Function procedures and function arguments

● Creating a function that emulates Excel’s SUM function

● Using functions that enable you to work with pre-1900 dates in your worksheets

● Debugging functions, dealing with the Insert Function dialog box, and using add-ins to
store custom functions

● Calling the Windows Application Programming Interface (API) to perform otherwise
impossible feats

Sub Procedures versus Function Procedures
A function is a VBA procedure that performs calculations and returns a value. You can use these
functions in your Visual Basic for Applications (VBA) code or in formulas.

VBA enables you to create Sub procedures and Function procedures. You can think of a Sub
procedure as a command that either the user or another procedure can execute. Function pro-
cedures, on the other hand, usually return a single value (or an array), just like Excel worksheet
functions and VBA built-in functions. As with built-in functions, your Function procedures can
use arguments.

Function procedures are quite versatile, and you can use them in two situations:

 As part of an expression in a VBA procedure

 In formulas that you create in a worksheet

Part III: Understanding Visual Basic for Applications282

In fact, you can use a Function procedure anywhere that you can use an Excel worksheet func-
tion or a VBA built-in function. As far as I know, the only exception is that you can’t use a VBA
function in a data validation formula.

I cover Sub procedures in the preceding chapter, and in this chapter, I discuss Function
procedures.

Chapter 11 has many useful and practical examples of Function procedures. You can
incorporate many of these techniques into your work.

Why Create Custom Functions?
You’re undoubtedly familiar with Excel worksheet functions; even novices know how to use the
most common worksheet functions, such as SUM, AVERAGE, and IF. Excel 2010 includes more
than 400 predefined worksheet functions that you can use in formulas. If that’s not enough, how-
ever, you can create custom functions by using VBA.

With all the functions available in Excel and VBA, you might wonder why you’d ever need to cre-
ate new functions. The answer: to simplify your work. With a bit of planning, custom functions
are very useful in worksheet formulas and VBA procedures.

Often, for example, you can create a custom function that can significantly shorten your formu-
las. And shorter formulas are more readable and easier to work with. I should also point out,
however, that custom functions used in your formulas are usually much slower than built-in func-
tions. And, of course, the user must enable macros in order to use these functions.

When you create applications, you may notice that some procedures repeat certain calculations.
In such cases, consider creating a custom function that performs the calculation. Then you can
simply call the function from your procedure. A custom function can eliminate the need for dupli-
cated code, thus reducing errors.

Also, coworkers often can benefit from your specialized functions. And some may be willing to
pay you to create custom functions that save them time and work.

Although many cringe at the thought of creating custom worksheet functions, the process isn’t
difficult. In fact, I enjoy creating custom functions. I especially like how my custom functions
appear in the Insert Function dialog box along with Excel built-in functions, as if I’m re-engineer-
ing the software in some way.

In this chapter, I tell you what you need to know to start creating custom functions, and I provide
lots of examples.

An Introductory Function Example
Without further ado, this section presents an example of a VBA Function procedure.

Chapter 10: Creating Function Procedures 283

The following is a custom function defined in a VBA module. This function, named
RemoveVowels, uses a single argument. The function returns the argument, but with all the
vowels removed.

Function RemoveVowels(Txt) As String
‘ Removes all vowels from the Txt argument
 Dim i As Long
 RemoveVowels = “”
 For i = 1 To Len(Txt)
 If Not UCase(Mid(Txt, i, 1)) Like “[AEIOU]” Then
 RemoveVowels = RemoveVowels & Mid(Txt, i, 1)
 End If
 Next i
End Function

This function certainly isn’t the most useful one I’ve written, but it demonstrates some key con-
cepts related to functions. I explain how this function works later, in the “Analyzing the custom
function” section.

When you create custom functions that will be used in a worksheet formula, make sure
that the code resides in a normal VBA module. If you place your custom functions in a
code module for a UserForm, a Sheet, or ThisWorkbook, they won’t work in your for-
mulas. Your formulas will return a #NAME? error.

Using the function in a worksheet
When you enter a formula that uses the RemoveVowels function, Excel executes the code to
get the value. Here’s an example of how you’d use the function in a formula:

=RemoveVowels(A1)

See Figure 10-1 for examples of this function in action. The formulas are in column B, and they use
the text in column A as their arguments. As you can see, the function returns the single argu-
ment, but with the vowels removed.

Actually, the function works pretty much like any built-in worksheet function. You can insert it in
a formula by choosing Formulas➜Function Library➜Insert Function or by clicking the Insert
Function Wizard icon to the left of the formula bar. Either of these actions displays the Insert
Function dialog box. In the Insert Function dialog box, your custom functions are located, by
default, in the User Defined category.

You can also nest custom functions and combine them with other elements in your formulas. For
example, the following formula nests the RemoveVowels function inside Excel’s UPPER func-
tion. The result is the original string (sans vowels), converted to uppercase.

Part III: Understanding Visual Basic for Applications284

=UPPER(RemoveVowels(A1))

Figure 10-1: Using a custom function in a worksheet formula.

Using the function in a VBA procedure
In addition to using custom functions in worksheet formulas, you can use them in other VBA proce-
dures. The following VBA procedure, which is defined in the same module as the custom
RemoveVowels function, first displays an input box to solicit text from the user. Then the procedure
uses the VBA built-in MsgBox function to display the user input after the RemoveVowels function
processes it (see Figure 10-2). The original input appears as the caption in the message box.

Sub ZapTheVowels()
 Dim UserInput as String
 UserInput = InputBox(“Enter some text:”)
 MsgBox RemoveVowels(UserInput), vbInformation, UserInput
End Sub

In the example shown in Figure 10-2, the string entered in response to the InputBox function
was Excel 2010 Power Programming With VBA. The MsgBox function displays the text
without vowels.

Figure 10-2: Using a custom function in a VBA procedure.

Chapter 10: Creating Function Procedures 285

Analyzing the custom function
Function procedures can be as complex as you need them to be. Most of the time, they’re
more complex and much more useful than this sample procedure. Nonetheless, an analysis of this
example may help you understand what is happening.

Here’s the code, again:

Function RemoveVowels(Txt) As String
‘ Removes all vowels from the Txt argument
 Dim i As Long
 RemoveVowels = “”
 For i = 1 To Len(Txt)
 If Not UCase(Mid(Txt, i, 1)) Like “[AEIOU]” Then
 RemoveVowels = RemoveVowels & Mid(Txt, i, 1)
 End If
 Next i
End Function

Notice that the procedure starts with the keyword Function, rather than Sub, followed by the
name of the function (RemoveVowels). This custom function uses only one argument (Txt),
enclosed in parentheses. As String defines the data type of the function’s return value. Excel
uses the Variant data type if no data type is specified.

The second line is an optional comment that describes what the function does. This line is fol-
lowed by a Dim statement, which declares the variable (i) used in the procedure as type Long.

Notice that I use the function name as a variable here. When a function ends, it always
returns the current value of the variable that corresponds to the function’s name.

The next five instructions make up a For-Next loop. The procedure loops through each charac-
ter in the input and builds the string. The first instruction within the loop uses VBA’s Mid function
to return a single character from the input string and converts this character to uppercase. That
character is then compared to a list of characters by using VBA’s Like operator. In other words,
the If clause is true if the character isn’t A, E, I, O, or U. In such a case, the character is appended
to the RemoveVowels variable.

When the loop is finished, RemoveVowels consists of the input string with all the vowels
removed. This string is the value that the function returns.

The procedure ends with an End Function statement.

Keep in mind that you can do the coding for this function in a number of different ways. Here’s a
function that accomplishes the same result but is coded differently:

Function RemoveVowels(txt) As String
‘ Removes all vowels from the Txt argument
 Dim i As Long

Part III: Understanding Visual Basic for Applications286

 Dim TempString As String
 TempString = “”
 For i = 1 To Len(txt)
 Select Case ucase(Mid(txt, i, 1))
 Case “A”, “E”, “I”, “O”, “U”
 ‘Do nothing
 Case Else
 TempString = TempString & Mid(txt, i, 1)
 End Select
 Next i
 RemoveVowels = TempString
End Function

In this version, I used a string variable (TempString) to store the vowel-less string as it’s being
constructed. Then, before the procedure ends, I assigned the contents of TempString to the func-
tion’s name. This version also uses a Select Case construct rather than an If-Then construct.

Both versions of this function are available on the companion CD-ROM. The file is
named remove vowels.xlsm.

What custom worksheet functions can’t do
When you develop custom functions, it’s important to understand a key distinction between
functions that you call from other VBA procedures and functions that you use in worksheet for-
mulas. Function procedures used in worksheet formulas must be passive. For example, code
within a Function procedure can’t manipulate ranges or change things on the worksheet. An
example can help make this limitation clear.

You may be tempted to write a custom worksheet function that changes a cell’s formatting. For
example, it may be useful to have a formula that uses a custom function to change the color of
text in a cell based on the cell’s value. Try as you might, however, such a function is impossible
to write. No matter what you do, the function won’t change the worksheet. Remember, a func-
tion simply returns a value. It can’t perform actions with objects.

That said, I should point out one notable exception. You can change the text in a cell comment by
using a custom VBA function. I’m not sure if this behavior is intentional, or if it’s a bug in Excel. In
any case, modifying a comment via a function seems to work reliably. Here’s the function:

Function ModifyComment(Cell As Range, Cmt As String)
 Cell.Comment.Text Cmt
End Function

Here’s an example of using this function in a formula. The formula replaces the comment in cell
A1 with new text. The function won’t work if cell A1 doesn’t have a comment.

=ModifyComment(A1,”Hey, I changed your comment”)

Chapter 10: Creating Function Procedures 287

Function Procedures
A custom Function procedure has much in common with a Sub procedure. (For more informa-
tion on Sub procedures, see Chapter 9.)

The syntax for declaring a function is as follows:

[Public | Private][Static] Function name ([arglist])[As type]
 [instructions]
 [name = expression]
 [Exit Function]
 [instructions]
 [name = expression]
End Function

The Function procedure contains the following elements:

 Public: (Optional) Indicates that the Function procedure is accessible to all other
procedures in all other modules in all active Excel VBA projects.

 Private: (Optional) Indicates that the Function procedure is accessible only to other
procedures in the same module.

 Static: (Optional) Indicates that the values of variables declared in the Function pro-
cedure are preserved between calls.

 Function: (Required) Indicates the beginning of a procedure that returns a value or
other data.

 name: (Required) Represents any valid Function procedure name, which must follow
the same rules as a variable name.

 arglist: (Optional) Represents a list of one or more variables that represent arguments
passed to the Function procedure. The arguments are enclosed in parentheses. Use a
comma to separate pairs of arguments.

 type: (Optional) Is the data type returned by the Function procedure.

 instructions: (Optional) Are any number of valid VBA instructions.

 Exit Function: (Optional) Is a statement that forces an immediate exit from the
Function procedure prior to its completion.

 End Function: (Required) Is a keyword that indicates the end of the Function
procedure.

A key point to remember about a custom function written in VBA is that a value is always assigned
to the function’s name a minimum of one time, generally when it has completed execution.

Part III: Understanding Visual Basic for Applications288

To create a custom function, start by inserting a VBA module. You can use an existing module, as
long as it’s a normal VBA module. Enter the keyword Function, followed by the function name
and a list of its arguments (if any) in parentheses. You can also declare the data type of the
return value by using the As keyword (this is optional, but recommended). Insert the VBA code
that performs the work, making sure that the appropriate value is assigned to the term corre-
sponding to the function name at least once within the body of the Function procedure. End
the function with an End Function statement.

Function names must adhere to the same rules as variable names. If you plan to use your custom
function in a worksheet formula, be careful if the function name is also a cell address. For exam-
ple, if you use something like J21 as a function name, you can’t use the function in a worksheet
formula.

The best advice is to avoid using function names that are also cell references, including named
ranges. And, avoid using function names that correspond to Excel’s built-in function names. In
the case of a function name conflict, Excel always uses its built-in function.

A function’s scope
In Chapter 9, I discuss the concept of a procedure’s scope (public or private). The same discus-
sion applies to functions: A function’s scope determines whether it can be called by procedures in
other modules or in worksheets.

Here are a few things to keep in mind about a function’s scope:

 If you don’t declare a function’s scope, its default is Public.

 Functions declared As Private don’t appear in Excel’s Insert Function dialog box.
Therefore, when you create a function that should be used only in a VBA procedure, you
should declare it Private so that users don’t try to use it in a formula.

 If your VBA code needs to call a function that’s defined in another workbook, set up a
reference to the other workbook by choosing the Visual Basic Editor (VBE)
Tools➜References command.

Executing function procedures
Although you can execute a Sub procedure in many ways, you can execute a Function proce-
dure in only four ways:

 Call it from another procedure.

 Use it in a worksheet formula.

 Use it in a formula that’s used to specify conditional formatting.

 Call it from the VBE Immediate window.

Chapter 10: Creating Function Procedures 289

From a procedure
You can call custom functions from a VBA procedure the same way that you call built-in func-
tions. For example, after you define a function called SumArray, you can enter a statement like
the following:

Total = SumArray(MyArray)

This statement executes the SumArray function with MyArray as its argument, returns the
function’s result, and assigns it to the Total variable.

You also can use the Run method of the Application object. Here’s an example:

Total = Application.Run (“SumArray”, “MyArray”)

The first argument for the Run method is the function name. Subsequent arguments represent
the argument(s) for the function. The arguments for the Run method can be literal strings (as
shown above), numbers, or variables.

In a worksheet formula
Using custom functions in a worksheet formula is like using built-in functions except that you
must ensure that Excel can locate the Function procedure. If the Function procedure is in the
same workbook, you don’t have to do anything special. If it’s in a different workbook, you may
have to tell Excel where to find it.

You can do so in three ways:

 Precede the function name with a file reference. For example, if you want to use a func-
tion called CountNames that’s defined in an open workbook named Myfuncs.xlsm,
you can use the following reference:

=Myfuncs.xlsm!CountNames(A1:A1000)

 If you insert the function with the Insert Function dialog box, the workbook reference is
inserted automatically.

 Set up a reference to the workbook. You do so by choosing the VBE Tools➜References
command. If the function is defined in a referenced workbook, you don’t need to use the
worksheet name. Even when the dependent workbook is assigned as a reference, the
Paste Function dialog box continues to insert the workbook reference (although it’s not
necessary).

 Create an add-in. When you create an add-in from a workbook that has Function pro-
cedures, you don’t need to use the file reference when you use one of the functions in a
formula. The add-in must be installed, however. I discuss add-ins in Chapter 21.

Part III: Understanding Visual Basic for Applications290

You’ll notice that unlike Sub procedures, your Function procedures don’t appear in the Macro
dialog box when you issue the Developer➜Code➜Macros command. In addition, you can’t
choose a function when you issue the VBE Run➜Sub/UserForm command (or press F5) if the
cursor is located in a Function procedure. (You get the Macro dialog box that lets you choose a
macro to run.) As a result, you need to do a bit of extra up-front work to test your functions
while you’re developing them. One approach is to set up a simple procedure that calls the func-
tion. If the function is designed to be used in worksheet formulas, you’ll want to enter a simple
formula to test it.

In a conditional formatting formula
When you specify conditional formatting, one of the options is to create a formula. The formula
must be a logical formula (that is, it must return either TRUE or FALSE). If the formula returns
TRUE, the condition is met, and formatting is applied to the cell.

You can use custom VBA functions in your conditional formatting formulas. For example, here’s a
simple VBA function that returns TRUE if its argument is a cell that contains a formula:

Function CELLHASFORMULA(cell) As Boolean
 CELLHASFORMULA = cell.HasFormula
End Function

After defining this function in a VBA module, you can set up a conditional formatting rule so that
cells that contain a formula contain different formatting:

 1. Select the range that will contain the conditional formatting.

 For example, select A1:G20.

 2. Choose Home➜Styles➜Conditional Formatting➜New Rule.

 3. In the New Formatting Rule dialog box, select the option labeled Use a Formula to
Determine Which Cells to Format.

 4. Enter this formula in the formula box — but make sure that the cell reference argument
corresponds to the upper-left cell in the range that you selected in Step 1:

=CELLHASFORMULA(A1)

 5. Click the Format button to specify the formatting for cells that meet this condition.

 6. Click OK to apply the conditional formatting rule to the selected range.

Cells in the range that contain a formula will display the formatting you specified. Figure 10-3
shows the New Formatting Rule dialog box, specifying a custom function in a formula.

Chapter 10: Creating Function Procedures 291

Figure 10-3: Using a custom VBA function for conditional formatting.

From the VBE Immediate Window
The final way to call a Function procedure is from the VBE Immediate window. This method is
generally used only for testing purposes. Figure 10-4 shows an example.

Figure 10-4: Calling a Function procedure from the Immediate window.

Part III: Understanding Visual Basic for Applications292

Function Arguments
Keep in mind the following points about Function procedure arguments:

 Arguments can be variables (including arrays), constants, literals, or expressions.

 Some functions don’t have arguments.

 Some functions have a fixed number of required arguments (from 1 to 60).

 Some functions have a combination of required and optional arguments.

Reinventing the wheel
Just for fun, I wrote my own version of Excel’s UPPER function (which converts a string to all
uppercase) and named it UpCase:

Function UpCase(InString As String) As String
‘ Converts its argument to all uppercase.
 Dim StringLength As Integer
 Dim i As Integer
 Dim ASCIIVal As Integer
 Dim CharVal As Integer

 StringLength = Len(InString)
 UpCase = InString
 For i = 1 To StringLength
 ASCIIVal = Asc(Mid(InString, i, 1))
 CharVal = 0
 If ASCIIVal >= 97 And ASCIIVal <= 122 Then
 CharVal = -32
 Mid(UpCase, i, 1) = Chr(ASCIIVal + CharVal)
 End If
 Next i
End Function

Note: A workbook that contains this function is on the companion CD-ROM in a file named
upper case.xlsm.

Notice that I resisted the urge to take the easy route — using the VBA UCase function.

I was curious to see how the custom function differed from the built-in function, so I created a
worksheet that called the function 20,000 times, using random names. The worksheet took
about 20 seconds to calculate. I then substituted Excel’s UPPER function and ran the test again.
The recalculation time was virtually instantaneous. I don’t claim that my UpCase function is the
optimal algorithm for this task, but it’s safe to say that a custom function will never match the
speed of Excel’s built-in functions.

For another example of reinventing the wheel, see “Emulating Excel’s SUM Function,” later in
this chapter.

Chapter 10: Creating Function Procedures 293

If your formula uses a custom worksheet function and it returns #VALUE!, your function
has an error. The error may be caused by logical errors in your code or by passing
incorrect arguments to the function. See “Debugging Functions,” later in this chapter.

Function Examples
In this section, I present a series of examples that demonstrate how to use arguments effectively
with functions. By the way, this discussion also applies to Sub procedures.

Functions with no argument
Like Sub procedures, Function procedures need not have arguments. Excel, for example, has a
few built-in functions that don’t use arguments, including RAND, TODAY, and NOW. You can cre-
ate similar functions.

This section contains examples of functions that don’t use an argument.

A workbook that contains these functions is available on the companion CD-ROM. The
file is named no argument.xlsm.

Here’s a simple example of a function that doesn’t use an argument. The following function
returns the UserName property of the Application object. This name appears in the Excel
Options dialog box (General tab) and is stored in the Windows Registry.

Function User()
‘ Returns the name of the current user
 User = Application.UserName
End Function

When you enter the following formula, the cell returns the name of the current user (assuming
that it’s listed properly in the Registry):

=User()

When you use a function with no arguments in a worksheet formula, you must include a
set of empty parentheses. This requirement isn’t necessary if you call the function in a
VBA procedure, although including the empty parentheses does make it clear that
you’re calling a function.

To use this function in another procedure, you can assign it to a variable, use it in an expression,
or use it as an argument for another function.

Part III: Understanding Visual Basic for Applications294

The following example calls the User function and uses the return value as an argument for the
MsgBox statement. The concatenation operator (&) joins the literal string with the result of the
User function.

Sub ShowUser()
 MsgBox “Your name is “ & User()
End Sub

The User function demonstrates how you can create a wrapper function that simply returns a
property or the result of a VBA function. Following are three additional wrapper functions that
take no argument:

Function ExcelDir() As String
‘ Returns the directory in which Excel is installed
 ExcelDir = Application.Path
End Function

Function SheetCount()
‘ Returns the number of sheets in the workbook
 SheetCount = Application.Caller.Parent.Parent.Sheets.Count
End Function

Function SheetName()
‘ Returns the name of the worksheet
 SheetName = Application.Caller.Parent.Name
End Function

Here’s another example of a function that doesn’t take an argument. I used to use Excel’s RAND
function to quickly fill a range of cells with values. But I didn’t like the fact that the random num-
bers changed whenever the worksheet was recalculated. So I remedied this issue by converting
the formulas to values.

Then I realized that I could create a custom function that returned random numbers that didn’t
change. I used the VBA built-in Rnd function, which returns a random number between 0 and 1.
The custom function is as follows:

Function StaticRand()
‘ Returns a random number that doesn’t
‘ change when recalculated
 StaticRand = Rnd()
End Function

If you want to generate a series of random integers between 0 and 1,000, you can use a formula
such as this:

=INT(StaticRand()*1000)

Chapter 10: Creating Function Procedures 295

The values produced by this formula never change when the worksheet is calculated normally.
However, you can force the formula to recalculate by pressing Ctrl+Alt+F9.

A function with one argument
This section describes a function for sales managers who need to calculate the commissions
earned by their sales forces. The calculations in this example are based on the following table:

Monthly Sales Commission Rate

0–$9,999 8.0%

$10,000–$19,999 10.5%

$20,000–$39,999 12.0%

$40,000+ 14.0%

Controlling function recalculation
When you use a custom function in a worksheet formula, when is it recalculated?

Custom functions behave like Excel’s built-in worksheet functions. Normally, a custom function is
recalculated only when it needs to be — which is only when any of the function’s arguments are
modified. You can, however, force functions to recalculate more frequently. Adding the following
statement to a Function procedure makes the function recalculate whenever the sheet is recalcu-
lated. If you’re using automatic calculation mode, a calculation occurs whenever any cell is changed.

Application.Volatile True

The Volatile method of the Application object has one argument (either True or False).
Marking a Function procedure as volatile forces the function to be calculated whenever recal-
culation occurs for any cell in the worksheet.

For example, the custom StaticRand function can be changed to emulate Excel’s RAND func-
tion using the Volatile method:

Function NonStaticRand()
‘ Returns a random number that
‘ changes with each calculation
 Application.Volatile True
 NonStaticRand = Rnd()
End Function

Using the False argument of the Volatile method causes the function to be recalculated
only when one or more of its arguments change as a result of a recalculation. (If a function has
no arguments, this method has no effect.)

To force an entire recalculation, including nonvolatile custom functions, press Ctrl+Alt+F9. This
key combination will, for example, generate new random numbers for the StaticRand func-
tion presented in this chapter.

Part III: Understanding Visual Basic for Applications296

Note that the commission rate is nonlinear and also depends on the month’s total sales.
Employees who sell more earn a higher commission rate.

You can calculate commissions for various sales amounts entered into a worksheet in several
ways. If you’re not thinking too clearly, you can waste lots of time and come up with a lengthy
formula such as this one:

=IF(AND(A1>=0,A1<=9999.99),A1*0.08,
 IF(AND(A1>=10000,A1<=19999.99),A1*0.105,
 IF(AND(A1>=20000,A1<=39999.99),A1*0.12,
 IF(A1>=40000,A1*0.14,0))))

This approach is bad for a couple of reasons. First, the formula is overly complex, making it diffi-
cult to understand. Second, the values are hard-coded into the formula, making the formula diffi-
cult to modify.

A better (non-VBA) approach is to use a lookup table function to compute the commissions. For
example, the following formula uses VLOOKUP to retrieve the commission value from a range
named Table and multiplies that value by the value in cell A1.

=VLOOKUP(A1,Table,2)*A1

Yet another approach (which eliminates the need to use a lookup table) is to create a custom
function such as the following:

Function Commission(Sales)
 Const Tier1 = 0.08
 Const Tier2 = 0.105
 Const Tier3 = 0.12
 Const Tier4 = 0.14
‘ Calculates sales commissions
 Select Case Sales
 Case 0 To 9999.99: Commission = Sales * Tier1
 Case 1000 To 19999.99: Commission = Sales * Tier2
 Case 20000 To 39999.99: Commission = Sales * Tier3
 Case Is >= 40000: Commission = Sales * Tier4
 End Select
End Function

After you enter this function in a VBA module, you can use it in a worksheet formula or call the
function from other VBA procedures.

Entering the following formula into a cell produces a result of 3,000; the amount — 25,000 —
qualifies for a commission rate of 12 percent:

=Commission(25000)

Chapter 10: Creating Function Procedures 297

Even if you don’t need custom functions in a worksheet, creating Function procedures can
make your VBA coding much simpler. For example, if your VBA procedure calculates sales com-
missions, you can use the exact same function and call it from a VBA procedure. Here’s a tiny
procedure that asks the user for a sales amount and then uses the Commission function to cal-
culate the commission due:

Sub CalcComm()
 Dim Sales as Long
 Sales = InputBox(“Enter Sales:”)
 MsgBox “The commission is “ & Commission(Sales)
End Sub

The CalcComm procedure starts by displaying an input box that asks for the sales amount. Then
it displays a message box with the calculated sales commission for that amount.

This Sub procedure works, but it’s rather crude. Following is an enhanced version that displays
formatted values and keeps looping until the user clicks No (see Figure 10-5).

Figure 10-5: Using a function to display the result of a calculation.

Sub CalcComm()
 Dim Sales As Long
 Dim Msg As String, Ans As String

‘ Prompt for sales amount
 Sales = Val(InputBox(“Enter Sales:”, _
 “Sales Commission Calculator”))

‘ Build the Message
 Msg = “Sales Amount:” & vbTab & Format(Sales, “$#,##0.00”)
 Msg = Msg & vbCrLf & “Commission:” & vbTab
 Msg = Msg & Format(Commission(Sales), “$#,##0.00”)
 Msg = Msg & vbCrLf & vbCrLf & “Another?”

‘ Display the result and prompt for another
 Ans = MsgBox(Msg, vbYesNo, “Sales Commission Calculator”)
 If Ans = vbYes Then CalcComm
End Sub

Part III: Understanding Visual Basic for Applications298

This function uses two VBA built-in constants: vbTab represents a tab (to space the output), and
vbCrLf specifies a carriage return and line feed (to skip to the next line). VBA’s Format func-
tion displays a value in a specified format (in this case, with a dollar sign, comma, and two deci-
mal places).

In both of these examples, the Commission function must be available in the active workbook;
otherwise, Excel displays an error message saying that the function isn’t defined.

A function with two arguments
Imagine that the aforementioned hypothetical sales managers implement a new policy to help
reduce turnover: The total commission paid is increased by 1 percent for every year that the
salesperson has been with the company.

I modified the custom Commission function (defined in the preceding section) so that it takes
two arguments. The new argument represents the number of years. Call this new function
Commission2:

Function Commission2(Sales, Years)
‘ Calculates sales commissions based on
‘ years in service
 Const Tier1 = 0.08
 Const Tier2 = 0.105
 Const Tier3 = 0.12
 Const Tier4 = 0.14
 Select Case Sales
 Case 0 To 9999.99: Commission2 = Sales * Tier1
 Case 1000 To 19999.99: Commission2 = Sales * Tier2

Use arguments, not cell references
All ranges that are used in a custom function should be passed as arguments. Consider the fol-
lowing function, which returns the value in A1, multiplied by 2:

Function DoubleCell()
 DoubleCell = Range(“A1”) * 2
End Function

Although this function works, at times, it may return an incorrect result. Excel’s calculation
engine can’t account for ranges in your code that aren’t passed as arguments. Therefore, in
some cases, all precedents may not be calculated before the function’s value is returned. The
DoubleCell function should be written as follows, with A1 passed as the argument:

Function DoubleCell(cell)
 DoubleCell = cell * 2
End Function

Chapter 10: Creating Function Procedures 299

 Case 20000 To 39999.99: Commission2 = Sales * Tier3
 Case Is >= 40000: Commission2 = Sales * Tier4
 End Select
 Commission2 = Commission2 + (Commission2 * Years / 100)
End Function

Pretty simple, eh? I just added the second argument (Years) to the Function statement and
included an additional computation that adjusts the commission.

Here’s an example of how you can write a formula using this function (it assumes that the sales
amount is in cell A1 and the number of years the salesperson has worked is in cell B1):

=Commission2(A1,B1)

All these commission-related procedures are available on the companion CD-ROM in a
file named commission functions.xlsm.

A function with an array argument
A Function procedure also can accept one or more arrays as arguments, process the array(s),
and return a single value. The array can also consist of a range of cells.

The following function accepts an array as its argument and returns the sum of its elements:

Function SumArray(List) As Double
 Dim Item As Variant
 SumArray = 0
 For Each Item In List
 If WorksheetFunction.IsNumber(Item) Then _
 SumArray = SumArray + Item
 Next Item
End Function

Excel’s ISNUMBER function checks to see whether each element is a number before adding it to
the total. Adding this simple error-checking statement eliminates the type-mismatch error that
occurs when you try to perform arithmetic with something other than a number.

The following procedure demonstrates how to call this function from a Sub procedure. The
MakeList procedure creates a 100-element array and assigns a random number to each ele-
ment. Then the MsgBox function displays the sum of the values in the array by calling the
SumArray function.

Part III: Understanding Visual Basic for Applications300

Sub MakeList()
 Dim Nums(1 To 100) As Double
 Dim i as Integer
 For i = 1 To 100
 Nums(i) = Rnd * 1000
 Next i
 MsgBox SumArray(Nums)
End Sub

Notice that the SumArray function doesn’t declare the data type of its argument (it’s a variant).
Because it’s not declared as a specific numeric type, the function also works in your worksheet
formulas in which the argument is a Range object. For example, the following formula returns
the sum of the values in A1:C10:

=SumArray(A1:C10)

You might notice that, when used in a worksheet formula, the SumArray function works very
much like Excel’s SUM function. One difference, however, is that SumArray doesn’t accept multi-
ple arguments. Understand that this example is for educational purposes only. Using the
SumArray function in a formula offers absolutely no advantages over the Excel SUM function.

This example, named array argument.xlsm, is available on the companion CD-ROM.

A function with optional arguments
Many of Excel’s built-in worksheet functions use optional arguments. An example is the LEFT
function, which returns characters from the left side of a string. Its syntax is

LEFT(text,num_chars)

The first argument is required, but the second is optional. If the optional argument is omitted,
Excel assumes a value of 1. Therefore, the following two formulas return the same result:

=LEFT(A1,1)
=LEFT(A1)

The custom functions that you develop in VBA also can have optional arguments. You specify an
optional argument by preceding the argument’s name with the keyword Optional. In the argu-
ment list, optional arguments must appear after any required arguments.

Chapter 10: Creating Function Procedures 301

Following is a simple function example that returns the user’s name. The function’s argument is
optional.

Function User(Optional UpperCase As Variant)
 If IsMissing(UpperCase) Then UpperCase = False
 User = Application.UserName
 If UpperCase Then User = UCase(User)
End Function

If the argument is False or omitted, the user’s name is returned without any changes. If the
argument is True, the user’s name is converted to uppercase (using the VBA UCase function)
before it’s returned. Notice that the first statement in the procedure uses the VBA IsMissing
function to determine whether the argument was supplied. If the argument is missing, the state-
ment sets the UpperCase variable to False (the default value).

All the following formulas are valid, and the first two produce the same result:

=User()
=User(False)
=User(True)

If you need to determine whether an optional argument was passed to a function, you
must declare the optional argument as a Variant data type. Then you can use the
IsMissing function within the procedure, as demonstrated in this example. In other
words, the argument for the IsMissing function must always be a Variant data type.

The following is another example of a custom function that uses an optional argument. This func-
tion randomly chooses one cell from an input range and returns that cell’s contents. If the second
argument is True, the selected value changes whenever the worksheet is recalculated (that is,
the function is made volatile). If the second argument is False (or omitted), the function isn’t
recalculated unless one of the cells in the input range is modified.

Function DrawOne(Rng As Variant, Optional Recalc As Variant = False)
‘ Chooses one cell at random from a range
‘ Make function volatile if Recalc is True
 Application.Volatile Recalc
‘ Determine a random cell
 DrawOne = Rng(Int((Rng.Count) * Rnd + 1))
End Function

Notice that the second argument for DrawOne includes the Optional keyword, along with a
default value.

Part III: Understanding Visual Basic for Applications302

All the following formulas are valid, and the first two have the same effect:

=DrawOne(A1:A100)
=DrawOne(A1:A100,False)
=DrawOne(A1:A100,True)

This function might be useful for choosing lottery numbers, picking a winner from a list of names,
and so on.

This function is available on the companion CD-ROM. The filename is draw.xlsm.

A function that returns a VBA array
VBA includes a useful function called Array. The Array function returns a variant that contains an
array (that is, multiple values). If you’re familiar with array formulas in Excel, you have a head start
on understanding VBA’s Array function. You enter an array formula into a cell by pressing
Ctrl+Shift+Enter. Excel inserts curly braces around the formula to indicate that it’s an array formula.

See Chapter 3 for more details on array formulas.

It’s important to understand that the array returned by the Array function isn’t the
same as a normal array that’s made up of elements of the Variant data type. In other
words, a variant array isn’t the same as an array of variants.

The MonthNames function, which follows, is a simple example that uses VBA’s Array function in
a custom function:

Function MonthNames()
 MonthNames = Array(“Jan”, “Feb”, “Mar”, “Apr”,”May”, “Jun”, _
 “Jul”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”)
End Function

The MonthNames function returns a horizontal array of month names. You can create a multicell
array formula that uses the MonthNames function. Here’s how to use it: Make sure that the func-
tion code is present in a VBA module. Then in a worksheet, select multiple cells in a row (start by
selecting 12 cells). Then enter the formula that follows (without the braces) and press
Ctrl+Shift+Enter:

{=MonthNames()}

Chapter 10: Creating Function Procedures 303

What if you’d like to generate a vertical list of month names? No problem; just select a vertical
range, enter the following formula (without the braces), and then press Ctrl+Shift+Enter:

{=TRANSPOSE(MonthNames())}

This formula uses the Excel TRANSPOSE function to convert the horizontal array to a vertical
array.

The following example is a variation on the MonthNames function:

Function MonthNames(Optional MIndex)
 Dim AllNames As Variant
 Dim MonthVal As Long
 AllNames = Array(“Jan”, “Feb”, “Mar”, “Apr”, _
 “May”, “Jun”, “Jul”, “Aug”, “Sep”, “Oct”, _
 “Nov”, “Dec”)
 If IsMissing(MIndex) Then
 MonthNames = AllNames
 Else
 Select Case MIndex
 Case Is >= 1
‘ Determine month value (for example, 13=1)
 MonthVal = ((MIndex - 1) Mod 12)
 MonthNames = AllNames(MonthVal)
 Case Is <= 0 ‘ Vertical array
 MonthNames = Application.Transpose(AllNames)
 End Select
 End If
End Function

Notice that I use the VBA IsMissing function to test for a missing argument. In this situation, it
isn’t possible to specify the default value for the missing argument in the argument list of the
function because the default value is defined within the function. You can use the IsMissing
function only if the optional argument is a variant.

This enhanced function uses an optional argument that works as follows:

 If the argument is missing, the function returns a horizontal array of month names.

 If the argument is less than or equal to 0, the function returns a vertical array of month
names. It uses Excel’s TRANSPOSE function to convert the array.

 If the argument is greater than or equal to 1, it returns the month name that corresponds
to the argument value.

Part III: Understanding Visual Basic for Applications304

This procedure uses the Mod operator to determine the month value. The Mod operator
returns the remainder after dividing the first operand by the second. Keep in mind that
the AllNames array is zero-based and that indices range from 0 to 11. In the statement
that uses the Mod operator, 1 is subtracted from the function’s argument. Therefore, an
argument of 13 returns 0 (corresponding to Jan), and an argument of 24 returns 11
(corresponding to Dec).

You can use this function in a number of ways, as illustrated in Figure 10-6.

Range A1:L1 contains the following formula entered as an array. Start by selecting A1:L1, enter the
formula (without the braces), and then press Ctrl+Shift+Enter.

{=MonthNames()}

Range A3:A14 contains integers from 1 to 12. Cell B3 contains the following (nonarray) formula,
which was copied to the 11 cells below it:

=MonthNames(A3)

Range D3:D14 contains the following formula entered as an array:

{=MonthNames(-1)}

Figure 10-6: Different ways of passing an array or a single value to a worksheet.

Range F3 contains this (nonarray) formula:

=MonthNames(3)

Chapter 10: Creating Function Procedures 305

To enter an array formula, you must press Ctrl+Shift+Enter (and don’t enter the curly
braces).

The lower bound of an array, created using the Array function, is determined by the
lower bound specified with the Option Base statement at the top of the module. If
there is no Option Base statement, the default lower bound is 0.

A workbook that demonstrates the MonthNames function is available on the companion
CD-ROM. The file is named month names.xslm.

A function that returns an error value
In some cases, you might want your custom function to return a particular error value. Consider
the RemoveVowels function, which I presented earlier in this chapter:

Function RemoveVowels(Txt) As String
‘ Removes all vowels from the Txt argument
 Dim i As Long
 RemoveVowels = “”
 For i = 1 To Len(Txt)
 If Not UCase(Mid(Txt, i, 1)) Like “[AEIOU]” Then
 RemoveVowels = RemoveVowels & Mid(Txt, i, 1)
 End If
 Next i
End Function

When used in a worksheet formula, this function removes the vowels from its single-cell argu-
ment. If the argument is a numeric value, this function returns the value as a string. You may
prefer that the function returns an error value (#N/A), rather than the numeric value converted
to a string.

You may be tempted simply to assign a string that looks like an Excel formula error value. For
example:

RemoveVowels = “#N/A”

Although the string looks like an error value, other formulas that may reference it don’t treat it as
such. To return a real error value from a function, use the VBA CVErr function, which converts
an error number to a real error.

Part III: Understanding Visual Basic for Applications306

Fortunately, VBA has built-in constants for the errors that you want to return from a custom
function. These errors are Excel formula error values and not VBA runtime error values. These
constants are as follows:

 xlErrDiv0 (for #DIV/0!)

 xlErrNA (for #N/A)

 xlErrName (for #NAME?)

 xlErrNull (for #NULL!)

 xlErrNum (for #NUM!)

 xlErrRef (for #REF!)

 xlErrValue (for #VALUE!)

To return a #N/A error from a custom function, you can use a statement like this:

RemoveVowels = CVErr(xlErrNA)

The revised RemoveVowels function follows. This function uses an If-Then construct to take a
different action if the argument isn’t text. It uses Excel’s ISTEXT function to determine whether
the argument is text. If the argument is text, the function proceeds normally. If the cell doesn’t
contain text (or is empty), the function returns the #N/A error.

Function RemoveVowels(Txt) As Variant
‘ Removes all vowels from the Txt argument
‘ Returns #VALUE if Txt is not a string
 Dim i As Long
 RemoveVowels = “”
 If Application.WorksheetFunction.IsText(Txt) Then
 For i = 1 To Len(Txt)
 If Not UCase(Mid(Txt, i, 1)) Like “[AEIOU]” Then
 RemoveVowels = RemoveVowels & Mid(Txt, i, 1)
 End If
 Next i
 Else
 RemoveVowels = CVErr(xlErrNA)
 End If
End Function

Notice that I also changed the data type for the function’s return value. Because the
function can now return something other than a string, I changed the data type to
Variant.

Chapter 10: Creating Function Procedures 307

A function with an indefinite number of arguments
Some Excel worksheet functions take an indefinite number of arguments. A familiar example is
the SUM function, which has the following syntax:

SUM(number1,number2...)

The first argument is required, but you can specify as many as 254 additional arguments. Here’s
an example of a SUM function with four range arguments:

=SUM(A1:A5,C1:C5,E1:E5,G1:G5)

You can even mix and match the argument types. For example, the following example uses three
arguments: the first is a range, the second is a value, and the third is an expression.

=SUM(A1:A5,12,24*3)

You can create Function procedures that have an indefinite number of arguments. The trick is
to use an array as the last (or only) argument, preceded by the keyword ParamArray.

ParamArray can apply only to the last argument in the procedure’s argument list. It’s
always a Variant data type, and it’s always an optional argument (although you don’t
use the Optional keyword).

Following is a function that can have any number of single-value arguments. (It doesn’t work
with multicell range arguments.) It simply returns the sum of the arguments.

Function SimpleSum(ParamArray arglist() As Variant) As Double
 For Each arg In arglist
 SimpleSum = SimpleSum + arg
 Next arg
End Function

To modify this function so that it works with multicell range arguments, you need to add another
loop, which processes each cell in each of the arguments:

Function SimpleSum(ParamArray arglist() As Variant) As Double
 Dim cell As Range
 For Each arg In arglist
 For Each cell In arg
 SimpleSum = SimpleSum + cell
 Next cell
 Next arg
End Function

Part III: Understanding Visual Basic for Applications308

The SimpleSum function is similar to Excel’s SUM function, but it’s not nearly as flexible. Try it
by using various types of arguments, and you’ll see that it fails if any of the cells contains a non-
value, or if you use a literal value for an argument.

Emulating Excel’s SUM function
In this section, I present a custom function called MySum. Unlike the SimpleSum function listed
in the previous section, the MySum function emulates Excel’s SUM function (almost) perfectly.

Before you look at the code for MySum, take a minute to think about the Excel SUM function. It is,
in fact, very versatile. It can have as many as 255 arguments (even “missing” arguments), and the
arguments can be numerical values, cells, ranges, text representations of numbers, logical values,
and even embedded functions. For example, consider the following formula:

=SUM(B1,5,”6”,,TRUE,SQRT(4),A1:A5,D:D,C2*C3)

This perfectly valid formula contains all the following types of arguments, listed here in the order
of their presentation:

 A single cell reference

 A literal value

 A string that looks like a value

 A missing argument

 A logical TRUE value

 An expression that uses another function

 A simple range reference

 A range reference that includes an entire column

 An expression that calculates the product of two cells

The MySum function (see Listing 10-1) handles all these argument types.

A workbook containing the MySum function is available on the companion CD-ROM. The
file is named mysum function.xlsm.

Listing 10-1: MySum Function
Function MySum(ParamArray args() As Variant) As Variant
‘ Emulates Excel’s SUM function

‘ Variable declarations

Chapter 10: Creating Function Procedures 309

 Dim i As Variant
 Dim TempRange As Range, cell As Range
 Dim ECode As String
 Dim m, n
 MySum = 0
‘ Process each argument
 For i = 0 To UBound(args)
‘ Skip missing arguments
 If Not IsMissing(args(i)) Then
‘ What type of argument is it?
 Select Case TypeName(args(i))
 Case “Range”
‘ Create temp range to handle full row or column ranges
 Set TempRange = Intersect(args(i).Parent.UsedRange, _
 args(i))
 For Each cell In TempRange
 If IsError(cell) Then
 MySum = cell ‘ return the error
 Exit Function
 End If
 If cell = True Or cell = False Then
 MySum = MySum + 0
 Else
 If IsNumeric(cell) Or IsDate(cell) Then _
 MySum = MySum + cell
 End If
 Next cell
 Case “Variant()”
 n = args(i)
 For m = LBound(n) To UBound(n)
 MySum = MySum(MySum, n(m)) ‘recursive call
 Next m
 Case “Null” ‘ignore it
 Case “Error” ‘return the error
 MySum = args(i)
 Exit Function
 Case “Boolean”
‘ Check for literal TRUE and compensate
 If args(i) = “True” Then MySum = MySum + 1
 Case “Date”
 MySum = MySum + args(i)
 Case Else
 MySum = MySum + args(i)
 End Select
 End If
 Next i
End Function

Part III: Understanding Visual Basic for Applications310

Figure 10-7 shows a workbook with various formulas that use SUM and MySum. As you can see,
the functions return identical results.

Figure 10-7: Comparing SUM with MySum.

If you’re interested in learning how this function works, create a formula that uses the function.
Then, set a breakpoint in the code and step through the statements line by line. (See “Debugging
Functions,” later in this chapter.) Try this for several different argument types, and you’ll soon
have a good feel for how this function works. As you study the code for MySum, keep the follow-
ing points in mind:

 Missing arguments (determined by the IsMissing function) are simply ignored.

 The procedure uses VBA’s TypeName function to determine the type of argument
(Range, Error, and so on). Each argument type is handled differently.

 For a range argument, the function loops through each cell in the range, determines the
type of data in the cell, and (if appropriate) adds its value to a running total.

 The data type for the function is Variant because the function needs to return an error
if any of its arguments is an error value.

 If an argument contains an error (for example, #DIV/0!), the MySum function simply
returns the error — just as Excel’s SUM function does.

 Excel’s SUM function considers a text string to have a value of 0 unless it appears as a lit-
eral argument (that is, as an actual value, not a variable). Therefore, MySum adds the
cell’s value only if it can be evaluated as a number. (VBA’s IsNumeric function is used
to determine whether a string can be evaluated as a number.)

 For range arguments, the function uses the Intersect method to create a temporary
range that consists of the intersection of the range and the sheet’s used range. This tech-
nique handles cases in which a range argument consists of a complete row or column,
which would take forever to evaluate.

You may be curious about the relative speeds of SUM and MySum. MySum, of course, is much
slower, but just how much slower depends on the speed of your system and the formulas them-
selves. On my system, a worksheet with 5,000 SUM formulas recalculates instantly. After I
replace the SUM functions with MySum functions, it takes about eight seconds. MySum may be
improved a bit, but it can never come close to SUM’s speed.

Chapter 10: Creating Function Procedures 311

By the way, I hope you understand that the point of this example is not to create a new SUM
function. Rather, it demonstrates how to create custom worksheet functions that look and work
like those built into Excel.

Extended Date Functions
A common complaint among Excel users is the inability to work with dates prior to 1900. For
example, genealogists often use Excel to keep track of birth and death dates. If either of those
dates occurs in a year prior to 1900, calculating the number of years the person lived isn’t possible.

I created a series of functions that take advantage of the fact that VBA can work with a much
larger range of dates. The earliest date recognized by VBA is January 1, 0100.

Beware of Calendar changes. Be careful if you use dates prior to 1752. Differences
between the historical American, British, Gregorian, and Julian calendars can result in
inaccurate computations.

The functions are

 XDATE(y,m,d,fmt): Returns a date for a given year, month, and day. As an option, you
can provide a date formatting string.

 XDATEADD(xdate1,days,fmt): Adds a specified number of days to a date. As an option,
you can provide a date formatting string.

 XDATEDIF(xdate1,xdate2): Returns the number of days between two dates.

 XDATEYEARDIF(xdate1,xdate2): Returns the number of full years between two dates
(useful for calculating ages).

 XDATEYEAR(xdate1): Returns the year of a date.

 XDATEMONTH(xdate1): Returns the month of a date.

 XDATEDAY(xdate1): Returns the day of a date.

 XDATEDOW(xdate1): Returns the day of the week of a date (as an integer between 1 and
7).

Figure 10-8 shows a workbook that uses some of these functions.

Keep in mind that the date returned by these functions is a string, not a real date. Therefore, you
can’t perform mathematical operations on the returned value using Excel’s standard operators.
You can, however, use the return value as an argument for other Extended Date functions.

Part III: Understanding Visual Basic for Applications312

Figure 10-8: The Extended Date functions used in formulas.

The functions are surprisingly simple. For example, here’s the listing for the XDATE function:

Function XDATE(y, m, d, Optional fmt As String) As String
 If IsMissing(fmt) Then fmt = “Short Date”
 XDATE = Format(DateSerial(y, m, d), fmt)
End Function

The arguments for XDATE are

 y: A four-digit year in the range 0100 to 9999

 m: A month number (1–12)

 d: A day number (1–31)

 fmt: (Optional) A date format string

If the fmt argument is omitted, the date is displayed using the system’s short date setting (as
specified in the Windows Control Panel).

Chapter 10: Creating Function Procedures 313

If the m or d argument exceeds a valid number, it rolls over into the next year or month. For
example, if you specify a month of 13, it’s interpreted as January of the next year.

The VBA code for the Extended Data functions is available on the companion CD-ROM.
The filename is extended date function.xlsm. The CD also contains some docu-
mentation for these functions in a Word document named extended date func-
tions help.docx.

Debugging Functions
When you’re using a formula in a worksheet to test a Function procedure, VBA runtime errors
don’t appear in the all-too-familiar, pop-up error box. If an error occurs, the formula simply
returns an error value (#VALUE!). Luckily, the lack of a pop-up error message doesn’t present a
problem for debugging functions because you have several possible workarounds:

 Place MsgBox functions at strategic locations to monitor the value of specific variables.
Message boxes in Function procedures do pop up when the procedure is executed. But
make sure that you have only one formula in the worksheet that uses your function, or
message boxes will appear for each formula that is evaluated, which is a repetition that
will quickly become annoying.

 Test the procedure by calling it from a Sub procedure, not from a worksheet formula.
Runtime errors are displayed in the usual manner, and you can either fix the problem (if
you know it) or jump right into the Debugger.

 Set a breakpoint in the function and then step through the function. You then can
access all the standard VBA debugging tools. To set a breakpoint, move the cursor to the
statement at which you want to pause execution and then choose Debug➜Toggle
Breakpoint (or press F9). When the function is executing, press F8 to step through the
procedure line-by-line.

 Use one or more temporary Debug.Print statements in your code to write values to
the VBE Immediate window. For example, if you want to monitor a value inside of a loop,
use something like the following routine:

Function VowelCount(r) As Long
 Dim Count As Long
 Dim i As Long
 Dim Ch As String * 1
 Count = 0
 For i = 1 To Len(r)
 Ch = UCase(Mid(r, i, 1))
 If Ch Like “[AEIOU]” Then
 Count = Count + 1
 Debug.Print Ch, i
 End If

Part III: Understanding Visual Basic for Applications314

 Next i
 VowelCount = Count
End Function

 In this case, the values of two variables, Ch and i, are printed to the Immediate window
whenever the Debug.Print statement is encountered. Figure 10-9 shows the result
when the function has an argument of Tucson Arizona.

Figure 10-9: Use the Immediate window to display results while a function is running.

Dealing with the Insert Function Dialog Box
Excel’s Insert Function dialog box is a handy tool. When you’re creating a worksheet formula, this
tool lets you select a particular worksheet function from a list of functions. These functions are
grouped into various categories to make locating a particular function easier. When you select a
function and click OK, the Function Arguments dialog box appears to help insert the function’s
arguments. Figure 10-10 shows both of these dialog boxes.

The Insert Function dialog box also displays your custom worksheet functions. By default, custom
functions are listed under the User Defined category. The Function Arguments dialog box
prompts you for a custom function’s arguments.

Chapter 10: Creating Function Procedures 315

Figure 10-10: The Insert Function dialog box makes it easy to enter a function into a formula, and the
Function Arguments dialog box prompts for the arguments.

The Insert Function dialog box enables you to search for a function by keyword. Unfortunately,
you can’t use this search feature to locate custom functions created in VBA.

Custom Function procedures defined with the Private keyword don’t appear in the
Insert Function dialog box. If you develop a function that’s intended to be used only in
your other VBA procedures, you should declare it by using the Private keyword.
However, declaring the function as Private doesn’t prevent it from being used in a
worksheet formula. It just prevents the function from displaying in the Insert Function
dialog box.

Using the MacroOptions method
You can use the MacroOptions method of the Application object to make your functions
appear just like built-in functions. Specifically, this method enables you to:

 Provide a description of the function

 Specify a function category

 Provide descriptions for the function arguments.

Part III: Understanding Visual Basic for Applications316

Following is an example of a procedure that uses the MacroOptions method to provide infor-
mation about a function.

Sub DescribeFunction()
 Dim FuncName As String
 Dim FuncDesc As String
 Dim FuncCat As Long
 Dim Arg1Desc As String, Arg2Desc As String

 FuncName = “DrawOne”
 FuncDesc = “Displays the contents of a random cell from a range”
 FuncCat = 5 ‘Lookup & Reference
 Arg1Desc = “The range that contains the values”
 Arg2Desc = “(Optional) If False or missing, a new cell is not “
 Arg2Desc = Arg2Desc & “selected when recalculated. If True, a “
 Arg2Desc = Arg2Desc & “new cell is selected when recalculated.”

 Application.MacroOptions _
 Macro:=FuncName, _
 Description:=FuncDesc, _
 Category:=FuncCat, _
 ArgumentDescriptions:=Array(Arg1Desc, Arg2Desc) End Sub

This procedure uses variables to store the various information, and the variables are used as
arguments for the MacroOptions method. The function is assigned to function category 5
(Lookup & Reference). Notice that descriptions for the two arguments are indicated by using an
array as the last argument for the MacroOptions method.

The ability to provide argument descriptions is new to Excel 2010. If the workbook
is opened in an early version of Excel, however, the arguments won’t display the
descriptions.

Figure 10-11 shows the Insert Function and Function Arguments dialog boxes after executing this
procedure.

You need to execute the DescribeFunction procedure only one time. After doing so, the
information assigned to the function is stored in the workbook. You can also omit arguments. For
example, if you don’t need the arguments to have descriptions, just omit the
ArgumentDescriptions argument.

For information on creating a custom help topic accessible from the Insert Function
dialog box, refer to Chapter 24.

Chapter 10: Creating Function Procedures 317

Figure 10-11: The Insert Function and Function Arguments dialog boxes for a custom function.

Specifying a function category
If you don’t use the MacroOptions method to specify a different category, your custom work-
sheet functions appear in the User Defined category in the Insert Function dialog box. You may
prefer to assign your function to a different category. Assigning a function to a category also
causes it to appear in the drop-down controls in the Formulas➜Function Library group on the
Ribbon.

Table 10-1 lists the category numbers that you can use for the Category argument for the
MacroOptions method. Notice that a few of these categories (10 through 13) aren’t normally
displayed in the Insert Function dialog box. If you assign your function to one of these categories,
the category will appear in the dialog box.

Table 10-1: Function Categories

Category Number Category Name

0 All (no specific category)

1 Financial

2 Date & Time

3 Math & Trig

4 Statistical

5 Lookup & Reference

6 Database

7 Text

8 Logical

9 Information

continued

Part III: Understanding Visual Basic for Applications318

Table 10-1: Function Categories
Category Number Category Name

12 Macro Control

13 DDE/External

14 User Defined

15 Engineering

16 Cube

17 Compatibility*
*The Compatibility category is new to Excel 2010.

You can also create custom function categories. Instead of using a number for the Category
argument for MacroOptions, use a text string. The statement that follows creates a new func-
tion category named VBA Functions, and assigns the Commission function to this category:

Application.MacroOptions Macro:=”Commission”, Category:=”VBA Functions”

Adding a function description manually
As an alternative to using the MacroOptions method to provide a function description, you can
use the Macro dialog box.

If you don’t provide a description for your custom function, the Insert Function dialog
box displays the following text: No help available.

Follow these steps to provide a description for a custom function:

 1. Create your function in the VBE.

 2. Activate Excel, making sure that the workbook that contains the function is the active
workbook.

 3. Choose Developer➜Code➜Macros (or press Alt+F8).

 The Macro dialog box lists available procedures, but your functions won’t be in the list.

 4. Type the name of your function in the Macro Name box.

 5. Click the Options button to display the Macro Options dialog box.

 6. Enter the function description in the Description box (see Figure 10-12).

 The Shortcut Key field is irrelevant for functions.

Chapter 10: Creating Function Procedures 319

Figure 10-12: Provide a function description in the Macro Options dialog box.

 7. Click OK and then click Cancel.

After you perform the preceding steps, the Insert Function dialog box displays the description
that you entered in Step 6 when the function is selected.

When you use the Insert Function dialog box to enter a function, the Function Arguments dialog
box is displayed after you click OK. For built-in functions, the Function Arguments dialog box dis-
plays a description for each of the function’s arguments. Unfortunately, you can’t provide such
descriptions for custom function arguments.

Using Add-ins to Store Custom Functions
You may prefer to store frequently used custom functions in an add-in file. A primary advantage
is that you can use those functions in any workbook.

In addition, you can use the functions in formulas without a filename qualifier. Assume that you
have a custom function named ZapSpaces, and that it’s stored in Myfuncs.xlsm. To use this
function in a formula in a workbook other than Myfuncs.xlsm, you need to enter the following
formula:

=Myfuncs.xlsm!ZapSpaces(A1:C12)

If you create an add-in from Myfuncs.xlsm and the add-in is loaded, you can omit the file ref-
erence and enter a formula such as the following:

=ZapSpaces(A1:C12)

I discuss add-ins in Chapter 21.

Part III: Understanding Visual Basic for Applications320

A potential problem with using add-ins to store custom functions is that your workbook
is dependent on the add-in file. If you need to share your workbook with a colleague,
you also need to share a copy of the add-in that contains the functions.

Using the Windows API
VBA can borrow methods from other files that have nothing to do with Excel or VBA — for exam-
ple, the Dynamic Link Library (DLL) files that Windows and other software use. As a result, you
can do things with VBA that would otherwise be outside the language’s scope.

The Windows Application Programming Interface (API) is a set of functions available to Windows
programmers. When you call a Windows function from VBA, you’re accessing the Windows API.
Many of the Windows resources used by Windows programmers are available in DLLs, which
store programs and functions and are linked at runtime rather than at compile time.

64-bit Excel and API functions
Excel 2010 adds a new challenge to using Windows API functions in your code because
Excel 2010 is also available in a 64-bit version. If you want your code to be compatible
with the 32-bit versions (including Excel 2007) and 64-bit version of Excel 2010, you need

to declare your API functions twice, using compiler directives to ensure that the correct declara-
tion is used.

For example, the following declaration works with 32-bit Excel versions, but causes a compile
error with 64-bit Excel 2010:

Declare Function GetWindowsDirectoryA Lib “kernel32” _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long

In many cases, making the declaration compatible with 64-bit Excel is as simple as adding the
word PtrSafe after the Declare keyword. The following declaration is compatible with both
32-bit Excel 2010 and 64-bit Excel 2010:

Declare PtrSafe Function GetWindowsDirectoryA Lib “kernel32” _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long

However, the code will fail in Excel 2007 (and earlier versions) because the PtrSafe keyword is
not recognized.

In Chapter 26, I describe how to make API function declarations compatible with all versions of
32-bit Excel and 64-bit Excel 2010.

Chapter 10: Creating Function Procedures 321

Windows API examples
Before you can use a Windows API function, you must declare the function at the top of your
code module. If the code module is for a UserForm, Sheet, or ThisWorkbook, you must
declare the API function as Private.

An API function must be declared precisely. The declaration statement tells VBA:

 Which API function you’re using

 In which library the API function is located

 The API function’s arguments

After you declare an API function, you can use it in your VBA code.

Determining the Windows directory
This section contains an example of an API function that displays the name of the Windows
directory — something that’s not possible using standard VBA statements. This code won’t work
with Excel 2007.

Here’s the API function declaration:

Declare PtrSafe Function GetWindowsDirectoryA Lib “kernel32” _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long

This function, which has two arguments, returns the name of the directory in which Windows is
installed. After calling the function, the Windows directory is contained in lpBuffer, and the
length of the directory string is contained in nSize.

After inserting the Declare statement at the top of your module, you can access the function
by calling the GetWindowsDirectoryA function. The following is an example of calling the
function and displaying the result in a message box:

Sub ShowWindowsDir()
 Dim WinPath As String * 255
 Dim WinDir As String
 WinPath = Space(255)
 WinDir = Left(WinPath, GetWindowsDirectoryA _
 (WinPath, Len(WinPath)))
 MsgBox WinDir, vbInformation, “Windows Directory”
End Sub

Executing the ShowWindowsDir procedure displays a message box with the Windows directory.

Part III: Understanding Visual Basic for Applications322

Often, you’ll want to create a wrapper for API functions. In other words, you create your own
function that uses the API function. This greatly simplifies using the API function. Here’s an exam-
ple of a wrapper VBA function:

Function WindowsDir() As String
‘ Returns the Windows directory
 Dim WinPath As String * 255
 WinPath = Space(255)
 WindowsDir = Left(WinPath, GetWindowsDirectoryA _
 (WinPath, Len(WinPath)))
End Function

After declaring this function, you can call it from another procedure:

MsgBox WindowsDir()

You can even use the function in a worksheet formula:

=WindowsDir()

This example is available on the companion CD-ROM. The filename is windows direc-
tory.xlsm, and the API function declaration is compatible with Excel 2007 and later.

The reason for using API calls is to perform actions that would otherwise be impossible (or at
least very difficult). If your application needs to find the path of the Windows directory, you
could search all day and not find a function in Excel or VBA to do the trick. But knowing how to
access the Windows API may solve your problem.

When you work with API calls, system crashes during testing aren’t uncommon, so save
your work often.

Detecting the Shift key
Here’s another example: Suppose that you’ve written a VBA macro that will be executed by click-
ing a button on a worksheet. Furthermore, suppose that you want the macro to perform differ-
ently if the user presses the Shift key when the button is clicked. VBA doesn’t provide a way to
detect whether the Shift key is pressed. But you can use the GetKeyState API function to find
out. The GetKeyState function tells you whether a particular key is pressed. It takes a single
argument, nVirtKey, which represents the code for the key that you’re interested in.

The following code demonstrates how to detect whether the Shift key is pressed when the
Button_Click event handler procedure is executed. Notice that I define a constant for the

Chapter 10: Creating Function Procedures 323

Shift key (using a hexadecimal value) and then use this constant as the argument for
GetKeyState. If GetKeyState returns a value less than zero, it means that the Shift key was
pressed; otherwise, the Shift key wasn’t pressed. This code isn’t compatible with Excel 2007.

Declare PtrSafe Function GetKeyState Lib “user32” _
 (ByVal nVirtKey As Long) As Integer
Sub Button_Click()
 Const VK_SHIFT As Integer = &H10
 If GetKeyState(VK_SHIFT) < 0 Then
 MsgBox “Shift is pressed”
 Else
 MsgBox “Shift is not pressed”
 End If
End Sub

A workbook named key press.xlsm on the companion CD-ROM demonstrates how
to detect the following keys (as well as any combinations): Ctrl, Shift, and Alt. The dec-
larations in this file aren’t compatibile with 64-bit Excel. The API function declaration in
this workbook is compatible with Excel 2007 and later.

Learning more about API functions
Working with the Windows API functions can be tricky. Many programming reference books list
the declarations for common API calls and often provide examples. Usually, you can simply copy
the declarations and use the functions without really understanding the details. In reality (at least
the reality that I’ve seen), most Excel programmers take a cookbook approach to API functions.
The Internet has dozens of examples that you can copy and paste and that work quite reliably.

Chapter 11 has several additional examples of using Windows API functions.

The companion CD-ROM includes a file named win32api.txt, which is a text file that
contains Windows API declarations and constants. You can open this file with a text
editor and copy the appropriate declarations to a VBA module.

Part III: Understanding Visual Basic for Applications324

325

11
VBA Programming
Examples and Techniques
In This Chapter

● Using VBA to work with ranges

● Using VBA to work with workbooks and sheets

● Creating custom functions for use in your VBA procedures and in worksheet formulas

● Trying miscellaneous VBA tricks and techniques

● Using Windows Application Programming Interface (API) functions

Learning by Example
I believe that learning programming concepts is accelerated by a heavy emphasis on examples.
And based on the feedback that I’ve received from readers of previous editions of this book, I
have plenty of company. VBA programmers especially benefit from a hands-on approach. A well-
thought-out example usually communicates a concept much better than a description of the
underlying theory. I decided, therefore, not to write a reference book that painstakingly describes
every nuance of VBA. Rather, I prepared numerous examples to demonstrate useful Excel pro-
gramming techniques.

The previous chapters in this part provide enough information to get you started. The Help sys-
tem provides all the details that I left out. In this chapter, I pick up the pace and present examples
that solve practical problems while furthering your knowledge of VBA.

I’ve categorized this chapter’s examples into six groups:

 Working with ranges

 Working with workbooks and sheets

 VBA techniques

Part III: Understanding Visual Basic for Applications326

 Functions that are useful in your VBA procedures

 Functions that you can use in worksheet formulas

 Windows API calls

Subsequent chapters in this book present additional feature-specific examples: charts,
pivot tables, events, UserForms, and so on.

Working with Ranges
The examples in this section demonstrate how to manipulate worksheet ranges with VBA.

Specifically, I provide examples of copying a range, moving a range, selecting a range, identifying
types of information in a range, prompting for a cell value, determining the first empty cell in a
column, pausing a macro to allow the user to select a range, counting cells in a range, looping
through the cells in a range, and several other commonly used range-related operations.

Copying a range
Excel’s macro recorder is useful not so much for generating usable code, but for discovering the
names of relevant objects, methods, and properties. The code that’s generated by the macro
recorder isn’t always the most efficient, but it can usually provide you with several clues.

For example, recording a simple copy-and-paste operation generates five lines of VBA code:

Sub Macro1()
 Range(“A1”).Select
 Selection.Copy
 Range(“B1”).Select
 ActiveSheet.Paste
 Application.CutCopyMode = False
End Sub

Using the examples in this chapter
Not all the examples in this chapter are intended to be stand-alone programs. They are, how-
ever, set up as usable procedures that you can adapt for your own applications.

I urge you to follow along on your computer as you read this chapter. Better yet, modify the
examples and see what happens. I guarantee that this hands-on experience will help you more
than reading a reference book.

Chapter 11: VBA Programming Examples and Techniques 327

Notice that the generated code selects cell A1, copies it, and then selects cell B1 and performs the
paste operation. But in VBA, you don’t need to select an object to work with it. You would never
learn this important point by mimicking the preceding recorded macro code, where two state-
ments incorporate the Select method. You can replace this procedure with the following much
simpler routine, which doesn’t select any cells. It also takes advantage of the fact that the Copy
method can use an argument that represents the destination for the copied range.

Sub CopyRange()
 Range(“A1”).Copy Range(“B1”)
End Sub

Both of these macros assume that a worksheet is active and that the operation takes place on the
active worksheet. To copy a range to a different worksheet or workbook, simply qualify the range
reference for the destination. The following example copies a range from Sheet1 in File1.
xlsx to Sheet2 in File2.xlsx. Because the references are fully qualified, this example works
regardless of which workbook is active.

Sub CopyRange2()
 Workbooks(“File1.xlsx”).Sheets(“Sheet1”).Range(“A1”).Copy _
 Workbooks(“File2.xlsx”).Sheets(“Sheet2”).Range(“A1”)
End Sub

Another way to approach this task is to use object variables to represent the ranges, as shown in
the code that follows:

Sub CopyRange3()
 Dim Rng1 As Range, Rng2 As Range
 Set Rng1 = Workbooks(“File1.xlsx”).Sheets(“Sheet1”).Range(“A1”)
 Set Rng2 = Workbooks(“File2.xlsx”).Sheets(“Sheet2”).Range(“A1”)
 Rng1.Copy Rng2
End Sub

As you might expect, copying isn’t limited to one single cell at a time. The following procedure,
for example, copies a large range. Notice that the destination consists of only a single cell (which
represents the upper-left cell for the destination). Using a single cell for the destination works
just like it does when you copy and paste a range manually in Excel.

Sub CopyRange4()
 Range(“A1:C800”).Copy Range(“D1”)
End Sub

Part III: Understanding Visual Basic for Applications328

Moving a range
The VBA instructions for moving a range are very similar to those for copying a range, as the fol-
lowing example demonstrates. The difference is that you use the Cut method instead of the
Copy method. Note that you need to specify only the upper-left cell for the destination range.

The following example moves 18 cells (in A1:C6) to a new location, beginning at cell H1:

Sub MoveRange1()
 Range(“A1:C6”).Cut Range(“H1”)
End Sub

Copying a variably sized range
In many cases, you need to copy a range of cells, but you don’t know the exact row and column
dimensions of the range. For example, you might have a workbook that tracks weekly sales, and
the number of rows changes weekly when you add new data.

Figure 11-1 shows a common type of worksheet. This range consists of several rows, and the num-
ber of rows changes each week. Because you don’t know the exact range address at any given
time, writing a macro to copy the range requires additional coding.

Figure 11-1: The number of rows in the data range changes every week.

The following macro demonstrates how to copy this range from Sheet1 to Sheet2 (beginning
at cell A1). It uses the CurrentRegion property, which returns a Range object that corre-
sponds to the block of cells around a particular cell (in this case, A1).

Sub CopyCurrentRegion2()
 Range(“A1”).CurrentRegion.Copy Sheets(“Sheet2”).Range(“A1”)
End Sub

Chapter 11: VBA Programming Examples and Techniques 329

Using the CurrentRegion property is equivalent to choosing the Home➜Editing➜

Find & Select➜Go To Special command and selecting the Current Region option (or by
using the Ctrl+Shift+* shortcut). To see how CurrentRegion selection works, record
your actions while you issue that command. Generally, the CurrentRegion property
setting consists of a rectangular block of cells surrounded by one or more blank rows
or columns.

If the range to be copied is a table (specified using Insert➜Tables➜Table), you can use code like
this (which assumes the table is named Table1):

Sub CopyTable()
 Range(“Table1[#All]”).Copy Sheets(“Sheet2”).Range(“A1”)End Sub

Tips for working with ranges
When you work with ranges, keep the following points in mind:

● Your code doesn’t need to select a range in order to work with it.
● You can’t select a range that’s not on the active worksheet. So if your code does select a

range, its worksheet must be active. You can use the Activate method of the
Worksheets collection to activate a particular sheet.

● Remember that the macro recorder doesn’t always generate the most efficient code.
Often, you can create your macro by using the recorder and then edit the code to make it
more efficient.

● Using named ranges in your VBA code is a good idea. For example, referring to
Range(“Total”) is better than Range(“D45”). In the latter case, if you add a row
above row 45, the cell address will change. You would then need to modify the macro so
that it uses the correct range address (D46).

● If you rely on the macro recorder when selecting ranges, make sure that you record the
macro using relative references. Use the Developer➜Code➜Use Relative References con-
trol to toggle this setting.

● When running a macro that works on each cell in the current range selection, the user
might select entire columns or rows. In most cases, you don’t want to loop through every
cell in the selection. Your macro should create a subset of the selection consisting of only
the nonblank cells. See “Looping through a selected range efficiently,” later in this chapter.

● Excel allows multiple selections. For example, you can select a range, press Ctrl, and select
another range. You can test for multiple selections in your macro and take appropriate
action. See “Determining the type of selected range,” later in this chapter.

Part III: Understanding Visual Basic for Applications330

Selecting or otherwise identifying various types of ranges
Much of the work that you’ll do in VBA will involve working with ranges — either selecting a
range or identifying a range so that you can do something with the cells.

In addition to the CurrentRegion property (which I discussed earlier), you should also be
aware of the End method of the Range object. The End method takes one argument, which
determines the direction in which the selection is extended. The following statement selects a
range from the active cell to the last non-empty cell:

Range(ActiveCell, ActiveCell.End(xlDown)).Select

Here’s a similar example that uses a specific cell as the starting point:

Range(Range(“A2”), Range(“A2”).End(xlDown)).Select

As you might expect, three other constants simulate key combinations in the other directions:
xlUp, xlToLeft, and xlToRight.

Be careful when using the End method with the ActiveCell property. If the active cell
is at the perimeter of a range or if the range contains one or more empty cells, the End
method may not produce the desired results.

The companion CD-ROM includes a workbook that demonstrates several common
types of range selections. When you open this workbook, named range selections.
xlsm, the code adds a new menu item to the shortcut menu that appears when you
right-click a cell: Selection Demo. This menu contains commands that enable the user
to make various types of selections, as shown in Figure 11-2.

The following macro is in the example workbook. The SelectCurrentRegion macro simulates
pressing Ctrl+Shift+*.

Sub SelectCurrentRegion()
 ActiveCell.CurrentRegion.Select
End Sub

Chapter 11: VBA Programming Examples and Techniques 331

Figure 11-2: This workbook uses a custom shortcut menu to demonstrate how to select variably sized
ranges by using VBA.

Often, you won’t want to actually select the cells. Rather, you’ll want to work with them in some
way (for example, format them). You can easily adapt the cell-selecting procedures. The follow-
ing procedure was adapted from SelectCurrentRegion. This procedure doesn’t select cells;
it applies formatting to the range that’s defined as the current region around the active cell. You
can also adapt the other procedures in the example workbook in this manner.

Sub FormatCurrentRegion()
 ActiveCell.CurrentRegion.Font.Bold = True
End Sub

Part III: Understanding Visual Basic for Applications332

Prompting for a cell value
The following procedure demonstrates how to ask the user for a value and then insert it into cell
A1 of the active worksheet:

Sub GetValue1()
 Range(“A1”).Value = InputBox(“Enter the value”)
End Sub

Figure 11-3 shows how the input box looks.

Figure 11-3: The InputBox function gets a value from the user to be inserted into a cell.

This procedure has a problem, however. If the user clicks the Cancel button in the input box, the
procedure deletes any data already in the cell. The following modification takes no action if the
Cancel button is clicked:

Sub GetValue2()
 Dim UserEntry As Variant
 UserEntry = InputBox(“Enter the value”)
 If UserEntry <> “” Then Range(“A1”).Value = UserEntry
End Sub

In many cases, you’ll need to validate the user’s entry in the input box. For example, you may
require a number between 1 and 12. The following example demonstrates one way to validate the
user’s entry. In this example, an invalid entry is ignored, and the input box is displayed again. This
cycle keeps repeating until the user enters a valid number or clicks Cancel.

Sub GetValue3()

 Dim UserEntry As Variant

 Dim Msg As String

 Const MinVal As Integer = 1

 Const MaxVal As Integer = 12

 Msg = “Enter a value between “ & MinVal & “ and “ & MaxVal

 Do

 UserEntry = InputBox(Msg)

 If UserEntry = “” Then Exit Sub

 If IsNumeric(UserEntry) Then

 If UserEntry >= MinVal And UserEntry <= MaxVal Then Exit Do

Chapter 11: VBA Programming Examples and Techniques 333

 End If

 Msg = “Your previous entry was INVALID.”

 Msg = Msg & vbNewLine

 Msg = Msg & “Enter a value between “ & MinVal & “ and “ & MaxVal

 Loop

 ActiveSheet.Range(“A1”).Value = UserEntry

End Sub

As you can see in Figure 11-4, the code also changes the message displayed if the user makes an
invalid entry.

The three GetValue procedures are available on the companion CD-ROM. The filename
is inputbox demo.xlsm.

Figure 11-4: Validate a user’s entry with the VBA InputBox function.

Entering a value in the next empty cell
A common requirement is to enter a value into the next empty cell in a column or row. The fol-
lowing example prompts the user for a name and a value and then enters the data into the next
empty row (see Figure 11-5).

Figure 11-5: A macro for inserting data into the next empty row in a worksheet.

Part III: Understanding Visual Basic for Applications334

Sub GetData()
 Dim NextRow As Long
 Dim Entry1 As String, Entry2 As String
 Do
 ‘Determine next empty row
 NextRow = Cells(Rows.Count, 1).End(xlUp).Row + 1

‘ Prompt for the data
 Entry1 = InputBox(“Enter the name”)
 If Entry1 = “” Then Exit Sub
 Entry2 = InputBox(“Enter the amount”)
 If Entry2 = “” Then Exit Sub

‘ Write the data
 Cells(NextRow, 1) = Entry1
 Cells(NextRow, 2) = Entry2
 Loop
End Sub

To keep things simple, this procedure doesn’t perform any validation. Notice that the loop con-
tinues indefinitely. I use Exit Sub statements to get out of the loop when the user clicks Cancel
in the input box.

The GetData procedure is available on the companion CD-ROM. The filename is next
empty cell.xlsm.

Notice the statement that determines the value of the NextRow variable. If you don’t understand
how this statement works, try the manual equivalent: Activate the last cell in column A (cell
A1048576 in an Excel 2010 workbook), press End, and then press the up-arrow key. At this point,
the last nonblank cell in column A will be selected. The Row property returns this row number,
and it’s incremented by 1 in order to get the row of the cell below it (the next empty row). Rather
than hard-code the last cell in column A, I used Rows.Count so that this procedure will work
with previous versions of Excel (which have fewer rows).

Note that this technique of selecting the next empty cell has a slight glitch. If the column is com-
pletely empty, it will calculate row 2 as the next empty row. Writing additional code to account
for this possibility would be fairly easy to do.

Pausing a macro to get a user-selected range
In some situations, you may need an interactive macro. For example, you can create a macro that
pauses while the user specifies a range of cells. The procedure in this section describes how to do
this with Excel’s InputBox method.

Don’t confuse Excel’s InputBox method with VBA’s InputBox function. Although
these two items have the same name, they’re not the same.

Chapter 11: VBA Programming Examples and Techniques 335

The Sub procedure that follows demonstrates how to pause a macro and let the user select a
range. The code then inserts a formula into each cell of the specified range.

Sub GetUserRange()
 Dim UserRange As Range

 Prompt = “Select a range for the random numbers.”
 Title = “Select a range”

‘ Display the Input Box
 On Error Resume Next
 Set UserRange = Application.InputBox(_
 Prompt:=Prompt, _
 Title:=Title, _
 Default:=ActiveCell.Address, _
 Type:=8) ‘Range selection
 On Error GoTo 0

‘ Was the Input Box canceled?
 If UserRange Is Nothing Then
 MsgBox “Canceled.”
 Else
 UserRange.Formula = “=RAND()”
 End If
End Sub

The input box is shown in Figure 11-6.

Figure 11-6: Use an input box to pause a macro.

Part III: Understanding Visual Basic for Applications336

This example, named prompt for a range.xlsm, is available on the companion
CD-ROM.

Specifying a Type argument of 8 for the InputBox method is the key to this procedure. Also,
note the use of On Error Resume Next. This statement ignores the error that occurs if the
user clicks the Cancel button. If so, the UserRange object variable isn’t defined. This example
displays a message box with the text Canceled. If the user clicks OK, the macro continues.
Using On Error GoTo 0 resumes normal error handling.

By the way, you don’t need to check for a valid range selection. Excel takes care of this task for you.

Make sure that screen updating isn’t turned off when you use the InputBox method to
select a range. Otherwise, you won’t be able to make a worksheet selection. Use the
ScreenUpdating property of the Application object to control screen updating
while a macro is running.

Counting selected cells
You can create a macro that works with the range of cells selected by the user. Use the Count
property of the Range object to determine how many cells are contained in a range selection (or
any range, for that matter). For example, the following statement displays a message box that
contains the number of cells in the current selection:

MsgBox Selection.Count

With the larger worksheet size in recent versions of Excel 2010, the Count property can
generate an error. The Count property uses the Long data type, so the largest value
that it can store is 2,147,483,647. For example, if the user selects 2,048 complete col-
umns (2,147,483,648 cells), the Count property generates an error. Fortunately,
Microsoft added a new property beginning with Excel 2007: CountLarge. CountLarge
uses the Double data type, which can handle values up to 1.79+E^308.

Bottom line? In the vast majority of situations, the Count property will work fine. If
there’s a chance that you may need to count more cells (such as all cells in a work-
sheet), use CountLarge instead of Count.

If the active sheet contains a range named data, the following statement assigns the number of
cells in the data range to a variable named CellCount:

CellCount = Range(“data”).Count

Chapter 11: VBA Programming Examples and Techniques 337

You can also determine how many rows or columns are contained in a range. The following
expression calculates the number of columns in the currently selected range:

Selection.Columns.Count

And, of course, you can also use the Rows property to determine the number of rows in a range.
The following statement counts the number of rows in a range named data and assigns the
number to a variable named RowCount:

RowCount = Range(“data”).Rows.Count

Determining the type of selected range
Excel supports several types of range selections:

 A single cell

 A contiguous range of cells

 One or more entire columns

 One or more entire rows

 The entire worksheet

 Any combination of the preceding (that is, a multiple selection)

As a result, when your VBA procedure processes a user-selected range, you can’t make any pre-
sumptions about what that range might be. For example, the range selection might consist of
two areas, say A1:A10 and C1:C10. (To make a multiple selection, press Ctrl while you select the
ranges with your mouse.)

In the case of a multiple range selection, the Range object comprises separate areas. To deter-
mine whether a selection is a multiple selection, use the Areas method, which returns an Areas
collection. This collection represents all the ranges within a multiple range selection.

You can use an expression like the following to determine whether a selected range has multiple
areas:

NumAreas = Selection.Areas.Count

If the NumAreas variable contains a value greater than 1, the selection is a multiple selection.

Part III: Understanding Visual Basic for Applications338

Following is a function named AreaType, which returns a text string that describes the type of
range selection.

Function AreaType(RangeArea As Range) As String
‘ Returns the type of a range in an area
 Select Case True
 Case RangeArea.Cells.CountLarge = 1
 AreaType = “Cell”
 Case RangeArea.CountLarge = Cells.CountLarge
 AreaType = “Worksheet”
 Case RangeArea.Rows.Count = Cells.Rows.Count
 AreaType = “Column”
 Case RangeArea.Columns.Count = Cells.Columns.Count
 AreaType = “Row”
 Case Else
 AreaType = “Block”
 End Select
End Function

This function accepts a Range object as its argument and returns one of five strings that
describe the area: Cell, Worksheet, Column, Row, or Block. The function uses a Select
Case construct to determine which of five comparison expressions is True. For example, if the
range consists of a single cell, the function returns Cell. If the number of cells in the range is
equal to the number of cells in the worksheet, it returns Worksheet. If the number of rows in the
range equals the number of rows in the worksheet, it returns Column. If the number of columns
in the range equals the number of columns in the worksheet, the function returns Row. If none of
the Case expressions is True, the function returns Block.

Notice that I used the CountLarge property when counting cells. As I noted previously in this
chapter, the number of selected cells could potentially exceed the limit of the Count property.

This example is available on the companion CD-ROM in a file named about range
selection.xlsm. The workbook contains a procedure (named RangeDescription)
that uses the AreaType function to display a message box that describes the current
range selection. Figure 11-7 shows an example. Understanding how this routine works
will give you a good foundation for working with Range objects.

You might be surprised to discover that Excel allows multiple selections to be identical.
For example, if you hold down Ctrl and click five times in cell A1, the selection will have
five identical areas. The RangeDescription procedure takes this possibility into
account, and doesn’t count the same cell multiple times.

Chapter 11: VBA Programming Examples and Techniques 339

Figure 11-7: A VBA procedure analyzes the currently selected range.

Looping through a selected range efficiently
A common task is to create a macro that evaluates each cell in a range and performs an opera-
tion if the cell meets a certain criterion. The procedure that follows is an example of such a
macro. The ColorNegative procedure sets the cell’s background color to red for cells that
contain a negative value. For non-negative value cells, it sets the background color to none.

This example is for educational purposes only. Using Excel’s conditional formatting is a
much better approach.

Sub ColorNegative()
‘ Makes negative cells red
 Dim cell As Range
 If TypeName(Selection) <> “Range” Then Exit Sub
 Application.ScreenUpdating = False
 For Each cell In Selection
 If cell.Value < 0 Then
 cell.Interior.Color = RGB(255, 0, 0)
 Else
 cell.Interior.Color = xlNone
 End If
 Next cell
End Sub

Part III: Understanding Visual Basic for Applications340

The ColorNegative procedure certainly works, but it has a serious flaw. For example, what if
the used area on the worksheet were small, but the user selects an entire column? Or ten col-
umns? Or the entire worksheet? You don’t need to process all those empty cells, and the user
would probably give up long before your code churns through all those cells.

A better solution (ColorNegative2) follows. In this revised procedure, I create a Range object
variable, WorkRange, which consists of the intersection of the selected range and the work-
sheet’s used range. Figure 11-8 shows an example; the entire column D is selected (1,048,576
cells). The worksheet’s used range, however, consists of the range B2:I16. Therefore, the intersec-
tion of these ranges is D2:D16, which is a much smaller range than the original selection. The time
difference between processing 15 cells versus processing 1,048,576 cells is significant.

Figure 11-8: Using the intersection of the used range and the selected ranged results in fewer cells to process.

Sub ColorNegative2()
‘ Makes negative cells red
 Dim WorkRange As Range
 Dim cell As Range
 If TypeName(Selection) <> “Range” Then Exit Sub
 Application.ScreenUpdating = False
 Set WorkRange = Application.Intersect(Selection, _
 ActiveSheet.UsedRange)
 For Each cell In WorkRange
 If cell.Value < 0 Then
 cell.Interior.Color = RGB(255, 0, 0)
 Else
 cell.Interior.Color = xlNone
 End If
 Next cell
End Sub

Chapter 11: VBA Programming Examples and Techniques 341

The ColorNegative2 procedure is an improvement, but it’s still not as efficient as it could be
because it processes empty cells. A third revision, ColorNegative3, is quite a bit longer, but
it’s much more efficient. I use the SpecialCells method to generate two subsets of the selec-
tion: One subset (ConstantCells) includes only the cells with numeric constants; the other
subset (FormulaCells) includes only the cells with numeric formulas. The code processes the
cells in these subsets by using two For Each-Next constructs. The net effect: Only nonblank,
nontext cells are evaluated, thus speeding up the macro considerably.

Sub ColorNegative3()
‘ Makes negative cells red
 Dim FormulaCells As Range, ConstantCells As Range
 Dim cell As Range
 If TypeName(Selection) <> “Range” Then Exit Sub
 Application.ScreenUpdating = False

‘ Create subsets of original selection
 On Error Resume Next
 Set FormulaCells = Selection.SpecialCells(xlFormulas, xlNumbers)
 Set ConstantCells = Selection.SpecialCells(xlConstants, xlNumbers)
 On Error GoTo 0
‘ Process the formula cells
 If Not FormulaCells Is Nothing Then
 For Each cell In FormulaCells
 If cell.Value < 0 Then
 cell.Interior.Color = RGB(255, 0, 0)
 Else
 cell.Interior.Color = xlNone
 End If
 Next cell
 End If
‘ Process the constant cells
 If Not ConstantCells Is Nothing Then
 For Each cell In ConstantCells
 If cell.Value < 0 Then
 cell.Interior.Color = RGB(255, 0, 0)
 Else
 cell.Interior.Color = xlNone
 End If
 Next cell
 End If
End Sub

The On Error statement is necessary because the SpecialCells method generates
an error if no cells qualify.

A workbook that contains the three ColorNegative procedures is available on the
companion CD-ROM. The file is named efficient looping.xlsm.

Part III: Understanding Visual Basic for Applications342

Deleting all empty rows
The following procedure deletes all empty rows in the active worksheet. This routine is fast and
efficient because it doesn’t check all rows. It checks only the rows in the used range, which is
determined by using the UsedRange property of the Worksheet object.

Sub DeleteEmptyRows()

 Dim LastRow As Long

 Dim r As Long

 Dim Counter As Long

 Application.ScreenUpdating = False

 LastRow = ActiveSheet.UsedRange.Rows.Count + _

 ActiveSheet.UsedRange.Rows(1).Row - 1

 For r = LastRow To 1 Step -1

 If Application.WorksheetFunction.CountA(Rows(r)) = 0 Then

 Rows(r).Delete

 Counter = Counter + 1

 End If

 Next r

 Application.ScreenUpdating = True

 MsgBox Counter & “ empty rows were deleted.”

End Sub

The first step is to determine the last used row and then assign this row number to the LastRow
variable. This calculation isn’t as simple as you might think because the used range may or may
not begin in row 1. Therefore, LastRow is calculated by determining the number of rows in the
used range, adding the first row number in the used range, and subtracting 1.

The procedure uses Excel’s COUNTA worksheet function to determine whether a row is empty. If
this function returns 0 for a particular row, the row is empty. Notice that the procedure works on
the rows from bottom to top and also uses a negative step value in the For-Next loop. This
negative step value is necessary because deleting rows causes all subsequent rows to move up in
the worksheet. If the looping occurred from top to bottom, the counter within the loop wouldn’t
be accurate after a row is deleted.

The macro uses another variable, Counter, to keep track of how many rows were deleted. This
number is displayed in a message box when the procedure ends.

A workbook that contains this example is available on the companion CD-ROM in a file
named delete empty rows.xlsm.

Duplicating rows a variable number of times
The example in this section demonstrates how to use VBA to create duplicates of a row. Figure
11-9 shows a worksheet for an office raffle. Column A contains the name, and column B contains
the number of tickets purchased by each person. Column C contains a random number (generated

Chapter 11: VBA Programming Examples and Techniques 343

by the RAND function). The winner will be determined by sorting the data based on column 3 (the
highest random number wins).

Figure 11-9: The goal is to duplicate rows based on the value in column B.

The goal is to duplicate the rows so that each person will have a row for each ticket purchased.
For example, Barbara purchased two tickets, so she should have two rows. The procedure to
insert the new rows is shown here:

Sub DupeRows()

 Dim cell As Range

‘ 1st cell with number of tickets

 Set cell = Range(“B2”)

 Do While Not IsEmpty(cell)

 If cell > 1 Then

 Range(cell.Offset(1, 0), cell.Offset(cell.Value - 1, _

 0)).EntireRow.Insert

 Range(cell, cell.Offset(cell.Value - 1, 1)).EntireRow.FillDown

 End If

 Set cell = cell.Offset(cell.Value, 0)

 Loop

 End Sub

The cell object variable is initialized to cell B2, the first cell that has a number. The loop inserts
new rows and then copies the row using the FillDown method. The cell variable is incre-
mented to the next person, and the loop continues until an empty cell is encountered. Figure
11-10 shows the worksheet after running this procedure.

A workbook that contains this example is available on the companion CD-ROM. The file
is named duplicate rows.xlsm.

Part III: Understanding Visual Basic for Applications344

Figure 11-10: New rows were added, according to the value in column B.

Determining whether a range is contained in another range
The following InRange function accepts two arguments, both Range objects. The function
returns True if the first range is contained in the second range.

Function InRange(rng1, rng2) As Boolean
‘ Returns True if rng1 is a subset of rng2
 InRange = False
 If rng1.Parent.Parent.Name = rng2.Parent.Parent.Name Then
 If rng1.Parent.Name = rng2.Parent.Name Then
 If Union(rng1, rng2).Address = rng2.Address Then
 InRange = True
 End If
 End If
 End If
End Function

Chapter 11: VBA Programming Examples and Techniques 345

The InRange function may appear a bit more complex than it needs to be because the code
needs to ensure that the two ranges are in the same worksheet and workbook. Notice that the
procedure uses the Parent property, which returns an object’s container object. For example,
the following expression returns the name of the worksheet for the rng1 object reference:

rng1.Parent.Name

The following expression returns the name of the workbook for rng1:

rng1.Parent.Parent.Name

VBA’s Union function returns a Range object that represents the union of two Range objects.
The union consists of all the cells from both ranges. If the address of the union of the two ranges
is the same as the address of the second range, the first range is contained within the second
range.

A workbook that contains this function is available on the companion CD-ROM in a file
named inrange function.xlsm.

Determining a cell’s data type
Excel provides a number of built-in functions that can help determine the type of data contained
in a cell. These include ISTEXT, ISLOGICAL, and ISERROR. In addition, VBA includes functions
such as IsEmpty, IsDate, and IsNumeric.

The following function, named CellType, accepts a range argument and returns a string
(Blank, Text, Logical, Error, Date, Time, or Number) that describes the data type of the
upper-left cell in the range. You can use this function in a worksheet formula or from another
VBA procedure.

Function CellType(Rng) As String
‘ Returns the cell type of the upper left
‘ cell in a range
 Dim TheCell As Range
 Set TheCell = Rng.Range(“A1”)
 Select Case True
 Case IsEmpty(TheCell)
 CellType = “Blank”
 Case Application.IsText(TheCell)
 CellType = “Text”
 Case Application.IsLogical(TheCell)
 CellType = “Logical”
 Case Application.IsErr(TheCell)
 CellType = “Error”

Part III: Understanding Visual Basic for Applications346

 Case IsDate(TheCell)
 CellType = “Date”
 Case InStr(1, TheCell.Text, “:”) <> 0
 CellType = “Time”
 Case IsNumeric(TheCell)
 CellType = “Number”
 End Select
End Function

Notice the use of the Set TheCell statement. The CellType function accepts a range argu-
ment of any size, but this statement causes it to operate on only the upper-left cell in the range
(which is represented by the TheCell variable).

A workbook that contains this function is available on the companion CD-ROM. The file
is named celltype function.xlsm.

Reading and writing ranges
Many VBA tasks involve transferring values either from an array to a range or from a range to an
array. Excel reads from ranges much faster than it writes to ranges because the latter operation
involves the calculation engine. The WriteReadRange procedure that follows demonstrates the
relative speeds of writing and reading a range.

This procedure creates an array and then uses For-Next loops to write the array to a range and
then read the range back into the array. It calculates the time required for each operation by
using the Excel Timer function.

Sub WriteReadRange()
 Dim MyArray()
 Dim Time1 As Double
 Dim NumElements As Long, i As Long
 Dim WriteTime As String, ReadTime As String
 Dim Msg As String
 NumElements = 60000
 ReDim MyArray(1 To NumElements)

‘ Fill the array
 For i = 1 To NumElements
 MyArray(i) = i
 Next i

‘ Write the array to a range
 Time1 = Timer
 For i = 1 To NumElements
 Cells(i, 1) = MyArray(i)
 Next i

Chapter 11: VBA Programming Examples and Techniques 347

 WriteTime = Format(Timer - Time1, “00:00”)

‘ Read the range into the array
 Time1 = Timer
 For i = 1 To NumElements
 MyArray(i) = Cells(i, 1)
 Next i
 ReadTime = Format(Timer - Time1, “00:00”)

‘ Show results
 Msg = “Write: “ & WriteTime
 Msg = Msg & vbCrLf
 Msg = Msg & “Read: “ & ReadTime
 MsgBox Msg, vbOKOnly, NumElements & “ Elements”
End Sub

On my system, it took 58 seconds to write a 60,000-element array to a range, but it took less
than 1 second to read the range into an array.

A better way to write to a range
The example in the preceding section uses a For-Next loop to transfer the contents of an array
to a worksheet range. In this section, I demonstrate a more efficient way to accomplish this.

Start with the example that follows, which illustrates the most obvious (but not the most effi-
cient) way to fill a range. This example uses a For-Next loop to insert its values in a range.

Sub LoopFillRange()
‘ Fill a range by looping through cells
 Dim CellsDown As Long, CellsAcross As Integer
 Dim CurrRow As Long, CurrCol As Integer
 Dim StartTime As Double
 Dim CurrVal As Long

‘ Get the dimensions
 CellsDown = InputBox(“How many cells down?”)
 If CellsDown = 0 Then Exit Sub
 CellsAcross = InputBox(“How many cells across?”)
 If CellsAcross = 0 Then Exit Sub

‘ Record starting time
 StartTime = Timer

‘ Loop through cells and insert values
 CurrVal = 1
 Application.ScreenUpdating = False
 For CurrRow = 1 To CellsDown
 For CurrCol = 1 To CellsAcross
 ActiveCell.Offset(CurrRow - 1, _
 CurrCol - 1).Value = CurrVal

Part III: Understanding Visual Basic for Applications348

 CurrVal = CurrVal + 1
 Next CurrCol
 Next CurrRow

‘ Display elapsed time
 Application.ScreenUpdating = True
 MsgBox Format(Timer - StartTime, “00.00”) & “ seconds”
End Sub

The example that follows demonstrates a much faster way to produce the same result. This code
inserts the values into an array and then uses a single statement to transfer the contents of an
array to the range.

Sub ArrayFillRange()
‘ Fill a range by transferring an array
 Dim CellsDown As Long, CellsAcross As Integer
 Dim i As Long, j As Integer
 Dim StartTime As Double
 Dim TempArray() As Long
 Dim TheRange As Range
 Dim CurrVal As Long
‘ Get the dimensions
 CellsDown = InputBox(“How many cells down?”)
 If CellsDown = 0 Then Exit Sub
 CellsAcross = InputBox(“How many cells across?”)
 If CellsAcross = 0 Then Exit Sub
‘ Record starting time
 StartTime = Timer
‘ Redimension temporary array
 ReDim TempArray(1 To CellsDown, 1 To CellsAcross)
‘ Set worksheet range
 Set TheRange = ActiveCell.Range(Cells(1, 1), _
 Cells(CellsDown, CellsAcross))
‘ Fill the temporary array
 CurrVal = 0
 Application.ScreenUpdating = False
 For i = 1 To CellsDown
 For j = 1 To CellsAcross
 TempArray(i, j) = CurrVal + 1
 CurrVal = CurrVal + 1
 Next j
 Next i
‘ Transfer temporary array to worksheet
 TheRange.Value = TempArray
‘ Display elapsed time
 Application.ScreenUpdating = True
 MsgBox Format(Timer - StartTime, “00.00”) & “ seconds”
End Sub

Chapter 11: VBA Programming Examples and Techniques 349

On my system, using the loop method to fill a 1000 x 250–cell range (250,000 cells) took 10.05
seconds. The array transfer method took only 00.18 seconds to generate the same results —
more than 50 times faster! The moral of this story? If you need to transfer large amounts of data
to a worksheet, avoid looping whenever possible.

The timing results are highly dependent on the presence of formulas. Generally, you’ll
get faster transfer times if no workbooks are open that contain formulas, or if you set
the calculation mode to Manual.

A workbook that contains the WriteReadRange, LoopFillRange, and
ArrayFillRange procedures is available on the companion CD-ROM. The file is named
loop vs array fill range.xlsm.

Transferring one-dimensional arrays
The example in the preceding section involves a two-dimensional array, which works out nicely
for row-and-column-based worksheets.

When transferring a one-dimensional array to a range, the range must be horizontal — that is,
one row with multiple columns. If you need the data in a vertical range instead, you must first
transpose the array to make it vertical. You can use Excel’s TRANSPOSE function to do this. The
following example transfers a 100-element array to a vertical worksheet range (A1:A100):

Range(“A1:A100”).Value = Application.WorksheetFunction.Transpose(MyArray)

Excel’s TRANSPOSE function doesn’t work with arrays that exceed 65,536 elements.

Transferring a range to a variant array
This section discusses yet another way to work with worksheet data in VBA. The following exam-
ple transfers a range of cells to a two-dimensional variant array. Then message boxes display the
upper bounds for each dimension of the variant array.

Sub RangeToVariant()
 Dim x As Variant
 x = Range(“A1:L600”).Value
 MsgBox UBound(x, 1)
 MsgBox UBound(x, 2)
End Sub

Part III: Understanding Visual Basic for Applications350

In this example, the first message box displays 600 (the number of rows in the original range),
and the second message box displays 12 (the number of columns). You’ll find that transferring
the range data to a variant array is virtually instantaneous.

The following example reads a range (named data) into a variant array, performs a simple multi-
plication operation on each element in the array, and then transfers the variant array back to the
range:

Sub RangeToVariant2()
 Dim x As Variant
 Dim r As Long, c As Integer
‘ Read the data into the variant
 x = Range(“data”).Value

‘ Loop through the variant array
 For r = 1 To UBound(x, 1)
 For c = 1 To UBound(x, 2)
‘ Multiply by 2
 x(r, c) = x(r, c) * 2
 Next c
 Next r
‘ Transfer the variant back to the sheet
 Range(“data”) = x
End Sub

You’ll find that this procedure runs amazingly fast. Working with 30,000 cells took less than one
second.

A workbook that contains this example is available on the companion CD-ROM. The file
is named variant transfer.xlsm.

Selecting cells by value
The example in this section demonstrates how to select cells based on their value. Oddly, Excel
doesn’t provide a direct way to perform this operation. My SelectByValue procedure follows.
In this example, the code selects cells that contain a negative value, but you can easily change
the code to select cells based on other criteria.

Sub SelectByValue()

 Dim Cell As Object

 Dim FoundCells As Range

 Dim WorkRange As Range

 If TypeName(Selection) <> “Range” Then Exit Sub

‘ Check all or selection?

Chapter 11: VBA Programming Examples and Techniques 351

 If Selection.CountLarge = 1 Then

 Set WorkRange = ActiveSheet.UsedRange

 Else

 Set WorkRange = Application.Intersect(Selection, ActiveSheet.UsedRange)

 End If

‘ Reduce the search to numeric cells only

 On Error Resume Next

 Set WorkRange = WorkRange.SpecialCells(xlConstants, xlNumbers)

 If WorkRange Is Nothing Then Exit Sub

 On Error GoTo 0

‘ Loop through each cell, add to the FoundCells range if it qualifies

 For Each Cell In WorkRange

 If Cell.Value < 0 Then

 If FoundCells Is Nothing Then

 Set FoundCells = Cell

 Else

 Set FoundCells = Union(FoundCells, Cell)

 End If

 End If

 Next Cell

‘ Show message, or select the cells

 If FoundCells Is Nothing Then

 MsgBox “No cells qualify.”

 Else

 FoundCells.Select

 End If

End Sub

The procedure starts by checking the selection. If it’s a single cell, then the entire worksheet is
searched. If the selection is at least two cells, then only the selected range is searched. The range
to be searched is further refined by using the SpecialCells method to create a Range object
that consists only of the numeric constants.

The code within the For-Next loop examines the cell’s value. If it meets the criterion (less than
0), then the cell is added to the FoundCells Range object by using the Union method. Note
that you can’t use the Union method for the first cell. If the FoundCells range contains no
cells, attempting to use the Union method will generate an error. Therefore, the code checks
whether FoundCells is Nothing.

When the loop ends, the FoundCells object will consist of the cells that meet the criterion (or
will be Nothing if no cells were found). If no cells are found, a message box appears. Otherwise,
the cells are selected.

This example is available on the companion CD-ROM. The file is named select by
value.xlsm.

Part III: Understanding Visual Basic for Applications352

Copying a noncontiguous range
If you’ve ever attempted to copy a noncontiguous range selection, you discovered that Excel
doesn’t support such an operation. Attempting to do so brings up an error message: That com-
mand cannot be used on multiple selections.

An exception is when you attempt to copy a multiple selection that consists of entire rows or col-
umns. Excel does allow that operation.

When you encounter a limitation in Excel, you can often circumvent it by creating a macro. The
example in this section is a VBA procedure that allows you to copy a multiple selection to
another location.

Sub CopyMultipleSelection()

 Dim SelAreas() As Range

 Dim PasteRange As Range

 Dim UpperLeft As Range

 Dim NumAreas As Long, i As Long

 Dim TopRow As Long, LeftCol As Long

 Dim RowOffset As Long, ColOffset As Long

 If TypeName(Selection) <> “Range” Then Exit Sub

‘ Store the areas as separate Range objects

 NumAreas = Selection.Areas.Count

 ReDim SelAreas(1 To NumAreas)

 For i = 1 To NumAreas

 Set SelAreas(i) = Selection.Areas(i)

 Next

‘ Determine the upper-left cell in the multiple selection

 TopRow = ActiveSheet.Rows.Count

 LeftCol = ActiveSheet.Columns.Count

 For i = 1 To NumAreas

 If SelAreas(i).Row < TopRow Then TopRow = SelAreas(i).Row

 If SelAreas(i).Column < LeftCol Then LeftCol = SelAreas(i).Column

 Next

 Set UpperLeft = Cells(TopRow, LeftCol)

‘ Get the paste address

 On Error Resume Next

 Set PasteRange = Application.InputBox _

 (Prompt:=”Specify the upper-left cell for the paste range:”, _

 Title:=”Copy Multiple Selection”, _

 Type:=8)

 On Error GoTo 0

‘ Exit if canceled

 If TypeName(PasteRange) <> “Range” Then Exit Sub

‘ Make sure only the upper-left cell is used

Chapter 11: VBA Programming Examples and Techniques 353

 Set PasteRange = PasteRange.Range(“A1”)

‘ Copy and paste each area

 For i = 1 To NumAreas

 RowOffset = SelAreas(i).Row - TopRow

 ColOffset = SelAreas(i).Column - LeftCol

 SelAreas(i).Copy PasteRange.Offset(RowOffset, ColOffset)

 Next i

End Sub

Figure 11-11 shows the prompt to select the destination location.

The companion CD-ROM contains a workbook with this example, plus another version
that warns the user if data will be overwritten. The file is named copy multiple
selection.xlsm.

Figure 11-11: Using Excel’s InputBox method to prompt for a cell location.

Working with Workbooks and Sheets
The examples in this section demonstrate various ways to use VBA to work with workbooks and
worksheets.

Part III: Understanding Visual Basic for Applications354

Saving all workbooks
The following procedure loops through all workbooks in the Workbooks collection and saves
each file that has been saved previously:

Public Sub SaveAllWorkbooks()
 Dim Book As Workbook
 For Each Book In Workbooks
 If Book.Path <> “” Then Book.Save
 Next Book
End Sub

Notice the use of the Path property. If a workbook’s Path property is empty, the file has never
been saved (it’s a newly created workbook). This procedure ignores such workbooks and saves
only the workbooks that have a non-empty Path property.

Saving and closing all workbooks
The following procedure loops through the Workbooks collection. The code saves and closes all
workbooks.

Sub CloseAllWorkbooks()
 Dim Book As Workbook
 For Each Book In Workbooks
 If Book.Name <> ThisWorkbook.Name Then
 Book.Close savechanges:=True
 End If
 Next Book
 ThisWorkbook.Close savechanges:=True
End Sub

The procedure uses an If statement within the For-Next loop to determine whether the work-
book is the workbook that contains the code. This statement is necessary because closing the
workbook that contains the procedure would end the code, and subsequent workbooks wouldn’t
be affected. After all the other workbooks are closed, the workbook that contains the code closes
itself.

Hiding all but the selection
The example in this section hides all rows and columns in a worksheet except those in the current
range selection. Figure 11-12 shows an example.

Chapter 11: VBA Programming Examples and Techniques 355

Figure 11-12: All rows and columns are hidden, except for a range (G8:K17).

Sub HideRowsAndColumns()

 Dim row1 As Long, row2 As Long

 Dim col1 As Long, col2 As Long

 If TypeName(Selection) <> “Range” Then Exit Sub

‘ If last row or last column is hidden, unhide all and quit

 If Rows(Rows.Count).EntireRow.Hidden Or _

 Columns(Columns.Count).EntireColumn.Hidden Then

 Cells.EntireColumn.Hidden = False

 Cells.EntireRow.Hidden = False

 Exit Sub

 End If

 row1 = Selection.Rows(1).Row

 row2 = row1 + Selection.Rows.Count - 1

 col1 = Selection.Columns(1).Column

 col2 = col1 + Selection.Columns.Count - 1

 Application.ScreenUpdating = False

 On Error Resume Next

‘ Hide rows

 Range(Cells(1, 1), Cells(row1 - 1, 1)).EntireRow.Hidden = True

 Range(Cells(row2 + 1, 1), Cells(Rows.Count, 1)).EntireRow.Hidden = True

‘ Hide columns

 Range(Cells(1, 1), Cells(1, col1 - 1)).EntireColumn.Hidden = True

 Range(Cells(1, col2 + 1), Cells(1, Columns.Count)).EntireColumn.Hidden = True

End Sub

If the range selection consists of a noncontiguous range, the first area is used as the basis for
hiding rows and columns.

Part III: Understanding Visual Basic for Applications356

A workbook with this example is available on the companion CD-ROM. The file is
named hide rows and columns.xlsm.

Synchronizing worksheets
If you use multisheet workbooks, you probably know that Excel can’t synchronize the sheets in a
workbook. In other words, there is no automatic way to force all sheets to have the same
selected range and upper-left cell. The VBA macro that follows uses the active worksheet as a
base and then performs the following on all other worksheets in the workbook:

 Selects the same range as the active sheet.

 Makes the upper-left cell the same as the active sheet.

Following is the listing for the procedure:

Sub SynchSheets()
‘ Duplicates the active sheet’s active cell and upper left cell
‘ Across all worksheets
 If TypeName(ActiveSheet) <> “Worksheet” Then Exit Sub
 Dim UserSheet As Worksheet, sht As Worksheet
 Dim TopRow As Long, LeftCol As Integer
 Dim UserSel As String

 Application.ScreenUpdating = False
‘ Remember the current sheet
 Set UserSheet = ActiveSheet

‘ Store info from the active sheet
 TopRow = ActiveWindow.ScrollRow
 LeftCol = ActiveWindow.ScrollColumn
 UserSel = ActiveWindow.RangeSelection.Address

‘ Loop through the worksheets
 For Each sht In ActiveWorkbook.Worksheets
 If sht.Visible Then ‘skip hidden sheets
 sht.Activate
 Range(UserSel).Select
 ActiveWindow.ScrollRow = TopRow
 ActiveWindow.ScrollColumn = LeftCol
 End If
 Next sht

‘ Restore the original position
 UserSheet.Activate
 Application.ScreenUpdating = True
End Sub

Chapter 11: VBA Programming Examples and Techniques 357

A workbook with this example is available on the companion CD-ROM in a file named
synchronize sheets.xlsm.

VBA Techniques
The examples in this section illustrate common VBA techniques that you might be able to adapt
to your own projects.

Toggling a Boolean property
A Boolean property is one that is either True or False. The easiest way to toggle a Boolean
property is to use the Not operator, as shown in the following example, which toggles the
WrapText property of a selection.

Sub ToggleWrapText()
‘ Toggles text wrap alignment for selected cells
 If TypeName(Selection) = “Range” Then
 Selection.WrapText = Not ActiveCell.WrapText
 End If
End Sub

You can modify this procedure to toggle other Boolean properties.

Note that the active cell is used as the basis for toggling. When a range is selected and the prop-
erty values in the cells are inconsistent (for example, some cells are bold, and others are not), it’s
considered mixed, and Excel uses the active cell to determine how to toggle. If the active cell is
bold, for example, all cells in the selection are made not bold when you click the Bold button. this
simple procedure mimics the way Excel works, which is usually the best practice.

Note also that this procedure uses the TypeName function to check whether the selection is a
range. If the selection isn’t a range, nothing happens.

You can use the Not operator to toggle many other properties. For example, to toggle the dis-
play of row and column borders in a worksheet, use the following code:

ActiveWindow.DisplayHeadings = Not ActiveWindow.DisplayHeadings

To toggle the display of gridlines in the active worksheet, use the following code:

ActiveWindow.DisplayGridlines = Not ActiveWindow.DisplayGridlines

Part III: Understanding Visual Basic for Applications358

Determining the number of printed pages
If you need to determine the number of printed pages for a worksheet printout, you can use
Excel’s Print Preview feature and view the page count displayed at the bottom of the screen. The
VBA procedure that follows calculates the number of printed pages for the active sheet by
counting the number of horizontal and vertical page breaks:

Sub PageCount()
 MsgBox (ActiveSheet.HPageBreaks.Count + 1) * _
 (ActiveSheet.VPageBreaks.Count + 1) & “ pages”
End Sub

The following VBA procedure loops through all worksheets in the active workbook and displays
the total number of printed pages, as shown in Figure 11-13:

Figure 11-13: Using VBA to count the number of printed pages in a workbook.

Sub ShowPageCount()
 Dim PageCount As Integer
 Dim sht As Worksheet
 PageCount = 0
 For Each sht In Worksheets
 PageCount = PageCount + (sht.HPageBreaks.Count + 1) * _
 (sht.VPageBreaks.Count + 1)
 Next sht
 MsgBox “Total printed pages = “ & PageCount
End Sub

A workbook that contains this example is on the companion CD-ROM in a file named
page count.xlsm.

Displaying the date and time
If you understand the serial number system that Excel uses to store dates and times, you won’t
have any problems using dates and times in your VBA procedures.

Chapter 11: VBA Programming Examples and Techniques 359

The DateAndTime procedure displays a message box with the current date and time, as depicted
in Figure 11-14. This example also displays a personalized message in the message box title bar.

Figure 11-14: A message box displaying the date and time.

The procedure uses the Date function as an argument for the Format function. The result is a
string with a nicely formatted date. I used the same technique to get a nicely formatted time.

Sub DateAndTime()

 Dim TheDate As String, TheTime As String

 Dim Greeting As String

 Dim FullName As String, FirstName As String

 Dim SpaceInName As Long

 TheDate = Format(Date, “Long Date”)

 TheTime = Format(Time, “Medium Time”)

‘ Determine greeting based on time

 Select Case Time

 Case Is < TimeValue(“12:00”): Greeting = “Good Morning, “

 Case Is >= TimeValue(“17:00”): Greeting = “Good Evening, “

 Case Else: Greeting = “Good Afternoon, “

 End Select

‘ Append user’s first name to greeting

 FullName = Application.UserName

 SpaceInName = InStr(1, FullName, “ “, 1)

‘ Handle situation when name has no space

 If SpaceInName = 0 Then SpaceInName = Len(FullName)

 FirstName = Left(FullName, SpaceInName)

 Greeting = Greeting & FirstName

‘ Show the message

 MsgBox TheDate & vbCrLf & vbCrLf & “It’s “ & TheTime, vbOKOnly, Greeting

End Sub

In the preceding example, I used named formats (Long Date and Medium Time) to ensure that
the macro will work properly regardless of the user’s international settings. You can, however, use
other formats. For example, to display the date in mm/dd/yy format, you can use a statement like
the following:

TheDate = Format(Date, “mm/dd/yy”)

Part III: Understanding Visual Basic for Applications360

I used a Select Case construct to base the greeting displayed in the message box’s title bar on
the time of day. VBA time values work just as they do in Excel. If the time is less than .5 (noon), it’s
morning. If it’s greater than .7083 (5 p.m.), it’s evening. Otherwise, it’s afternoon. I took the easy
way out and used VBA’s TimeValue function, which returns a time value from a string.

The next series of statements determines the user’s first name, as recorded in the General tab in
Excel’s Options dialog box. I used VBA’s InStr function to locate the first space in the user’s
name. When I first wrote this procedure, I didn’t consider a username that has no space. So when
I ran this procedure on a machine with a username of Nobody, the code failed — which goes to
show you that I can’t think of everything, and even the simplest procedures can run aground. (By
the way, if the user’s name is left blank, Excel always substitutes the name User.) The solution to
this problem was to use the length of the full name for the SpaceInName variable so that the
Left function extracts the full name.

The MsgBox function concatenates the date and time but uses the built-in vbCrLf constant to
insert a line break between them. vbOKOnly is a predefined constant that returns 0, causing the
message box to appear with only an OK button. The final argument is the Greeting, con-
structed earlier in the procedure.

The DateAndTime procedure is available on the companion CD-ROM in a file named
date and time.xlsm.

Getting a list of fonts
If you need to get a list of all installed fonts, you’ll find that Excel doesn’t provide a direct way to
retrieve that information. The technique described here takes advantage of the fact that (for com-
patibility purposes) Excel 2010 still supports the old CommandBar properties and methods. These
properties and methods were used in pre-Excel 2007 versions to work with toolbars and menus.

The ShowInstalledFonts macro displays a list of the installed fonts in column A of the active
worksheet. It creates a temporary toolbar (a CommandBar object), adds the Font control, and
reads the font names from that control. The temporary toolbar is then deleted.

Sub ShowInstalledFonts()
 Dim FontList As CommandBarControl
 Dim TempBar As CommandBar
 Dim i As Long

‘ Create temporary CommandBar
 Set TempBar = Application.CommandBars.Add
 Set FontList = TempBar.Controls.Add(ID:=1728)

‘ Put the fonts into column A
 Range(“A:A”).ClearContents
 For i = 0 To FontList.ListCount - 1
 Cells(i + 1, 1) = FontList.List(i + 1)

Chapter 11: VBA Programming Examples and Techniques 361

 Next i

‘ Delete temporary CommandBar
 TempBar.Delete
End Sub

As an option, you can display each font name in the actual font (as shown in Figure
11-15). To do so, add this statement inside the For-Next loop:

Cells(i+1,1).Font.Name = FontList.List(i+1)

Be aware, however, that using many fonts in a workbook can eat up lots of system
resources, and it could even crash your system.

This procedure is available on the companion CD-ROM. The file is named list fonts.xlsm.

Figure 11-15: Listing font names in the actual fonts.

Part III: Understanding Visual Basic for Applications362

Sorting an array
Although Excel has a built-in command to sort worksheet ranges, VBA doesn’t offer a method to
sort arrays. One viable (but cumbersome) workaround is to transfer your array to a worksheet
range, sort it by using Excel’s commands, and then return the result to your array. But if speed is
essential, it’s better to write a sorting routine in VBA.

In this section, I cover four different sorting techniques:

 Worksheet sort transfers an array to a worksheet range, sorts it, and transfers it back to
the array. This procedure accepts an array as its only argument.

 Bubble sort is a simple sorting technique (also used in the Chapter 9 sheet-sorting exam-
ple). Although easy to program, the bubble-sorting algorithm tends to be rather slow,
especially when the number of elements is large.

 Quick sort is a much faster sorting routine than bubble sort, but it is also more difficult to
understand. This technique works only with Integer and Long data types.

 Counting sort is lightning fast, but also difficult to understand. Like the quick sort, this
technique works only with Integer and Long data types.

The companion CD-ROM includes a workbook application (named sorting demo.
xlsm) that demonstrates these sorting methods. This workbook is useful for comparing
the techniques with arrays of varying sizes. However, you can also copy the procedures
and use them in your code.

Figure 11-16 shows the dialog box for this project. I tested the sorting procedures with seven dif-
ferent array sizes, ranging from 100 to 100,000 elements. The arrays contained random numbers
(of type Long).

Figure 11-16: Comparing the time required to perform sorts of various array sizes.

Table 11-1 shows the results of my tests. A 0.00 entry means that the sort was virtually instanta-
neous (less than .01 second).

Chapter 11: VBA Programming Examples and Techniques 363

Table 11-1: Sorting Times (in Seconds) for Four Sort Algorithms Using Randomly Filled Arrays

Array Elements Excel Worksheet Sort VBA Bubble Sort VBA Quick Sort VBA Counting Sort

100 0.04 0.00 0.00 0.02

500 0.02 0.01 0.00 0.01

1,000 0.03 0.03 0.00 0.00

5,000 0.07 0.84 0.01 0.01

10,000 0.09 3.41 0.01 0.01

50,000 0.43 79.95 0.07 0.02

100,000 0.78 301.90 0.14 0.04

The worksheet sort algorithm is amazingly fast, especially when you consider that the values are
transferred to the sheet, sorted, and then transferred back to the array.

The bubble sort algorithm is reasonably fast with small arrays, but for larger arrays (more than
10,000 elements), forget it. The quick sort and counting sort algorithms are blazingly fast, but
they’re limited to Integer and Long data types.

Processing a series of files
One common use for macros is to perform repetitive tasks. The example in this section demon-
strates how to execute a macro on several different files stored on disk. This example — which
may help you set up your own routine for this type of task — prompts the user for a file specifica-
tion and then processes all matching files. In this case, processing consists of importing the file
and entering a series of summary formulas that describe the data in the file.

Sub BatchProcess()
 Dim FileSpec As String
 Dim i As Integer
 Dim FileName As String
 Dim FileList() As String
 Dim FoundFiles As Integer
‘ Specify path and file spec
 FileSpec = ThisWorkbook.Path & “\” & “text??.txt”
 FileName = Dir(FileSpec)

‘ Was a file found?
 If FileName <> “” Then
 FoundFiles = 1
 ReDim Preserve FileList(1 To FoundFiles)
 FileList(FoundFiles) = FileName
 Else
 MsgBox “No files were found that match “ & FileSpec
 Exit Sub

Part III: Understanding Visual Basic for Applications364

 End If

‘ Get other filenames
 Do
 FileName = Dir
 If FileName = “” Then Exit Do
 FoundFiles = FoundFiles + 1
 ReDim Preserve FileList(1 To FoundFiles)
 FileList(FoundFiles) = FileName & “*”
 Loop
‘ Loop through the files and process them
 For i = 1 To FoundFiles
 Call ProcessFiles(FileList(i))
 Next i
End Sub

This example, named batch processing.xlsm, is on the companion CD-ROM. It uses
three additional files (also on the CD): text01.txt, text02.txt, and text03.txt.
You’ll need to modify the routine to import other text files.

The matching filenames are stored in an array named FoundFiles, and the procedure uses a
For-Next loop to process the files. Within the loop, the processing is done by calling the
ProcessFiles procedure, which follows. This simple procedure uses the OpenText method to
import the file and then inserts five formulas. You may, of course, substitute your own routine in
place of this one:

Sub ProcessFiles(FileName As String)
‘ Import the file
 Workbooks.OpenText FileName:=FileName, _
 Origin:=xlWindows, _
 StartRow:=1, _
 DataType:=xlFixedWidth, _
 FieldInfo:= _
 Array(Array(0, 1), Array(3, 1), Array(12, 1))
‘ Enter summary formulas
 Range(“D1”).Value = “A”
 Range(“D2”).Value = “B”
 Range(“D3”).Value = “C”
 Range(“E1:E3”).Formula = “=COUNTIF(B:B,D1)”
 Range(“F1:F3”).Formula = “=SUMIF(B:B,D1,C:C)”
End Sub

For more information about working with files using VBA, refer to Chapter 27.

Chapter 11: VBA Programming Examples and Techniques 365

Some Useful Functions for Use in Your Code
In this section, I present some custom utility functions that you may find useful in your own appli-
cations and that may provide inspiration for creating similar functions. These functions are most
useful when called from another VBA procedure. Therefore, they’re declared by using the
Private keyword and thus won’t appear in Excel’s Insert Function dialog box.

The examples in this section are available on the companion CD-ROM. The file is named
VBA utility functions.xlsm.

The FileExists function
This function takes one argument (a path with filename) and returns True if the file exists:

Private Function FileExists(fname) As Boolean
‘ Returns TRUE if the file exists
 FileExists = (Dir(fname) <> “”)
End Function

The FileNameOnly function
This function accepts one argument (a path with filename) and returns only the filename. In other
words, it strips out the path.

Private Function FileNameOnly(pname) As String
‘ Returns the filename from a path/filename string
 Dim temp As Variant
 length = Len(pname)
 temp = Split(pname, Application.PathSeparator)
 FileNameOnly = temp(UBound(temp))
End Function

The function uses the VBA Split function, which accepts a string (that includes delimiter char-
acters), and returns a variant array that contains the elements between the delimiter characters.
In this case the temp variable contains an array that consists of each text string between the
Application.PathSeparater (usually a backslash character). For another example of the
Split function, see “Extracting the nth element from a string,” later in this chapter.

If the argument is c:\excel files\2010\backup\budget.xlsx, the function returns the
string budget.xlsx.

Part III: Understanding Visual Basic for Applications366

The FileNameOnly function works with any path and filename (even if the file does not exist).
If the file exists, the following function is a simpler way to strip off the path and return only the
filename:

Private Function FileNameOnly2(pname) As String
 FileNameOnly2 = Dir(pname)
End Function

The PathExists function
This function accepts one argument (a path) and returns True if the path exists:

Private Function PathExists(pname) As Boolean
‘ Returns TRUE if the path exists
 If Dir(pname, vbDirectory) = “” Then
 PathExists = False
 Else
 PathExists = (GetAttr(pname) And vbDirectory) = vbDirectory
 End If
End Function

The RangeNameExists function
This function accepts a single argument (a range name) and returns True if the range name
exists in the active workbook:

Private Function RangeNameExists(nname) As Boolean
‘ Returns TRUE if the range name exists
 Dim n As Name
 RangeNameExists = False
 For Each n In ActiveWorkbook.Names
 If UCase(n.Name) = UCase(nname) Then
 RangeNameExists = True
 Exit Function
 End If
 Next n
End Function

Chapter 11: VBA Programming Examples and Techniques 367

Another way to write this function follows. This version attempts to create an object variable
using the name. If doing so generates an error, then the name doesn’t exist.

Private Function RangeNameExists2(nname) As Boolean
‘ Returns TRUE if the range name exists
 Dim n As Range
 On Error Resume Next
 Set n = Range(nname)
 If Err.Number = 0 Then RangeNameExists2 = True _
 Else RangeNameExists2 = False
End Function

Testing for membership in a collection
The following function procedure is a generic function that you can use to determine whether an
object is a member of a collection:

Private Function IsInCollection(Coln As Object, _
 Item As String) As Boolean
 Dim Obj As Object
 On Error Resume Next
 Set Obj = Coln(Item)
 IsInCollection = Not Obj Is Nothing
End Function

This function accepts two arguments: the collection (an object) and the item (a string) that
might or might not be a member of the collection. The function attempts to create an object
variable that represents the item in the collection. If the attempt is successful, the function
returns True; otherwise, it returns False.

You can use the IsInCollection function in place of three other functions listed in this chap-
ter: RangeNameExists, SheetExists, and WorkbookIsOpen. To determine whether a
range named Data exists in the active workbook, call the IsInCollection function with this
statement:

MsgBox IsInCollection(ActiveWorkbook.Names, “Data”)

To determine whether a workbook named Budget is open, use this statement:

MsgBox IsInCollection(Workbooks, “budget.xlsx”)

To determine whether the active workbook contains a sheet named Sheet1, use this statement:

MsgBox IsInCollection(ActiveWorkbook.Worksheets, “Sheet1”)

Part III: Understanding Visual Basic for Applications368

The SheetExists function
This function accepts one argument (a worksheet name) and returns True if the worksheet
exists in the active workbook:

Private Function SheetExists(sname) As Boolean
‘ Returns TRUE if sheet exists in the active workbook
 Dim x As Object
 On Error Resume Next
 Set x = ActiveWorkbook.Sheets(sname)
 If Err.Number = 0 Then SheetExists = True _
 Else SheetExists = False
End Function

The WorkbookIsOpen function
This function accepts one argument (a workbook name) and returns True if the workbook is open:

Private Function WorkbookIsOpen(wbname) As Boolean
‘ Returns TRUE if the workbook is open
 Dim x As Workbook
 On Error Resume Next
 Set x = Workbooks(wbname)
 If Err.Number = 0 Then WorkbookIsOpen = True _
 Else WorkbookIsOpen = False
End Function

Retrieving a value from a closed workbook
VBA doesn’t include a method to retrieve a value from a closed workbook file. You can, however,
take advantage of Excel’s ability to work with linked files. This section contains a custom VBA
function (GetValue, which follows) that retrieves a value from a closed workbook. It does so by
calling an XLM macro, which is an old-style macro used in versions prior to Excel 5. Fortunately,
Excel still supports this old macro system.

Private Function GetValue(path, file, sheet, ref)
‘ Retrieves a value from a closed workbook
 Dim arg As String
‘ Make sure the file exists
 If Right(path, 1) <> “\” Then path = path & “\”
 If Dir(path & file) = “” Then
 GetValue = “File Not Found”
 Exit Function
 End If

Chapter 11: VBA Programming Examples and Techniques 369

‘ Create the argument
 arg = “’” & path & “[“ & file & “]” & sheet & “’!” & _
 Range(ref).Range(“A1”).Address(, , xlR1C1)
‘ Execute an XLM macro
 GetValue = ExecuteExcel4Macro(arg)
End Function

The GetValue function takes four arguments:

 path: The drive and path to the closed file (for example, “d:\files”)

 file: The workbook name (for example, “budget.xlsx”)

 sheet: The worksheet name (for example, “Sheet1”)

 ref: The cell reference (for example, “C4”)

The following Sub procedure demonstrates how to use the GetValue function. It displays the
value in cell A1 in Sheet1 of a file named 2010budget.xlsx, located in the XLFiles\
Budget directory on drive C.

Sub TestGetValue()
 Dim p As String, f As String
 Dim s As String, a As String
 p = “c:\XLFiles\Budget”
 f = “2010budget.xlsx”
 s = “Sheet1”
 a = “A1”
 MsgBox GetValue(p, f, s, a)
End Sub

Another example follows. This procedure reads 1,200 values (100 rows and 12 columns) from a
closed file and then places the values into the active worksheet.

Sub TestGetValue2()
 Dim p As String, f As String
 Dim s As String, a As String
 Dim r As Long, c As Long
 p = “c:\XLFiles\Budget”
 f = “2010Budget.xlsx”
 s = “Sheet1”
 Application.ScreenUpdating = False
 For r = 1 To 100
 For c = 1 To 12
 a = Cells(r, c).Address
 Cells(r, c) = GetValue(p, f, s, a)
 Next c
 Next r
End Sub

Part III: Understanding Visual Basic for Applications370

The GetValue function doesn’t work if used in a worksheet formula. Actually, there is
no need to use this function in a formula. You can simply create a link formula to
retrieve a value from a closed file.

This example is available on the companion CD-ROM. The file is named value from a
closed workbook.xlsm. The example uses a file named myworkbook.xlsx for the
closed file.

Some Useful Worksheet Functions
The examples in this section are custom functions that you can use in worksheet formulas.
Remember, you must define these Function procedures in a VBA module (not a code module
associated with ThisWorkbook, a Sheet, or a UserForm).

The examples in this section are available on the companion CD-ROM in a file named
worksheet functions.xlsm.

Returning cell formatting information
This section contains a number of custom functions that return information about a cell’s format-
ting. These functions are useful if you need to sort data based on formatting (for example, sort in
such a way that all bold cells are together).

You’ll find that these functions aren’t always updated automatically. This is because
changing formatting, for example, doesn’t trigger Excel’s recalculation engine. To force
a global recalculation (and update all the custom functions), press Ctrl+Alt+F9.

Alternatively, you can add the following statement to your function:

Application.Volatile

When this statement is present, then pressing F9 will recalculate the function.

The following function returns TRUE if its single-cell argument has bold formatting. If a range is
passed as the argument, the function uses the upper-left cell of the range.

Function IsBold(cell) As Boolean
‘ Returns TRUE if cell is bold
 IsBold = cell.Range(“A1”).Font.Bold
End Function

Chapter 11: VBA Programming Examples and Techniques 371

Note that this function works only with explicitly applied formatting. It doesn’t work for format-
ting applied using conditional formatting. Excel 2010 introduced a new object, DisplayFormat.
This object takes conditional formatting into account. Here’s the IsBold function rewritten so
that it also works with bold formatting applied as a result of conditional formatting:

Function IsBold(cell) As Boolean
‘ Returns TRUE if cell is bold, even if from conditional formatting
 IsBold = cell.Range(“A1”).DisplayFormat.Font.Bold
End Function

The following function returns TRUE if its single-cell argument has italic formatting:

Function IsItalic(cell) As Boolean
‘ Returns TRUE if cell is italic
 IsItalic = cell.Range(“A1”).Font.Italic
End Function

Both of the preceding functions will return an error if the cell has mixed formatting — for exam-
ple, if only some characters are bold. The following function returns TRUE only if all characters in
the cell are bold:

Function AllBold(cell) As Boolean
‘ Returns TRUE if all characters in cell are bold
 If IsNull(cell.Font.Bold) Then
 AllBold = False
 Else
 AllBold = cell.Font.Bold
 End If
End Function

You can simplify the AllBold function as follows:

Function AllBold (cell) As Boolean
‘ Returns TRUE if all characters in cell are bold
 AllBold = Not IsNull(cell.Font.Bold)
End Function

The FillColor function returns an integer that corresponds to the color index of the cell’s inte-
rior. The actual color depends on the workbook theme that’s applied. If the cell’s interior isn’t
filled, the function returns –4142.

This function doesn’t work with fill colors applied in tables (created with Insert➜Tables➜Table)
or pivot tables. You need to use the DisplayFormat object to detect that type of fill color, as I
described previously.

Part III: Understanding Visual Basic for Applications372

Function FillColor(cell) As Integer
‘ Returns an integer corresponding to
‘ cell’s interior color
 FillColor = cell.Range(“A1”).Interior.ColorIndex
End Function

A talking worksheet
The SayIt function uses Excel’s text-to-speech generator to “speak” it’s argument (which can
be literal text or a cell reference).

Function SayIt(txt)
 Application.Speech.Speak (txt)
 SayIt = txt
End Function

This function has some amusing possibilities, but it can also be useful. For example, use the func-
tion in a formula like this:

=IF(SUM(A:A)>25000,SayIt(“Goal Reached”))

If the sum of the values in column A exceeds 25,000, you’ll hear the synthesized voice tell you
that the goal has been reached. You can also use the Speak method at the end of a lengthy pro-
cedure. That way, you can do something else, and you’ll get an audible notice when the proce-
dure ends.

Displaying the date when a file was saved or printed
An Excel workbook contains several built-in document properties, accessible from the
BuiltinDocumentProperties property of the Workbook object. The following function
returns the date and time that the workbook was last saved:

Function LastSaved()
 Application.Volatile
 LastSaved = ThisWorkbook. _
 BuiltinDocumentProperties(“Last Save Time”)
End Function

The date and time returned by this function are the same date and time that appear in the
Related Dates section of Backstage View when you choose File➜Info. Note that the AutoSave
feature also affects this value. In other words, the “Last Save Time” is not necessarily the last time
the file was saved by the user.

Chapter 11: VBA Programming Examples and Techniques 373

The following function is similar to LastSaved, but it returns the date and time when the work-
book was last printed or previewed. If the workbook has never been printed or previewed, the
function returns a #VALUE error.

Function LastPrinted()
 Application.Volatile
 LastPrinted = ThisWorkbook. _
 BuiltinDocumentProperties(“Last Print Date”)
End Function

If you use these functions in a formula, you might need to force a recalculation (by pressing F9)
to get the current values of these properties.

Quite a few additional built-in properties are available, but Excel doesn’t use all of
them. For example, attempting to access the Number of Bytes property will generate
an error. For a list of all built-in properties, consult the Help system.

The preceding LastSaved and LastPrinted functions are designed to be stored in the work-
book in which they’re used. In some cases, you may want to store the function in a different
workbook (for example, personal.xlsb) or in an add-in. Because these functions reference
ThisWorkbook, they won’t work correctly. Following are more general-purpose versions of
these functions. These functions use Application.Caller, which returns a Range object that
represents the cell that calls the function. The use of Parent.Parent returns the workbook
(that is, the parent of the parent of the Range object — a Workbook object). This topic is
explained further in the next section.

Function LastSaved2()
 Application.Volatile
 LastSaved2 = Application.Caller.Parent.Parent. _
 BuiltinDocumentProperties(“Last Save Time”)
End Function

Understanding object parents
As you know, Excel’s object model is a hierarchy: Objects are contained in other objects. At the
top of the hierarchy is the Application object. Excel contains other objects, and these objects
contain other objects, and so on. The following hierarchy depicts how a Range object fits into
this scheme:

Application object

 Workbook object

 Worksheet object

 Range object

Part III: Understanding Visual Basic for Applications374

In the lingo of object-oriented programming, a Range object’s parent is the Worksheet object
that contains it. A Worksheet object’s parent is the Workbook object that contains the work-
sheet, and a Workbook object’s parent is the Application object.

How can you put this information to use? Examine the SheetName VBA function that follows.
This function accepts a single argument (a range) and returns the name of the worksheet that
contains the range. It uses the Parent property of the Range object. The Parent property
returns an object: the object that contains the Range object.

Function SheetName(ref) As String
 SheetName = ref.Parent.Name
End Function

The next function, WorkbookName, returns the name of the workbook for a particular cell.
Notice that it uses the Parent property twice. the first Parent property returns a Worksheet
object, and the second Parent property returns a Workbook object.

Function WorkbookName(ref) As String
 WorkbookName = ref.Parent.Parent.Name
End Function

The AppName function that follows carries this exercise to the next logical level, accessing the
Parent property three times (the parent of the parent of the parent). This function returns the
name of the Application object for a particular cell. It will, of course, always return
Microsoft Excel.

Function AppName(ref) As String
 AppName = ref.Parent.Parent.Parent.Name
End Function

Counting cells between two values
The following function, named CountBetween, returns the number of values in a range (first
argument) that fall between values represented by the second and third arguments:

Function CountBetween(InRange, num1, num2) As Long
‘ Counts number of values between num1 and num2
 With Application.WorksheetFunction
 If num1 <= num2 Then
 CountBetween = .CountIfs(InRange, “>=” & num1, _
 InRange, “<=” & num2)
 Else
 CountBetween = .CountIfs(InRange, “>=” & num2, _

Chapter 11: VBA Programming Examples and Techniques 375

 InRange, “<=” & num1)
 End If
 End With
End Function

Note that this function uses Excel’s COUNTIFS function. In fact, the CountBetween function is
essentially a wrapper that can simplify your formulas.

COUNTIFS was introduced in Excel 2007. Therefore, this function won’t work with pre-
vious versions of Excel.

Following is an example formula that uses the CountBetween function. The formula returns the
number of cells in A1:A100 that are greater than or equal to 10 and less than or equal to 20.

=CountBetween(A1:A100,10,20)

The function accepts the two numeric argument in either order. So, this formula is equivalent to
the previous formula:

=CountBetween(A1:A100,20,10)

Using this VBA function is simpler than entering the following (somewhat confusing) formula:

=COUNTIFS(A1:A100,”>=10”,A1:A100,”<=20”)

Determining the last non-empty cell in a column or row
In this section, I present two useful functions: LastInColumn returns the contents of the last
non-empty cell in a column; LastInRow returns the contents of the last non-empty cell in a row.
Each function accepts a range as its single argument. The range argument can be a complete col-
umn (for LastInColumn) or a complete row (for LastInRow). If the supplied argument isn’t a
complete column or row, the function uses the column or row of the upper-left cell in the range.
For example, the following formula returns the last value in column B:

=LastInColumn(B5)

The following formula returns the last value in row 7:

=LastInRow(C7:D9)

Part III: Understanding Visual Basic for Applications376

The LastInColumn function follows:

Function LastInColumn(rng As Range)
‘ Returns the contents of the last non-empty cell in a column
 Dim LastCell As Range
 Application.Volatile
 With rng.Parent
 With .Cells(.Rows.Count, rng.Column)
 If Not IsEmpty(.Value) Then
 LastInColumn = .Value
 ElseIf IsEmpty(.End(xlUp)) Then
 LastInColumn = “”
 Else
 LastInColumn = .End(xlUp).Value
 End If
 End With
 End With
End Function

This function is rather complicated, so here are a few points that may help you understand it:

 Application.Volatile causes the function to be executed whenever the sheet is
calculated.

 Rows.Count returns the number of rows in the worksheet. I used the Count property,
rather than hard-coding the value, because not all worksheets have the same number of
rows.

 rng.Column returns the column number of the upper-left cell in the rng argument.

 Using rng.Parent causes the function to work properly even if the rng argument
refers to a different sheet or workbook.

 The End method (with the xlUp argument) is equivalent to activating the last cell in a
column, pressing End, and then pressing the up-arrow key.

 The IsEmpty function checks whether the cell is empty. If so, it returns an empty string.
Without this statement, an empty cell would be returned as 0.

The LastInRow function follows. This function is very similar to the LastInColumn function.

Function LastInRow(rng As Range)
‘ Returns the contents of the last non-empty cell in a row
 Application.Volatile
 With rng.Parent
 With .Cells(rng.Row, .Columns.Count)
 If Not IsEmpty(.Value) Then
 LastInRow = .Value
 ElseIf IsEmpty(.End(xlToLeft)) Then

Chapter 11: VBA Programming Examples and Techniques 377

 LastInRow = “”
 Else
 LastInRow = .End(xlToLeft).Value
 End If
 End With
 End With
End Function

Does a string match a pattern?
The IsLike function is very simple (but also very useful). This function returns TRUE if a text
string matches a specified pattern.

This function, which follows, is remarkably simple. As you can see, the function is essentially a
wrapper that lets you take advantage of VBA’s powerful Like operator in your formulas.

Function IsLike(text As String, pattern As String) As Boolean
‘ Returns true if the first argument is like the second
 IsLike = text Like pattern
End Function

This IsLike function takes two arguments:

 text: A text string or a reference to a cell that contains a text string

 pattern: A string that contains wildcard characters according to the following list:

Character(s) in Pattern Matches in Text

? Any single character

* Zero or more characters

Any single digit (0–9)

[charlist] Any single character in charlist

[!charlist] Any single character not in charlist

The following formula returns TRUE because * matches any number of characters. It returns
TRUE if the first argument is any text that begins with g.

=IsLike(“guitar”,”g*”)

The following formula returns TRUE because ? matches any single character. If the first argument
were “Unit12”, the function would return FALSE.

=IsLike(“Unit1”,”Unit?”)

Part III: Understanding Visual Basic for Applications378

The next formula returns TRUE because the first argument is a single character in the second
argument.

=ISLIKE(“a”,”[aeiou]”)

The following formula returns TRUE if cell A1 contains a, e, i, o, u, A, E, I, O, or U. Using the UPPER
function for the arguments makes the formula not case-sensitive.

=IsLike(UPPER(A1), UPPER(“[aeiou]”))

The following formula returns TRUE if cell A1 contains a value that begins with 1 and has exactly
three digits (that is, any integer between 100 and 199).

=IsLike(A1,”1##”)

Extracting the nth element from a string
ExtractElement is a custom worksheet function (which you can also call from a VBA proce-
dure) that extracts an element from a text string. For example, if a cell contains the following
text, you can use the ExtractElement function to extract any of the substrings between the
hyphens.

123-456-789-0133-8844

The following formula, for example, returns 0133, which is the fourth element in the string. The
string uses a hyphen (-) as the separator.

=ExtractElement(“123-456-789-0133-8844”,4,”-”)

The ExtractElement function uses three arguments:

 Txt: The text string from which you’re extracting. It can be a literal string or a cell reference.

 n: An integer that represents the element to extract.

 Separator: A single character used as the separator.

If you specify a space as the Separator character, multiple spaces are treated as a sin-
gle space, which is almost always what you want. If n exceeds the number of elements
in the string, the function returns an empty string.

Chapter 11: VBA Programming Examples and Techniques 379

The VBA code for the ExtractElement function follows:

Function ExtractElement(Txt, n, Separator) As String
‘ Returns the nth element of a text string, where the
‘ elements are separated by a specified separator character
 Dim AllElements As Variant
 AllElements = Split(Txt, Separator)
 ExtractElement = AllElements(n - 1)
End Function

This function uses VBA’s Split function, which returns a variant array that contains each ele-
ment of the text string. This array begins with 0 (not 1), so using n - 1 references the desired
element.

Spelling out a number
The SPELLDOLLARS function returns a number spelled out in text — as on a check. For example,
the following formula returns the string One hundred twenty-three and 45/100 dollars:

=SPELLDOLLARS(123.45)

Figure 11-17 shows some additional examples of the SPELLDOLLARS function. Column C contains
formulas that use the function. For example, the formula in C1 is

=SPELLDOLLARS(A1)

Note that negative numbers are spelled out and enclosed in parentheses.

Figure 11-17: Examples of the SPELLDOLLARS function.

Part III: Understanding Visual Basic for Applications380

The SPELLDOLLARS function is too lengthy to list here, but you can view the complete
listing in worksheet function.xlsm on the companion CD-ROM.

A multifunctional function
This example describes a technique that may be helpful in some situations: making a single work-
sheet function act like multiple functions. For example, the following VBA listing is for a custom
function called StatFunction. It takes two arguments: the range (rng) and the operation (op).
Depending on the value of op, the function returns a value computed using any of the following
worksheet functions: AVERAGE, COUNT, MAX, MEDIAN, MIN, MODE, STDEV, SUM, or VAR.

For example, you can use this function in your worksheet as follows:

=StatFunction(B1:B24,A24)

The result of the formula depends on the contents of cell A24, which should be a string such as
Average, Count, Max, and so on. You can adapt this technique for other types of functions.

Function StatFunction(rng, op)
 Select Case UCase(op)
 Case “SUM”
 StatFunction = WorksheetFunction.Sum(rng)
 Case “AVERAGE”
 StatFunction = WorksheetFunction.Average(rng)
 Case “MEDIAN”
 StatFunction = WorksheetFunction.Median(rng)
 Case “MODE”
 StatFunction = WorksheetFunction.Mode(rng)
 Case “COUNT”
 StatFunction = WorksheetFunction.Count(rng)
 Case “MAX”
 StatFunction = WorksheetFunction.Max(rng)
 Case “MIN”
 StatFunction = WorksheetFunction.Min(rng)
 Case “VAR”
 StatFunction = WorksheetFunction.Var(rng)
 Case “STDEV”
 StatFunction = WorksheetFunction.StDev(rng)
 Case Else
 StatFunction = CVErr(xlErrNA)
 End Select
End Function

Chapter 11: VBA Programming Examples and Techniques 381

The SheetOffset function
You probably know that Excel’s support for 3-D workbooks is limited. For example, if you need to
refer to a different worksheet in a workbook, you must include the worksheet’s name in your for-
mula. Adding the worksheet name isn’t a big problem . . . until you attempt to copy the formula
across other worksheets. The copied formulas continue to refer to the original worksheet name,
and the sheet references aren’t adjusted as they would be in a true 3-D workbook.

The example discussed in this section is a VBA function (named SheetOffset) that enables
you to address worksheets in a relative manner. For example, you can refer to cell A1 on the pre-
vious worksheet by using this formula:

=SheetOffset(-1,A1)

The first argument represents the relative sheet, and it can be positive, negative, or zero. The
second argument must be a reference to a single cell. You can copy this formula to other sheets,
and the relative referencing will be in effect in all the copied formulas.

The VBA code for the SheetOffset function follows:

Function SheetOffset(Offset As Long, Optional Cell As Variant)

‘ Returns cell contents at Ref, in sheet offset

 Dim WksIndex As Long, WksNum As Long

 Dim wks As Worksheet

 Application.Volatile

 If IsMissing(Cell) Then Set Cell = Application.Caller

 WksNum = 1

 For Each wks In Application.Caller.Parent.Parent.Worksheets

 If Application.Caller.Parent.Name = wks.Name Then

 SheetOffset = Worksheets(WksNum + Offset).Range(Cell(1).Address)

 Exit Function

 Else

 WksNum = WksNum + 1

 End If

 Next wks

End Function

Returning the maximum value across all worksheets
If you need to determine the maximum value in cell B1 across a number of worksheets, you would
use a formula such as this:

=MAX(Sheet1:Sheet4!B1)

Part III: Understanding Visual Basic for Applications382

This formula returns the maximum value in cell B1 for Sheet1, Sheet4, and all the sheets in
between.

But what if you add a new sheet (Sheet5) after Sheet4? Your formula won’t adjust automati-
cally, so you need to edit the formula to include the new sheet reference:

=MAX(Sheet1:Sheet5!B1)

The MaxAllSheets function, which follows, accepts a single-cell argument and returns the
maximum value in that cell across all worksheets in the workbook. The formula that follows, for
example, returns the maximum value in cell B1 for all sheets in the workbook:

=MaxAllSheets(B1)

If you add a new sheet, you don’t need to edit the formula:

Function MaxAllSheets(cell)
 Dim MaxVal As Double
 Dim Addr As String
 Dim Wksht As Object
 Application.Volatile
 Addr = cell.Range(“A1”).Address
 MaxVal = -9.9E+307
 For Each Wksht In cell.Parent.Parent.Worksheets
 If Wksht.Name = cell.Parent.Name And _
 Addr = Application.Caller.Address Then
 ‘ avoid circular reference
 Else
 If IsNumeric(Wksht.Range(Addr)) Then
 If Wksht.Range(Addr) > MaxVal Then _
 MaxVal = Wksht.Range(Addr).Value
 End If
 End If
 Next Wksht
 If MaxVal = -9.9E+307 Then MaxVal = 0
 MaxAllSheets = MaxVal
End Function

The For Each statement uses the following expression to access the workbook:

cell.Parent.Parent.Worksheets

The parent of the cell is a worksheet, and the parent of the worksheet is the workbook. Therefore,
the For Each-Next loop cycles among all worksheets in the workbook. The first If statement

Chapter 11: VBA Programming Examples and Techniques 383

inside the loop performs a check to see whether the cell being checked is the cell that contains
the function. If so, that cell is ignored to avoid a circular reference error.

You can easily modify this function to perform other cross-worksheet calculations, such
as minimum, average, sum, and so on.

Returning an array of nonduplicated random integers
The function in this section, RandomIntegers, returns an array of nonduplicated integers. The
function is intended to be used in a multicell array formula.

{=RandomIntegers()}

Select a range and then enter the formula by pressing Ctrl+Shift+Enter. The formula returns an
array of nonduplicated integers, arranged randomly. For example, if you enter the formula into a
50-cell range, the formulas will return nonduplicated integers from 1 to 50.

The code for RandomIntegers follows:

Function RandomIntegers()
 Dim FuncRange As Range
 Dim V() As Variant, ValArray() As Variant
 Dim CellCount As Double
 Dim i As Integer, j As Integer
 Dim r As Integer, c As Integer
 Dim Temp1 As Variant, Temp2 As Variant
 Dim RCount As Integer, CCount As Integer

‘ Create Range object
 Set FuncRange = Application.Caller
‘ Return an error if FuncRange is too large
 CellCount = FuncRange.Count
 If CellCount > 1000 Then
 RandomIntegers = CVErr(xlErrNA)
 Exit Function
 End If

‘ Assign variables
 RCount = FuncRange.Rows.Count
 CCount = FuncRange.Columns.Count
 ReDim V(1 To RCount, 1 To CCount)
 ReDim ValArray(1 To 2, 1 To CellCount)
‘ Fill array with random numbers
‘ and consecutive integers
 For i = 1 To CellCount
 ValArray(1, i) = Rnd
 ValArray(2, i) = i

Part III: Understanding Visual Basic for Applications384

 Next i
‘ Sort ValArray by the random number dimension
 For i = 1 To CellCount
 For j = i + 1 To CellCount
 If ValArray(1, i) > ValArray(1, j) Then
 Temp1 = ValArray(1, j)
 Temp2 = ValArray(2, j)
 ValArray(1, j) = ValArray(1, i)
 ValArray(2, j) = ValArray(2, i)
 ValArray(1, i) = Temp1
 ValArray(2, i) = Temp2
 End If
 Next j
 Next i

‘ Put the randomized values into the V array
 i = 0
 For r = 1 To RCount
 For c = 1 To CCount
 i = i + 1
 V(r, c) = ValArray(2, i)
 Next c
 Next r
 RandomIntegers = V
End Function

Randomizing a range
The RangeRandomize function, which follows, accepts a range argument and returns an array
that consists of the input range — in random order:

Function RangeRandomize(rng)
 Dim V() As Variant, ValArray() As Variant
 Dim CellCount As Double
 Dim i As Integer, j As Integer
 Dim r As Integer, c As Integer
 Dim Temp1 As Variant, Temp2 As Variant
 Dim RCount As Integer, CCount As Integer

‘ Return an error if rng is too large
 CellCount = rng.Count
 If CellCount > 1000 Then
 RangeRandomize = CVErr(xlErrNA)
 Exit Function
 End If

‘ Assign variables

Chapter 11: VBA Programming Examples and Techniques 385

 RCount = rng.Rows.Count
 CCount = rng.Columns.Count
 ReDim V(1 To RCount, 1 To CCount)
 ReDim ValArray(1 To 2, 1 To CellCount)
‘ Fill ValArray with random numbers
‘ and values from rng
 For i = 1 To CellCount
 ValArray(1, i) = Rnd
 ValArray(2, i) = rng(i)
 Next i
‘ Sort ValArray by the random number dimension
 For i = 1 To CellCount
 For j = i + 1 To CellCount
 If ValArray(1, i) > ValArray(1, j) Then
 Temp1 = ValArray(1, j)
 Temp2 = ValArray(2, j)
 ValArray(1, j) = ValArray(1, i)
 ValArray(2, j) = ValArray(2, i)
 ValArray(1, i) = Temp1
 ValArray(2, i) = Temp2
 End If
 Next j
 Next i

‘ Put the randomized values into the V array
 i = 0
 For r = 1 To RCount
 For c = 1 To CCount
 i = i + 1
 V(r, c) = ValArray(2, i)
 Next c
 Next r
 RangeRandomize = V
End Function

The code is very similar to that for the RandomIntegers function.

Figure 11-18 shows the function in use. The array formula in B2:B11 is:

{= RangeRandomize(A2:A11)}

This formula returns the contents of A2:A11, but in random order.

Part III: Understanding Visual Basic for Applications386

Figure 11-18: The RangeRandomize function returns the contents of a range, in random order.

Windows API Calls
VBA has the capability to use functions that are stored in Dynamic Link Libraries (DLLs). The
examples in this section use common Windows API calls to DLLs.

For simplicity, the API function declarations presented in this section work in Excel
2010 only (both the 32-bit and 64-bit versions). However, the example files on the
CD-ROM use compiler directives so they will work with previous versions of Excel.

Determining file associations
In Windows, many file types are associated with a particular application. This association makes it
possible to double-click the file to load it into its associated application.

The following function, named GetExecutable, uses a Windows API call to get the full path to
the application associated with a particular file. For example, your system has many files with a
.txt extension — one named Readme.txt is probably in your Windows directory right now.
You can use the GetExecutable function to determine the full path of the application that
opens when the file is double-clicked.

Windows API declarations must appear at the top of your VBA module.

Private Declare PtrSafe Function FindExecutableA Lib “shell32.dll” _
 (ByVal lpFile As String, ByVal lpDirectory As String, _
 ByVal lpResult As String) As Long

Chapter 11: VBA Programming Examples and Techniques 387

Function GetExecutable(strFile As String) As String
 Dim strPath As String
 Dim intLen As Integer
 strPath = Space(255)
 intLen = FindExecutableA(strFile, “\”, strPath)
 GetExecutable = Trim(strPath)
End Function

Figure 11-19 shows the result of calling the GetExecutable function, with an argument of the
filename for an MP3 audio file. The function returns the full path of the application that’s associ-
ated with the file.

Figure 11-19: Determining the path and name of the application associated with a particular file.

This example is available on the companion CD-ROM. The filename is file associa-
tion.xlsm.

Determining disk drive information
VBA doesn’t have a way to directly get information about disk drives. But with the assistance of
three API functions, you can get just about all the information you need.

Figure 11-20 shows the output from a VBA procedure that identifies all connected drives, deter-
mines the drive type, and calculates total space, used space, and free space.

The code is rather lengthy, so I don’t list it here, but the interested reader should be able to figure
it out by examining the code on the CD-ROM.

This example is available on the companion CD-ROM in a file named
drive information.xlsm.

Part III: Understanding Visual Basic for Applications388

Figure 11-20: Using Windows API functions to get disk drive information.

Determining default printer information
The example in this section uses a Windows API function to return information about the active
printer. The information is contained in a single text string. The example parses the string and
displays the information in a more readable format.

Private Declare PtrSafe Function GetProfileStringA Lib “kernel32” _
 (ByVal lpAppName As String, ByVal lpKeyName As String, _
 ByVal lpDefault As String, ByVal lpReturnedString As _
 String, ByVal nSize As Long) As Long

Sub DefaultPrinterInfo()
 Dim strLPT As String * 255
 Dim Result As String
 Call GetProfileStringA _
 (“Windows”, “Device”, “”, strLPT, 254)

 Result = Application.Trim(strLPT)
 ResultLength = Len(Result)
 Comma1 = InStr(1, Result, “,”, 1)
 Comma2 = InStr(Comma1 + 1, Result, “,”, 1)
‘ Gets printer’s name
 Printer = Left(Result, Comma1 - 1)
‘ Gets driver
 Driver = Mid(Result, Comma1 + 1, Comma2 - Comma1 - 1)
‘ Gets last part of device line
 Port = Right(Result, ResultLength - Comma2)
‘ Build message
 Msg = “Printer:” & Chr(9) & Printer & Chr(13)
 Msg = Msg & “Driver:” & Chr(9) & Driver & Chr(13)
 Msg = Msg & “Port:” & Chr(9) & Port
‘ Display message
 MsgBox Msg, vbInformation, “Default Printer Information”
End Sub

Chapter 11: VBA Programming Examples and Techniques 389

The ActivePrinter property of the Application object returns the name of the
active printer (and lets you change it), but there’s no direct way to determine what
printer driver or port is being used. That’s why this function may be useful.

Figure 11-21 shows a sample message box returned by this procedure.

Figure 11-21: Getting information about the active printer by using a Windows API call.

This example is available on the companion CD-ROM. The filename is printer info.
xlsm.

Determining video display information
The example in this section uses Windows API calls to determine a system’s current video mode
for the primary display monitor. If your application needs to display a certain amount of informa-
tion on one screen, knowing the display size helps you scale the text accordingly. In addition, the
code determines the number of monitors. If more than one monitor is installed, the procedure
reports the virtual screen size.

Declare PtrSafe Function GetSystemMetrics Lib “user32” _
 (ByVal nIndex As Long) As Long
Public Const SM_CMONITORS = 80
Public Const SM_CXSCREEN = 0
Public Const SM_CYSCREEN = 1
Public Const SM_CXVIRTUALSCREEN = 78
Public Const SM_CYVIRTUALSCREEN = 79

Sub DisplayVideoInfo()
 Dim numMonitors As Long
 Dim vidWidth As Long, vidHeight As Long
 Dim virtWidth As Long, virtHeight As Long
 Dim Msg As String

 numMonitors = GetSystemMetrics(SM_CMONITORS)
 vidWidth = GetSystemMetrics(SM_CXSCREEN)
 vidHeight = GetSystemMetrics(SM_CYSCREEN)
 virtWidth = GetSystemMetrics(SM_CXVIRTUALSCREEN)
 virtHeight = GetSystemMetrics(SM_CYVIRTUALSCREEN)

Part III: Understanding Visual Basic for Applications390

 If numMonitors > 1 Then
 Msg = numMonitors & “ display monitors” & vbCrLf
 Msg = Msg & “Virtual screen: “ & virtWidth & “ X “
 Msg = Msg & virtHeight & vbCrLf & vbCrLf
 Msg = Msg & “The video mode on the primary display is: “
 Msg = Msg & vidWidth & “ X “ & vidHeight
 Else
 Msg = Msg & “The video display mode: “
 Msg = Msg & vidWidth & “ X “ & vidHeight
 End If
 MsgBox Msg
End Sub

Figure 11-22 shows the message box returned by this procedure when running on a dual-monitor
system.

Figure 11-22: Using a Windows API call to determine the video display mode.

This example is available on the companion CD-ROM. The filename is video mode.
xlsm.

Adding sound to your applications
The example in this section adds some sound capability to Excel. Specifically, it enables your
application to play WAV or MIDI files. For example, you might like to play a short sound clip
when a dialog box is displayed. Or maybe not. In any case, if you want Excel to play WAV or MIDI
files, this section has what you need.

The examples in this section are available on the companion CD-ROM in a file named
sound.xlsm.

Playing a WAV file
The following example contains the API function declaration plus a simple procedure to play a
sound file called sound.wav, which is presumed to be in the same directory as the workbook:

Chapter 11: VBA Programming Examples and Techniques 391

Private Declare Function PlaySound Lib “winmm.dll” _
 Alias “PlaySoundA” (ByVal lpszName As String, _
 ByVal hModule As Long, ByVal dwFlags As Long) As Long
Const SND_SYNC = &H0
Const SND_ASYNC = &H1
Const SND_FILENAME = &H20000

Sub PlayWAV()
 WAVFile = “sound.wav”
 WAVFile = ThisWorkbook.Path & “\” & WAVFile
 Call PlaySound(WAVFile, 0&, SND_ASYNC Or SND_FILENAME)
End Sub

In the preceding example, the WAV file is played asynchronously. This means that execution con-
tinues while the sound is playing. To stop code execution while the sound is playing, use this
statement instead:

Call PlaySound(WAVFile, 0&, SND_SYNC Or SND_FILENAME)

Playing a MIDI file
If the sound file is a MIDI file, you’ll need to use a different API call. The PlayMIDI procedure
starts playing a MIDI file. Executing the StopMIDI procedure stops playing the MIDI file. This
example uses a file named xfiles.mid.

Private Declare Function mciExecute Lib “winmm.dll” _
 (ByVal lpstrCommand As String) As Long

Sub PlayMIDI()
 MIDIFile = “xfiles.mid”
 MIDIFile = ThisWorkbook.Path & “\” & MIDIFile
 mciExecute (“play “ & MIDIFile)
End Sub

Sub StopMIDI()
 MIDIFile = “xfiles.mid”
 MIDIFile = ThisWorkbook.Path & “\” & MIDIFile
 mciExecute (“stop “ & MIDIFile)
End Sub

Playing sound from a worksheet function
The Alarm function, which follows, is designed to be used in a worksheet formula. It uses a
Windows API function to play a sound file when a cell meets a certain condition.

Part III: Understanding Visual Basic for Applications392

Declare Function PlaySound Lib “winmm.dll” _
 Alias “PlaySoundA” (ByVal lpszName As String, _
 ByVal hModule As Long, ByVal dwFlags As Long) As Long
Function Alarm(Cell, Condition)
 Dim WAVFile As String
 Const SND_ASYNC = &H1
 Const SND_FILENAME = &H20000
 If Evaluate(Cell.Value & Condition) Then
 WAVFile = ThisWorkbook.Path & “\sound.wav”
 Call PlaySound(WAVFile, 0&, SND_ASYNC Or SND_FILENAME)
 Alarm = True
 Else
 Alarm = False
 End If
End Function

The Alarm function accepts two arguments: a cell reference and a condition (expressed as a
string). The following formula, for example, uses the Alarm function to play a WAV file when the
value in cell B13 is greater than or equal to 1000.

=ALARM(B13,”>=1000”)

The function uses VBA’s Evaluate function to determine whether the cell’s value matches the
specified criterion. When the criterion is met (and the alarm has sounded), the function returns
True; otherwise, it returns False.

The examples in this section are available on the companion CD-ROM in a file named
sound.xlsm.

The SayIt function, presented earlier in this chapter, is a much simpler way to use
sound in a function.

Reading from and writing to the Registry
Most Windows applications use the Windows Registry database to store settings. (See Chapter 4
for some additional information about the Registry.) Your VBA procedures can read values from
the Registry and write new values to the Registry. Doing so requires the following Windows API
declarations:

Private Declare PtrSafe Function RegOpenKeyA Lib “ADVAPI32.DLL” _
 (ByVal hKey As Long, ByVal sSubKey As String, _
 ByRef hkeyResult As Long) As Long
Private Declare PtrSafe Function RegCloseKey Lib “ADVAPI32.DLL” _

Chapter 11: VBA Programming Examples and Techniques 393

 (ByVal hKey As Long) As Long
Private Declare PtrSafe Function RegSetValueExA Lib “ADVAPI32.DLL” _
 (ByVal hKey As Long, ByVal sValueName As String, _

 ByVal dwReserved As Long, ByVal dwType As Long, _
 ByVal sValue As String, ByVal dwSize As Long) As Long
Private Declare PtrSafe Function RegCreateKeyA Lib “ADVAPI32.DLL” _
 (ByVal hKey As Long, ByVal sSubKey As String, _
 ByRef hkeyResult As Long) As Long
Private Declare PtrSafe Function RegQueryValueExA Lib “ADVAPI32.DLL” _
 (ByVal hKey As Long, ByVal sValueName As String, _
 ByVal dwReserved As Long, ByRef lValueType As Long, _
 ByVal sValue As String, ByRef lResultLen As Long) As Long

I developed two wrapper functions that simplify the task of working with the Registry:
GetRegistry and WriteRegistry. These functions are available on the companion
CD-ROM in a file named windows registry.xlsm. This workbook includes a proce-
dure that demonstrates reading from the Registry and writing to the Registry.

Reading from the Registry
The GetRegistry function returns a setting from the specified location in the Registry. It takes
three arguments:

 RootKey: A string that represents the branch of the Registry to address. This string can
be one of the following:

● HKEY_CLASSES_ROOT

● HKEY_CURRENT_USER

● HKEY_LOCAL_MACHINE

● HKEY_USERS

● HKEY_CURRENT_CONFIG

 Path: The full path of the Registry category being addressed.

 RegEntry: The name of the setting to retrieve.

Here’s an example. If you’d like to find which graphic file, if any, is being used for the desktop wall-
paper, you can call GetRegistry as follows. (Notice that the arguments aren’t case-sensitive.)

 RootKey = “hkey_current_user”
 Path = “Control Panel\Desktop”
 RegEntry = “Wallpaper”
 MsgBox GetRegistry(RootKey, Path, RegEntry), _
 vbInformation, Path & “\RegEntry”

Part III: Understanding Visual Basic for Applications394

The message box will display the path and filename of the graphic file (or an empty string if wall-
paper isn’t used).

Writing to the Registry
The WriteRegistry function writes a value to the Registry at a specified location. If the opera-
tion is successful, the function returns True; otherwise, it returns False. WriteRegistry
takes the following arguments (all of which are strings):

 RootKey: A string that represents the branch of the Registry to address. This string may
be one of the following:

● HKEY_CLASSES_ROOT

● HKEY_CURRENT_USER

● HKEY_LOCAL_MACHINE

● HKEY_USERS

● HKEY_CURRENT_CONFIG

 Path: The full path in the Registry. If the path doesn’t exist, it is created.

 RegEntry: The name of the Registry category to which the value will be written. If it
doesn’t exist, it is added.

 RegVal: The value that you’re writing.

Here’s an example that writes a value representing the time and date Excel was started to the
Registry. The information is written in the area that stores Excel’s settings.

Sub Workbook_Open()
 RootKey = “hkey_current_user”
 Path = “software\microsoft\office\14.0\excel\LastStarted”
 RegEntry = “DateTime”
 RegVal = Now()
 If WriteRegistry(RootKey, Path, RegEntry, RegVal) Then
 msg = RegVal & “ has been stored in the registry.”
 Else msg = “An error occurred”
 End If
 MsgBox msg
End Sub

If you store this routine in the ThisWorkbook module in your personal macro workbook, the
setting is automatically updated whenever you start Excel.

Chapter 11: VBA Programming Examples and Techniques 395

An easier way to access the Registry
If you want to use the Windows Registry to store and retrieve settings for your Excel applica-
tions, you don’t have to bother with the Windows API calls. Rather, you can use VBA’s
GetSetting and SaveSetting functions.

These two functions are described in the Help system, so I won’t cover the details here.
However, it’s important to understand that these functions work only with the following key
name:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings

In other words, you can’t use these functions to access any key in the registry. Rather, these
functions are most useful for storing information about your Excel application that you need to
maintain between sessions.

Part III: Understanding Visual Basic for Applications396

PART IV
Working with
UserForms
CHAPTER 12
Custom Dialog Box Alternatives

CHAPTER 13
Introducing UserForms

CHAPTER 14
UserForm Examples

CHAPTER 15
Advanced UserForm Techniques

399

12
Custom Dialog Box
Alternatives
In This Chapter

● Using an input box to get user input

● Using a message box to display messages or get a simple response

● Selecting a file from a dialog box

● Selecting a directory

● Displaying Excel’s built-in dialog boxes

Before You Create That UserForm . . .
Dialog boxes are, perhaps, the most important user interface element in Windows programs.
Virtually every Windows program uses them, and most users have a good understanding of how
they work. Excel developers implement custom dialog boxes by creating UserForms. However, VBA
provides the means to display some built-in dialog boxes, with minimal programming required.

Before I get into the nitty-gritty of creating UserForms (beginning with Chapter 13), you might
find it helpful to understand some of Excel’s built-in tools that display dialog boxes. The sections
that follow describe various dialog boxes that you can display without creating a UserForm.

Using an Input Box
An input box is a simple dialog box that allows the user to make a single entry. For example, you
can use an input box to let the user enter text or a number or even select a range. You can gener-
ate an InputBox in two ways: by using a VBA function and by using a method of the
Application object.

Part IV: Working with UserForms400

The VBA InputBox function
The syntax for VBA’s InputBox function is

InputBox(prompt[,title][,default][,xpos][,ypos][,helpfile, context])

 prompt: Required. The text displayed in the InputBox.

 title: Optional. The caption of the InputBox window.

 default: Optional. The default value to be displayed in the dialog box.

 xpos, ypos: Optional. The screen coordinates of the upper-left corner of the window.

 helpfile, context: Optional. The help file and help topic.

The InputBox function prompts the user for a single piece of information. The function always
returns a string, so your code may need to convert the results to a value.

The prompt may consist of up to 1,024 characters. In addition, you can provide a title for the dia-
log box and a default value and specify its position on the screen. You can also specify a custom
Help topic; if you do, the input box includes a Help button.

The following example, which generates the dialog box shown in Figure 12-1, uses the VBA
InputBox function to ask the user for his full name. The code then extracts the first name and
displays a greeting in a message box.

Figure 12-1: VBA’s InputBox function at work.

Sub GetName()
 Dim UserName As String
 Dim FirstSpace As Integer
 Do Until UserName <> “”
 UserName = InputBox(“Enter your full name: “, _
 “Identify Yourself”)
 Loop
 FirstSpace = InStr(UserName, “ “)
 If FirstSpace <> 0 Then
 UserName = Left(UserName, FirstSpace - 1)
 End If
 MsgBox “Hello “ & UserName
End Sub

Chapter 12: Custom Dialog Box Alternatives 401

Notice that this InputBox function is written in a Do Until loop to ensure that something is
entered when the input box appears. If the user clicks Cancel or doesn’t enter any text,
UserName contains an empty string, and the input box reappears. The procedure then attempts
to extract the first name by searching for the first space character (by using the InStr function)
and then using the Left function to extract all characters before the first space. If a space char-
acter isn’t found, the entire name is used as entered.

As I mentioned, the InputBox function always returns a string. If the string returned by the
InputBox function looks like a number, you can convert it to a value by using VBA’s Val func-
tion. Or you can use Excel’s InputBox method, which I describe in the next section.

Figure 12-2 shows another example of the VBA InputBox function. The user is asked to fill in
the missing word. This example also illustrates the use of named arguments. The prompt text is
retrieved from a worksheet cell and is assigned to a variable (p).

Figure 12-2: Using VBA’s InputBox function with a long prompt.

Sub GetWord()
 Dim TheWord As String
 Dim p As String
 Dim t As String
 p = Range(“A1”)
 t = “What’s the missing word?”
 TheWord = InputBox(prompt:=p, Title:=t)
 If UCase(TheWord) = “BATTLEFIELD” Then
 MsgBox “Correct.”
 Else
 MsgBox “That is incorrect.”
 End If
End Sub

Part IV: Working with UserForms402

The two examples in this section are available on the companion CD-ROM. The file is
named VBA inputbox.xlsm.

The Excel InputBox method
Using Excel’s InputBox method offers three advantages over VBA’s InputBox function:

 You can specify the data type returned.

 The user can specify a worksheet range by dragging in the worksheet.

 Input validation is performed automatically.

The syntax for the Excel InputBox method is

InputBox(Prompt [,Title][,Default][,Left][,Top][,HelpFile, HelpContextID]
[,Type])

 Prompt: Required. The text displayed in the input box.

 Title: Optional. The caption in the input box window.

 Default: Optional. The default value to be returned by the function if the user enters
nothing.

 Left, Top: Optional. The screen coordinates of the upper-left corner of the window.

 HelpFile, HelpContextID: Optional. The Help file and Help topic.

 Type: Optional. A code for the data type returned, as listed in Table 12-1.

Table 12-1: Codes to Determine the Data Type Returned by Excel’s Inputbox Method

Code Meaning

0 A formula

1 A number

2 A string (text)

4 A logical value (True or False)

8 A cell reference, as a range object

16 An error value, such as #N/A

64 An array of values

Chapter 12: Custom Dialog Box Alternatives 403

Excel’s InputBox method is quite versatile. To allow more than one data type to be returned,
use the sum of the pertinent codes. For example, to display an input box that can accept text or
numbers, set type equal to 3 (that is, 1 + 2, or number plus text). If you use 8 for the type argu-
ment, the user can enter a cell or range address (or a named cell or range) manually or point to a
range in the worksheet.

The EraseRange procedure, which follows, uses the InputBox method to allow the user to
select a range to erase (see Figure 12-3). The user can either type the range address manually or
use the mouse to select the range in the sheet.

Figure 12-3: Using the InputBox method to specify a range.

The InputBox method with a type argument of 8 returns a Range object (note the Set keyword).
This range is then erased (by using the Clear method). The default value displayed in the input box
is the current selection’s address. The On Error statement ends the procedure if the input box is
canceled.

Sub EraseRange()
 Dim UserRange As Range
 On Error GoTo Canceled
 Set UserRange = Application.InputBox _
 (Prompt:=”Range to erase:”, _
 Title:=”Range Erase”, _
 Default:=Selection.Address, _
 Type:=8)

Part IV: Working with UserForms404

 UserRange.Clear
 UserRange.Select
Canceled:
End Sub

This example is available on the companion CD-ROM in a file named inputbox
method.xlsm.

Yet another advantage of using Excel’s InputBox method is that Excel performs input valida-
tion automatically. In the GetRange example, if you enter something other than a range address,
Excel displays an informative message and lets the user try again (see Figure 12-4).

Figure 12-4: Excel’s InputBox method performs validation automatically.

The VBA MsgBox Function
VBA’s MsgBox function is an easy way to display a message to the user or to get a simple
response (such as OK or Cancel). I use the MsgBox function in many of the examples in this book
as a way to display a variable’s value.

The official syntax for MsgBox is as follows:

MsgBox(prompt[,buttons][,title][,helpfile, context])

 prompt: Required. The text displayed in the message box.

 buttons: Optional. A numeric expression that determines which buttons and icon are
displayed in the message box. See Table 12-2.

 title: Optional. The caption in the message box window.

 helpfile, context: Optional. The helpfile and Help topic.

You can easily customize your message boxes because of the flexibility of the buttons argu-
ment. (Table 12-2 lists the many constants that you can use for this argument.) You can specify
which buttons to display, whether an icon appears, and which button is the default.

Chapter 12: Custom Dialog Box Alternatives 405

Table 12-2: Constants Used for Buttons in the Msgbox Function

Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 Fourth button is default.

vbSystemModal 4096 All applications are suspended until the user responds to the
message box (might not work under all conditions).

vbMsgBoxHelpButton 16384 Display a Help button. However, there is no way to display
any help if the button is clicked.

You can use the MsgBox function by itself (to simply display a message) or assign its result to a
variable. When you use the MsgBox function to return a result, the value represents the button
clicked by the user. The following example displays a message and an OK button, but doesn’t
return a result:

Sub MsgBoxDemo()
 MsgBox “Macro finished with no errors.”
End Sub

To get a response from a message box, you can assign the results of the MsgBox function to a
variable. In the following code, I use some built-in constants (described in Table 12-3) to make it
easier to work with the values returned by MsgBox:

Sub GetAnswer()
 Dim Ans As Integer
 Ans = MsgBox(“Continue?”, vbYesNo)
 Select Case Ans
 Case vbYes
‘ ...[code if Ans is Yes]...

Part IV: Working with UserForms406

 Case vbNo
‘ ...[code if Ans is No]...
 End Select
End Sub

Table 12-3: Constants Used for Msgbox Return Value

Constant Value Button Clicked

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

The variable returned by the MsgBox function is an Integer data type. Actually, you don’t even
need to use a variable to utilize the result of a message box. The following procedure is another
way of coding the GetAnswer procedure:

Sub GetAnswer2()
 If MsgBox(“Continue?”, vbYesNo) = vbYes Then
‘ ...[code if Ans is Yes]...
 Else
‘ ...[code if Ans is No]...
 End If
End Sub

The following function example uses a combination of constants to display a message box with a
Yes button, a No button, and a question mark icon; the second button is designated as the default
button (see Figure 12-5). For simplicity, I assigned these constants to the Config variable.

Figure 12-5: The buttons argument of the MsgBox function determines which buttons appear.

Chapter 12: Custom Dialog Box Alternatives 407

Private Function ContinueProcedure() As Boolean
 Dim Config As Integer
 Dim Ans As Integer
 Config = vbYesNo + vbQuestion + vbDefaultButton2
 Ans = MsgBox(“An error occurred. Continue?”, Config)
 If Ans = vbYes Then ContinueProcedure = True _
 Else ContinueProcedure = False
End Function

You can call the ContinueProcedure function from another procedure. For example, the fol-
lowing statement calls the ContinueProcedure function (which displays the message box). If
the function returns False (that is, the user selects No), the procedure ends. Otherwise, the next
statement would be executed.

If Not ContinueProcedure() Then Exit Sub

The width of the message box depends on your video resolution. If you’d like to force a line break
in the message, use the vbCrLf (or vbNewLine) constant in the text. The following example
displays the message in three lines. Figure 12-6 shows how it looks.

Figure 12-6: Splitting a message into multiple lines.

Sub MultiLine()
 Dim Msg As String
 Msg = “This is the first line.” & vbCrLf & vbCrLf
 Msg = Msg & “This is the second line.” & vbCrLf
 Msg = Msg & “And this is the last line.”
 MsgBox Msg
End Sub

You can also insert a tab character by using the vbTab constant. The following procedure uses a
message box to display the values in a 13 x 3 range of cells in A1:C13 (see Figure 12-7). It sepa-
rates the columns by using a vbTab constant and inserts a new line by using the vbCrLf con-
stant. The MsgBox function accepts a maximum string length of 1,023 characters, which will limit
the number of cells that you can display. Also, note that the tab stops are fixed, so if a cell con-
tains more than 11 characters, the columns won’t be aligned.

Part IV: Working with UserForms408

Figure 12-7: This message box displays text with tabs and line breaks.

Sub ShowRange()
 Dim Msg As String
 Dim r As Integer, c As Integer
 Msg = “”
 For r = 1 To 12
 For c = 1 To 3
 Msg = Msg & Cells(r, c).Text
 If c <> 3 Then Msg = Msg & vbTab
 Next c
 Msg = Msg & vbCrLf
 Next r
 MsgBox Msg
End Sub

Chapter 15 includes a UserForm example that emulates the MsgBox function.

Chapter 12: Custom Dialog Box Alternatives 409

The Excel GetOpenFilename Method
If your application needs to ask the user for a filename, you can use the InputBox function. But
this approach is tedious and error-prone because the user must type the filename (with no brows-
ing ability). A better approach is to use the GetOpenFilename method of the Application
object, which ensures that your application gets a valid filename (as well as its complete path).

This method displays the normal Open dialog box, but it does not actually open the file specified.
Rather, the method returns a string that contains the path and filename selected by the user.
Then you can write code to do whatever you want with the filename.

The syntax for the GetOpenFilename method is as follows (all arguments are optional):

ApplicationGetOpenFilename(FileFilter, FilterIndex, Title, ButtonText,
MultiSelect)

 FileFilter: Optional. A string specifying file-filtering criteria.

 FilterIndex: Optional. The index number of the default file-filtering criteria.

 Title: Optional. The title of the dialog box. If omitted, the title is Open.

 ButtonText: For Macintosh only.

 MultiSelect: Optional. If True, you can select multiple filenames. The default value is
False.

The FileFilter argument determines what file types appear in the dialog box’s Files of Type
drop-down list. The argument consists of pairs of file filter strings followed by the wildcard file
filter specification, with each part and each pair separated by commas. If omitted, this argument
defaults to the following:

“All Files (*.*),*.*”

Notice that the first part of this string (All Files (*.*)) is the text displayed in the Files of
Type drop-down list. The second part (*.*) actually determines which files are displayed.

The following instruction assigns a string to a variable named Filt. You can then use this string
as a FileFilter argument for the GetOpenFilename method. In this case, the dialog box
will allow the user to select from four different file types (plus an All Files option). Notice that I
used VBA’s line continuation sequence to set up the Filt variable; doing so makes it much eas-
ier to work with this rather complicated argument.

Filt = “Text Files (*.txt),*.txt,” & _
 “Lotus Files (*.prn),*.prn,” & _
 “Comma Separated Files (*.csv),*.csv,” & _
 “ASCII Files (*.asc),*.asc,” & _
 “All Files (*.*),*.*”

Part IV: Working with UserForms410

The FilterIndex argument specifies which FileFilter is the default, and the Title argu-
ment is text that is displayed in the title bar. If the MultiSelect argument is True, the user
can select multiple files, all of which are returned in an array.

The following example prompts the user for a filename. It defines five file filters.

Sub GetImportFileName()
 Dim Filt As String
 Dim FilterIndex As Integer
 Dim Title As String
 Dim FileName As Variant

‘ Set up list of file filters
 Filt = “Text Files (*.txt),*.txt,” & _
 “Lotus Files (*.prn),*.prn,” & _
 “Comma Separated Files (*.csv),*.csv,” & _
 “ASCII Files (*.asc),*.asc,” & _
 “All Files (*.*),*.*”
‘ Display *.* by default
 FilterIndex = 5
‘ Set the dialog box caption
 Title = “Select a File to Import”
‘ Get the file name
 FileName = Application.GetOpenFilename _
 (FileFilter:=Filt, _
 FilterIndex:=FilterIndex, _
 Title:=Title)
‘ Exit if dialog box canceled
 If FileName = False Then
 MsgBox “No file was selected.”
 Exit Sub
 End If

‘ Display full path and name of the file
 MsgBox “You selected “ & FileName
End Sub

Figure 12-8 shows the dialog box that appears when this procedure is executed and the user
selects the Comma Separated Files filter.

Chapter 12: Custom Dialog Box Alternatives 411

Figure 12-8: The GetOpenFilename method displays a dialog box used to specify a file.

The following example is similar to the previous example. The difference is that the user can
press Ctrl or Shift and select multiple files when the dialog box is displayed. Notice that I check
for the Cancel button click by determining whether FileName is an array. If the user doesn’t
click Cancel, the result is an array that consists of at least one element. In this example, a list of
the selected files is displayed in a message box.

Sub GetImportFileName2()
 Dim Filt As String
 Dim FilterIndex As Integer
 Dim FileName As Variant
 Dim Title As String
 Dim i As Integer
 Dim Msg As String
‘ Set up list of file filters
 Filt = “Text Files (*.txt),*.txt,” & _
 “Lotus Files (*.prn),*.prn,” & _
 “Comma Separated Files (*.csv),*.csv,” & _
 “ASCII Files (*.asc),*.asc,” & _
 “All Files (*.*),*.*”
‘ Display *.* by default
 FilterIndex = 5
‘ Set the dialog box caption
 Title = “Select a File to Import”
‘ Get the file name

Part IV: Working with UserForms412

 FileName = Application.GetOpenFilename _
 (FileFilter:=Filt, _
 FilterIndex:=FilterIndex, _
 Title:=Title, _
 MultiSelect:=True)
‘ Exit if dialog box canceled
 If Not IsArray(FileName) Then
 MsgBox “No file was selected.”
 Exit Sub
 End If

‘ Display full path and name of the files
 For i = LBound(FileName) To UBound(FileName)
 Msg = Msg & FileName(i) & vbCrLf
 Next i
 MsgBox “You selected:” & vbCrLf & Msg
End Sub

The FileName variable is defined as a variant (not a string, as in the previous examples). I use
variant because FileName can potentially hold an array rather than a single filename.

The two examples in this section are available on the companion CD-ROM. The filename
is prompt for file.xlsm.

The Excel GetSaveAsFilename Method
The GetSaveAsFilename method is very similar to the GetOpenFilename method. It dis-
plays a Save As dialog box and lets the user select (or specify) a file. It returns a filename and
path but doesn’t take any action. Like the GetOpenFilename method, all of the
GetSaveAsFilename method’s arguments are optional.

The syntax for this method is

Application.GetSaveAsFilename(InitialFilename, FileFilter, FilterIndex,
Title, ButtonText)

The arguments are

 InitialFilename: Optional. Specifies the suggested filename.

 FileFilter: Optional. A string specifying file-filtering criteria.

 FilterIndex: Optional. The index number of the default file-filtering criteria.

 Title: Optional. The title of the dialog box.

 ButtonText: For Macintosh only.

Chapter 12: Custom Dialog Box Alternatives 413

Prompting for a Directory
If you need to get a filename, the simplest solution is to use the GetOpenFileName method, as
I describe earlier. But if you need to get a directory name only (no file), you can use Excel’s
FileDialog object.

The following procedure displays a dialog box (see Figure 12-9) that allows the user to select a direc-
tory. The selected directory name (or Canceled) is then displayed by using the MsgBox function.

Figure 12-9: Using the FileDialog object to select a directory.

Sub GetAFolder ()
 With Application.FileDialog(msoFileDialogFolderPicker)
 .InitialFileName = Application.DefaultFilePath & “\”
 .Title = “Select a location for the backup”
 .Show
 If .SelectedItems.Count = 0 Then
 MsgBox “Canceled”
 Else
 MsgBox .SelectedItems(1)
 End If
 End With
End Sub

The FileDialog object lets you specify the starting directory by specifying a value for the
InitialFileName property. In this example, the code uses Excel’s default file path as the
starting directory.

Displaying Excel’s Built-In Dialog Boxes
Code that you write in VBA can execute many of Excel’s Ribbon commands. And, if the com-
mand normally leads to a dialog box, your code can “make choices” in the dialog box (although
the dialog box itself isn’t displayed). For example, the following VBA statement is equivalent to

Part IV: Working with UserForms414

choosing the Home➜Editing➜Find & Select➜Go To command, specifying range A1:C3, and click-
ing OK. But the Go To dialog box never appears (which is what you want).

Application.Goto Reference:=Range(“A1:C3”)

In some cases, however, you may want to display one of Excel’s built-in dialog boxes so that the
end user can make the choices. You can do so by writing code that executes a Ribbon command.

Using the Dialogs collection of the Application object is another way to display an
Excel dialog box. However, Microsoft has not kept this feature up-to-date, so I don’t
even discuss it. The method I describe in this section is a much better solution.

In previous versions of Excel, programmers created custom menus and toolbars by using the
CommandBar object. In Excel 2007 and Excel 2010, the CommandBar object is still available, but
it doesn’t work like it has in the past.

Refer to Chapter 22 for more information about the CommandBar object.

The CommandBar object has also been enhanced, beginning with Excel 2007. You can use the
CommandBar object to execute Ribbon commands using VBA. Many of the Ribbon commands display
a dialog box. For example, the following statement displays the Unhide dialog box (see Figure 12-10):

Application.CommandBars.ExecuteMso(“SheetUnhide”)

Figure 12-10: This dialog box was displayed with a VBA statement.

Chapter 12: Custom Dialog Box Alternatives 415

The ExecuteMso method accepts one argument, an idMso parameter that represents a Ribbon
control. Unfortunately, these parameters aren’t listed in the Help system.

The companion CD-ROM contains a file, ribbon control names.xlsx, that lists all
the Excel Ribbon command parameter names. You’ll need to experiment with the items
listed in this workbook. Many of them execute the command immediately (no dialog
box). And most will generate an error if they’re issued in an incorrect context. For
example, Excel displays an error if your code executes the FunctionWizard command
when a chart is selected.

Following is another example. This statement, when executed, displays the Font tab of the
Format Cells dialog box (see Figure 12-11):

Application.CommandBars.ExecuteMso(“FormatCellsFontDialog”)

Figure 12-11: Using the ExecuteMso method to display a dialog box.

Part IV: Working with UserForms416

Displaying a Data Form
Many people use Excel to manage lists in which the information is arranged in rows. Excel offers
a simple way to work with this type of data through the use of a built-in data entry form that
Excel can create automatically. This data form works with either a normal range of data or a
range that has been designated as a table (by using the Insert➜Tables➜Table command). Figure
12-12 shows an example of a data form in use.

Making the data form accessible
For some reason, the command to access the data form isn’t in the Excel Ribbon. To access the
data form from Excel’s user interface, you must add it to your Quick Access toolbar or to the
Ribbon. Following are instructions to add this command to the Quick Access toolbar:

 1. Right-click the Quick Access toolbar and select Customize Quick Access Toolbar.

 The Quick Access Toolbar panel of the Excel Options dialog box appears.

 2. In the Choose Commands From drop-down list, select Commands Not in the Ribbon.

Executing an old menu item directly
Another technique to display a built-in dialog box requires knowledge of the pre-Excel 2007
toolbars (officially known as CommandBar objects). Although Excel no longer uses
CommandBar objects, they’re still supported for compatibility.

The following statement, for example, is equivalent to selecting the Format➜Sheet➜Unhide
command in the Excel 2003 menu:

Application.CommandBars(“Worksheet Menu Bar”). _
 Controls(“Format”).Controls(“Sheet”). _
 Controls(“Unhide...”).Execute

This statement, when executed, displays the Unhide dialog box. Notice that the menu item cap-
tions must match exactly (including the ellipsis after Unhide).

Here’s another example. This statement displays the Format Cells dialog box:

Application.CommandBars(“Worksheet Menu Bar”). _
 Controls(“Format”).Controls(“Cells...”).Execute

It’s probably not a good idea to rely on CommandBar objects because they may be removed
from a future version of Excel.

Chapter 12: Custom Dialog Box Alternatives 417

 3. In the list box on the left, select Form.

 4. Click the Add button to add the selected command to your Quick Access toolbar.

 5. Click OK to close the Excel Options dialog box.

 After performing these steps, a new icon will appear on your Quick Access toolbar.

Figure 12-12: Some users prefer to use Excel’s built-in data form for data-entry tasks.

To use a data entry form, you must arrange your data so that Excel can recognize it as a table.
Start by entering headings for the columns in the first row of your data entry range. Select any
cell in the table and click the Form button on your Quick Access toolbar. Excel then displays a
dialog box customized to your data. You can use the Tab key to move between the text boxes
and supply information. If a cell contains a formula, the formula result appears as text (not as an
edit box). In other words, you can’t modify formulas from the data entry form.

When you complete the data form, click the New button. Excel enters the data into a row in the
worksheet and clears the dialog box for the next row of data.

Part IV: Working with UserForms418

Displaying a data form by using VBA
Use the ShowDataForm method to display Excel’s data form. The only requirement is that the
active cell must be within a range. The following code activates cell A1 (which is in a table) and
then displays the data form:

Sub DisplayDataForm()
 Range(“A1”).Select
 ActiveSheet.ShowDataForm
End Sub

A workbook with this example is available on the companion CD-ROM. The file is
named data form example.xlsm.

419

13
Introducing UserForms
In This Chapter

● Creating, showing, and unloading UserForms

● Exploring the UserForm controls available to you

● Setting the properties of UserForm controls

● Controlling UserForms with VBA procedures

● Creating a UserForm

● Introducing the types of events relevant to UserForms and controls

● Customizing your control Toolbox

● Going over a handy checklist for creating UserForms

How Excel Handles Custom Dialog Boxes
Excel makes creating custom dialog boxes for your applications relatively easy. In fact, you can
duplicate the look and feel of many of Excel’s dialog boxes.

Excel developers have always had the ability to create custom dialog boxes for their applications.
Beginning with Excel 97, things changed substantially — UserForms replaced the clunky old dia-
log sheets. UserForms are much easier to work with, and they offer many additional capabilities.
Even though UserForms haven’t been upgraded over the years, you’ll find that this feature works
well and is very flexible.

A custom dialog box is created on a UserForm, and you access UserForms in the Visual Basic
Editor (VBE).

Part IV: Working with UserForms420

Following is the typical sequence that you’ll follow when you create a UserForm:

 1. Insert a new UserForm into your workbook’s VB Project.

 2. Add controls to the UserForm.

 3. Adjust some of the properties of the controls that you added.

 4. Write event-handler procedures for the controls.

 These procedures, which are located in the code window for the UserForm, are executed
when various events (such as a button click) occur.

 5. Write a procedure that will display the UserForm.

 This procedure will be located in a VBA module (not in the code module for the
UserForm).

 6. Add a way to make it easy for the user to execute the procedure you created in Step 5.

 You can add a button to a worksheet, a Ribbon command, and so on.

Inserting a New UserForm
To insert a new UserForm, activate the VBE (press Alt+F11), select your workbook’s project from
the Project window, and then choose Insert➜UserForm. UserForms have default names like
UserForm1, UserForm2, and so on.

You can change the name of a UserForm to make it easier to identify. Select the form
and use the Properties window to change the Name property. (Press F4 if the Properties
window isn’t displayed.) Figure 13-1 shows the Properties window when an empty
UserForm is selected.

A workbook can have any number of UserForms, and each UserForm holds a single custom
dialog box.

Chapter 13: Introducing UserForms 421

Figure 13-1: The Properties window for an empty UserForm.

Adding Controls to a UserForm
To add controls to a UserForm, use the Toolbox. (The VBE doesn’t have menu commands that
add controls.) If the Toolbox isn’t displayed, choose View➜Toolbox. Figure 13-2 shows the
Toolbox. The Toolbox is a floating window, so you can move it to a convenient location.

Figure 13-2: Use the Toolbox to add controls to a UserForm.

Click the Toolbox button that corresponds to the control that you want to add and then click
inside the dialog box to create the control (using its default size). Or you can click the control
and then drag in the dialog box to specify the dimensions for the control.

Part IV: Working with UserForms422

When you add a new control, it’s assigned a name that combines the control type with the
numeric sequence for that type of control. For example, if you add a CommandButton control to
an empty UserForm, it’s named CommandButton1. If you then add a second CommandButton
control, it’s named CommandButton2.

Renaming all the controls that you’ll be manipulating with your VBA code is a good
idea. Doing so lets you refer to meaningful names (such as ProductListBox) rather
than generic names (such as ListBox1). To change the name of a control, use the
Properties window in the VBE. Just select the object and change the Name property.

Toolbox Controls
In the sections that follow, I briefly describe the controls available to you in the Toolbox.

Figure 13-3 shows a UserForm with one of each control. This workbook, named all
userform controls.xlsm, is available on the companion CD-ROM.

Figure 13-3: This UserForm has one of each of the 15 controls.

Chapter 13: Introducing UserForms 423

Your UserForms can also use other ActiveX controls. See “Customizing the Toolbox,”
later in this chapter.

CheckBox
A CheckBox control is useful for getting a binary choice: yes or no, true or false, on or off, and
so on. When a CheckBox is checked, it has a value of True; when it’s not checked, the CheckBox
value is False.

ComboBox
A ComboBox control presents a list of items in a drop-down box and displays only one item at a
time. Unlike a ListBox control, you can set up a ComboBox to allow the user to enter a value
that doesn’t appear in the list of items.

CommandButton
Every dialog box that you create will probably have at least one CommandButton control.
Usually, your UserForms will have one CommandButton labeled OK and another labeled Cancel.

Frame
A Frame control is used to enclose other controls. You enclose controls either for aesthetic pur-
poses or to logically group a set of controls. A frame is particularly useful when the dialog box
contains more than one set of OptionButton controls.

Image
You can use an Image control to display a graphic image, which can come from a file or can be
pasted from the Clipboard. You may want to use an Image control to display your company’s
logo in a dialog box. The graphics image is stored in the workbook. That way, if you distribute
your workbook to someone else, you don’t have to include a copy of the graphics file.

Some graphics files are very large, and using such images can make your workbook
increase dramatically in size. For best results, use graphics sparingly or use small
graphics files.

Label
A Label control simply displays text in your dialog box.

Part IV: Working with UserForms424

ListBox
The ListBox control presents a list of items, and the user can select an item (or multiple items).
ListBox controls are very flexible. For example, you can specify a worksheet range that holds
the ListBox items, and this range can consist of multiple columns. Or you can fill the ListBox with
items by using VBA.

MultiPage
A MultiPage control lets you create tabbed dialog boxes, like the Format Cells dialog box. By
default, a MultiPage control has two pages, but you can add any number of additional pages.

OptionButton
OptionButton controls are useful when the user needs to select one item from a small number
of choices. OptionButtons are always used in groups of at least two. When one OptionButton is
selected, the other OptionButtons in its group are deselected.

If your UserForm contains more than one set of OptionButtons, the OptionButtons in each set
must share a unique GroupName property value. Otherwise, all OptionButtons become part of
the same set. Alternatively, you can enclose the OptionButtons in a Frame control, which auto-
matically groups the OptionButtons contained in the frame.

RefEdit
The RefEdit control is used when you need to let the user select a range in a worksheet. This
control accepts a typed range address or a range address generated by pointing to the range in a
worksheet.

ScrollBar
The ScrollBar control is similar to a SpinButton control. The difference is that the user can
drag the ScrollBar button to change the control’s value in larger increments. The ScrollBar
control is most useful for selecting a value that extends across a wide range of possible values.

SpinButton
The SpinButton control lets the user select a value by clicking either of two arrows: one to
increase the value and the other to decrease the value. A SpinButton is often used in conjunction
with a TextBox control or Label control, which displays the current value of the SpinButton. A
SpinButton can be oriented horizontally or vertically.

Chapter 13: Introducing UserForms 425

TabStrip
A TabStrip control is similar to a MultiPage control, but it’s not as easy to use. A TabStrip
control, unlike a MultiPage control, doesn’t serve as a container for other objects. Generally,
you’ll find that the MultiPage control is much more versatile.

TextBox
A TextBox control lets the user type text or a value.

Using controls on a worksheet
You can embed many of the UserForm controls directly into a worksheet. You can access these
controls by using Excel’s Developer➜Controls➜Insert command. Adding such controls to a
worksheet requires much less effort than creating a UserForm. In addition, you may not have to
create any macros because you can link a control to a worksheet cell. For example, if you insert
a CheckBox control on a worksheet, you can link it to a particular cell by setting its
LinkedCell property. When the CheckBox is checked, the linked cell displays TRUE. When the
CheckBox is unchecked, the linked cell displays FALSE.

The accompanying figure shows a worksheet that contains some ActiveX controls. This work-
book, named activex worksheet controls.xlsx, is available on the companion
CD-ROM. The workbook uses linked cells and contains no macros.

Adding controls to a worksheet can be a bit confusing because controls can come from two
sources:

● Form controls: These controls are insertable objects.
● ActiveX controls: These controls are a subset of those that are available for use on

UserForms.

You can use the controls from either of these sources, but it’s important that you understand the
distinctions between them. The Form controls work much differently than the ActiveX controls.

When you add an ActiveX control to a worksheet, Excel goes into design mode. In this mode,
you can adjust the properties of any controls on your worksheet, add or edit event-handler pro-
cedures for the control, or change its size or position. To display the Properties window for an
ActiveX control, use the Developer➜Controls➜Properties command.

For simple buttons, I often use the Button control from the Form controls because it lets me
attach any macro to it. If I use a CommandButton control from the ActiveX controls, clicking it
will execute its event-handler procedure (for example, CommandButton1_Click) in the code
module for the Sheet object — you can’t attach just any macro to it.

When Excel is in design mode, you can’t try out the controls. To test the controls, you must exit
design mode by clicking the Developer➜Controls➜Design mode button (which is a toggle).

Part IV: Working with UserForms426

ToggleButton
A ToggleButton control has two states: on and off. Clicking the button toggles between these
two states, and the button changes its appearance. Its value is either True (pressed) or False
(not pressed). I never use this control because I think a CheckBox is much clearer.

Adjusting UserForm Controls
After you place a control in a UserForm, you can move and resize the control by using standard
mouse techniques.

You can select multiple controls by Shift-clicking or by clicking and dragging to lasso a
group of controls.

A UserForm can contain vertical and horizontal gridlines (displayed as dots) that help you align
the controls that you add. When you add or move a control, it snaps to the grid to help you line
up the controls. If you don’t like to see these gridlines, you can turn them off by choosing
Tools➜Options in the VBE. In the Options dialog box, select the General tab and set your desired
options in the Form Grid Settings section.

The Format menu in the VBE window provides several commands to help you precisely align and
space the controls in a dialog box. Before you use these commands, select the controls that you
want to work with. These commands work just as you’d expect, so I don’t explain them here.
Figure 13-4 shows a dialog box with several OptionButton controls about to be aligned. Figure
13-5 shows the controls after being aligned and assigned equal vertical spacing.

When you select multiple controls, the last control that you select appears with white
handles rather than the normal black handles. The control with the white handles is
used as the basis for sizing or positioning.

Adjusting a Control’s Properties
Every control has a number of properties that determine how the control looks and behaves. You
can change a control’s properties, as follows:

 At design time when you’re developing the UserForm. You use the Properties window to
make design time changes.

 During runtime when the UserForm is being displayed for the user. You use VBA instruc-
tions to change a control’s properties at runtime.

Chapter 13: Introducing UserForms 427

Figure 13-4: Use the Format➜Align command to change the alignment of controls.

Figure 13-5: The OptionButton controls, aligned and evenly spaced.

Part IV: Working with UserForms428

Using the Properties window
In the VBE, the Properties window adjusts to display the properties of the selected item (which
can be a control or the UserForm itself). In addition, you can select a control from the drop-down
list at the top of the Properties window. Figure 13-6 shows the Properties window for an
OptionButton control.

Figure 13-6: The Properties window for an OptionButton control.

The Properties window has two tabs. The Alphabetic tab displays the properties for the
selected object in alphabetical order. The Categorized tab displays them grouped into
logical categories. Both tabs contain the same properties but in a different order.

To change a property, just click it and specify the new property. Some properties can take on a finite
number of values, selectable from a list. If so, the Properties window will display a button with a
downward-pointing arrow when that property is selected. Click the button, and you’ll be able to select
the property’s value from the list. For example, the TextAlign property can have any of the follow-
ing values: 1 - fmTextAlignLeft, 2 - fmTextAlignCenter, or 3 - fmTextAlignRight.

A few properties (for example, Font and Picture) display a small button with an ellipsis when
selected. Click the button to display a dialog box associated with the property.

Chapter 13: Introducing UserForms 429

The Image control Picture property is worth mentioning because you can either select a
graphic file that contains the image or paste an image from the Clipboard. When pasting an
image, first copy it to the Clipboard; then select the Picture property for the Image control,
and press Ctrl+V to paste the Clipboard contents.

If you select two or more controls at once, the Properties window displays only the
properties that are common to the selected controls.

The UserForm itself has many properties that you can adjust. Some of these properties
are then used as defaults for controls that you add to the UserForm. For example, if you
change the UserForm Font property, all controls added to the UserForm will use that
font. Note, however, that controls already on the UserForm aren’t affected.

Common properties
Although each control has its own unique set of properties, many controls have some common
properties. For example, every control has a Name property and properties that determine its
size and position (Height, Width, Left, and Right).

If you’re going to manipulate a control by using VBA, it’s an excellent idea to provide a meaning-
ful name for the control. For example, the first OptionButton that you add to a UserForm has a
default name of OptionButton1. You refer to this object in your code with a statement such as
the following:

OptionButton1.Value = True

But if you give the OptionButton a more meaningful name (such as obLandscape), you can use
a statement such as this one:

obLandscape.Value = True

Many people find it helpful to use a name that also identifies the type of object. In the
preceding example, I use ob as the prefix to identify the control as an OptionButton.
I’m not aware of any standard prefixes, so feel free to invent your own.

You can adjust the properties of several controls at once. For example, you might have several
OptionButtons that you want left-aligned. You can simply select all the OptionButtons and then
change the Left property in the Properties box. All the selected controls will then take on that
new Left property value.

The best way to learn about the various properties for a control is to use the Help system. Simply
click on a property in the Property window and press F1. Figure 13-7 shows an example of the
type of help provided for a property.

Part IV: Working with UserForms430

Figure 13-7: The Help system provides information about each property for every control.

Accommodating keyboard users
Many users prefer to navigate through a dialog box by using the keyboard: The Tab and
Shift+Tab keystrokes cycle through the controls, and pressing a hot key (an underlined letter)
operates the control. To make sure that your dialog box works properly for keyboard users, you
must be mindful of two issues: tab order and accelerator keys.

Changing the tab order of controls
The tab order determines the sequence in which the controls are activated when the user presses
Tab or Shift+Tab. It also determines which control has the initial focus. If a user is entering text
into a TextBox control, for example, the TextBox has the focus. If the user clicks an
OptionButton, the OptionButton has the focus. The control that’s first in the tab order has the
focus when a dialog box is first displayed.

Chapter 13: Introducing UserForms 431

To set the tab order of your controls, choose View➜Tab Order. You can also right-click the
UserForm and choose Tab Order from the shortcut menu. In either case, Excel displays the Tab
Order dialog box, as shown in Figure 13-8. The Tab Order dialog box lists all the controls, the
sequence of which corresponds to the order in which controls pass the focus between each other
in the UserForm. To move a control, select it and click the arrow keys up or down. You can
choose more than one control (click while pressing Shift or Ctrl) and move them all at once.

Alternatively, you can set an individual control’s position in the tab order via the Properties window.
The first control in the tab order has a TabIndex property of 0. Changing the TabIndex property
for a control may also affect the TabIndex property of other controls. These adjustments are
made automatically to ensure that no control has a TabIndex greater than the number of controls.
If you want to remove a control from the tab order, set its TabStop property to False.

Some controls, such as Frame and MultiPage, act as containers for other controls. The
controls inside a container have their own tab order. To set the tab order for a group of
OptionButtons inside a Frame control, select the Frame control before you choose the
View➜Tab Order command.

Figure 13-8: Use the Tab Order dialog box to specify the tab order of the controls.

Part IV: Working with UserForms432

Setting hot keys
You can assign an accelerator key, or hot key, to most dialog box controls. An accelerator key
allows the user to access the control by pressing Alt+ the hot key. Use the Accelerator prop-
erty in the Properties window for this purpose.

Some controls, such as a TextBox, don’t have an Accelerator property because they
don’t display a caption. You still can allow direct keyboard access to these controls by
using a Label control. Assign an accelerator key to the Label and put it before the
TextBox in the tab order.

Displaying a UserForm
To display a UserForm from VBA, you create a procedure that uses the Show method of the
UserForm object. If your UserForm is named UserForm1, the following procedure displays the
dialog box on that form:

Sub ShowForm()
 UserForm1.Show
End Sub

This procedure must be located in a standard VBA module and not in the code module for the
UserForm.

When the UserForm is displayed, it remains visible on-screen until it’s dismissed. Usually, you’ll
add a CommandButton control to the UserForm that executes a procedure that dismisses the
UserForm. The procedure can either unload the UserForm (with the Unload command) or hide
the UserForm (with the Hide method of the UserForm object). This concept will become
clearer as you work through various examples in this and subsequent chapters.

Testing a UserForm
You’ll usually want to test your UserForm while you’re developing it. You can test a UserForm in
three ways without actually calling it from a VBA procedure:

● Choose the Run➜Run Sub/UserForm command.
● Press F5.
● Click the Run Sub/UserForm button on the Standard toolbar.

These three techniques all trigger the UserForm’s Initialize event. When a dialog box is dis-
played in this test mode, you can try out the tab order and the accelerator keys.

Chapter 13: Introducing UserForms 433

Displaying a modeless UserForm
By default, UserForms are displayed modally. This means that the UserForm must be dismissed
before the user can do anything in the worksheet. You can also display a modeless UserForm.
When a modeless UserForm is displayed, the user can continue working in Excel, and the
UserForm remains visible. To display a modeless UserForm, use the following syntax:

UserForm1.Show vbModeless

Displaying a UserForm based on a variable
In some cases, you may have several UserForms, and your code makes a decision regarding
which of them to display. If the name of the UserForm is stored as a string variable, you can use
the Add method to add the UserForm to the UserForms collection and then use the Show
method of the UserForms collection. Here’s an example that assigns the name of a UserForm to
the MyForm variable and then displays the UserForm:

 MyForm = “UserForm1”
 UserForms.Add(MyForm).Show

Loading a UserForm
VBA also has a Load statement. Loading a UserForm loads it into memory, but it’s not visible
until you use the Show method. To load a UserForm, use a statement like this:

Load UserForm1

If you have a complex UserForm, you might want to load it into memory before it’s needed so
that it will appear more quickly when you use the Show method. In the majority of situations,
however, you don’t need to use the Load statement.

About event-handler procedures
After the UserForm is displayed, the user interacts with it — selecting an item from a ListBox,
clicking a CommandButton, and so on. In official terminology, the user causes an event to occur.
For example, clicking a CommandButton causes the Click event for the CommandButton. You
need to write procedures that execute when these events occur. These procedures are some-
times known as event-handler procedures.

Part IV: Working with UserForms434

Event-handler procedures must be located in the Code window for the UserForm.
However, your event-handler procedure can call another procedure that’s located in a
standard VBA module.

Your VBA code can change the properties of the controls while the UserForm is displayed (that
is, at runtime). For example, you could assign to a ListBox control a procedure that changes
the text in a Label when an item is selected. This type of manipulation will become clearer later in
this chapter.

Closing a UserForm
To close a UserForm, use the Unload command, as shown in this example:

Unload UserForm1

Or, if the code is located in the code module for the UserForm, you can use the following:

Unload Me

In this case, the keyword Me refers to the UserForm. Using Me rather than the UserForm’s name
eliminates the need to modify your code if you change the name of the UserForm.

Normally, your VBA code should include the Unload command after the UserForm has per-
formed its actions. For example, your UserForm may have a CommandButton that serves as an
OK button. Clicking this button executes a macro. One of the statements in the macro will unload
the UserForm. The UserForm remains visible on the screen until the macro that contains the
Unload statement finishes.

When a UserForm is unloaded, its controls are reset to their original values. In other words, your
code won’t be able to access the user’s choices after the UserForm is unloaded. If the user’s
choice must be used later on (after the UserForm is unloaded), you need to store the value in a
Public variable, declared in a standard VBA module. Or you could store the value in a work-
sheet cell, or even in the Windows registry.

A UserForm is automatically unloaded when the user clicks the Close button (the X in
the UserForm title bar). This action also triggers a UserForm QueryClose event, fol-
lowed by a UserForm Terminate event.

Chapter 13: Introducing UserForms 435

UserForms also have a Hide method. When you invoke this method, the UserForm disappears,
but it remains loaded in memory, so your code can still access the various properties of the con-
trols. Here’s an example of a statement that hides a UserForm:

UserForm1.Hide

Or, if the code is in the code module for the UserForm, you can use the following:

Me.Hide

If for some reason you’d like your UserForm to disappear immediately while its macro is execut-
ing, use the Hide method at the top of the procedure. For example, in the following procedure,
the UserForm disappears immediately when CommandButton1 is clicked. The last statement in
the procedure unloads the UserForm.

Private Sub CommandButton1_Click()
 Me.Hide
 Application.ScreenUpdating = True
 For r = 1 To 10000
 Cells(r, 1) = r
 Next r
 Unload Me
End Sub

In this example, I set ScreenUpdating to True to force Excel to hide the UserForm com-
pletely. Without that statement, the UserForm may actually remain visible.

In Chapter 15, I describe how to display a progress indicator, which takes advantage of
the fact that a UserForm remains visible while the macro executes.

Creating a UserForm: An Example
If you’ve never created a UserForm, you might want to walk through the example in this section.
The example includes step-by-step instructions for creating a simple dialog box and developing a
VBA procedure to support the dialog box.

This example uses a UserForm to obtain two pieces of information: a person’s name and sex. The
dialog box uses a TextBox control to get the name and three OptionButtons to get the sex
(Male, Female, or Unknown). The information collected in the dialog box is then sent to the next
blank row in a worksheet.

Part IV: Working with UserForms436

Creating the UserForm
Figure 13-9 shows the completed UserForm for this example. For best results, start with a new
workbook with only one worksheet in it. Then follow these steps:

Figure 13-9: This dialog box asks the user to enter a name and a sex.

 1. Press Alt+F11 to activate the VBE.

 2. In the Project window, select the workbook’s project and choose Insert➜UserForm to
add an empty UserForm.

 The UserForm’s Caption property will have its default value: UserForm1.

 3. Use the Properties window to change the UserForm’s Caption property to Get Name
and Sex.

 (If the Properties window isn’t visible, press F4.)

 4. Add a Label control and adjust the properties as follows:

Property Value

Accelerator N

Caption Name:

TabIndex 0

 5. Add a TextBox control and adjust the properties as follows:

Property Value

Name TextName

TabIndex 1

Chapter 13: Introducing UserForms 437

 6. Add a Frame control and adjust the properties as follows:

Property Value

Caption Sex

TabIndex 2

 7. Add an OptionButton control inside the frame and adjust the properties as follows:

Property Value

Accelerator M

Caption Male

Name OptionMale

TabIndex 0

 8. Add another OptionButton control inside the frame and adjust the properties as fol-
lows:

Property Value

Accelerator F

Caption Female

Name OptionFemale

TabIndex 1

 9. Add yet another OptionButton control inside the Frame and adjust the properties as
follows:

Property Value

Accelerator U

Caption Unknown

Name OptionUnknown

TabIndex 2

Value True

 10. Add a CommandButton control outside the Frame and adjust the properties as follows:

Property Value

Caption OK

Default True

Name OKButton

TabIndex 3

Part IV: Working with UserForms438

 11. Add another CommandButton control and adjust the properties as follows:

Property Value

Caption Close

Cancel True

Name CloseButton

TabIndex 4

When you’re creating several controls that are similar, you may find it easier to copy an
existing control rather than create a new one. To copy a control, press Ctrl while you
drag the control to make a new copy of it. Then adjust the properties on the copied
control.

Writing code to display the dialog box
Next, you add an ActiveX CommandButton to the worksheet. This button will execute a proce-
dure that displays the UserForm. Here’s how:

 1. Activate Excel.

 (Alt+F11 is the shortcut key combination.)

 2. Choose Developer➜Controls➜Insert and click CommandButton from the ActiveX
Controls section.

 3. Drag in the worksheet to create the button.

 If you like, you can change the caption for the worksheet CommandButton. To do so,
right-click the button and choose CommandButton Object➜Edit from the shortcut menu.
You can then edit the text that appears on the CommandButton. To change other prop-
erties of the object, right-click and choose Properties. Then make the changes in the
Properties box.

 4. Double-click the CommandButton.

 This step activates the VBE. More specifically, the code module for the worksheet will be
displayed, with an empty event-handler procedure for the worksheet’s CommandButton.

 5. Enter a single statement in the CommandButton1_Click procedure (see Figure 13-10).

 This short procedure uses the Show method of an object (UserForm1) to display the
UserForm.

Chapter 13: Introducing UserForms 439

Figure 13-10: The CommandButton1_Click procedure is executed when the button on the work-
sheet is clicked.

Testing the dialog box
The next step is to re-activate Excel and try out the procedure that displays the dialog box.

When you click the CommandButton on the worksheet, you’ll find that nothing hap-
pens. Rather, the button is selected. That’s because Excel is still in design mode —
which happens automatically when you insert an ActiveX control. To exit design mode,
click the Developer➜Controls➜Design Mode button. To make any changes to your
CommandButton, you’ll need to put Excel back into design mode.

When you exit design mode, clicking the button will display the UserForm (see Figure 13-11).

When the dialog box is displayed, enter some text into the text box and click OK. Nothing hap-
pens — which is understandable because you haven’t yet created an event-handler procedure for
the OK button.

Click the X (Close) button in the UserForm title bar to dismiss the dialog box.

Part IV: Working with UserForms440

Figure 13-11: The CommandButton’s Click event procedure displays the UserForm.

Adding event-handler procedures
In this section, I explain how to write the procedures that will handle the events that occur when
the UserForm is displayed. To continue the example, do the following:

 1. Press Alt+F11 to activate the VBE.

 2. Make sure that the UserForm is displayed and double-click the CommandButton cap-
tioned Close.

 This step activates the Code window for the UserForm and inserts an empty procedure
named CloseButton_Click. Notice that this procedure consists of the object’s name,
an underscore character, and the event that it handles.

 3. Modify the procedure as follows.

 (This is the event handler for the CloseButton’s Click event.)

Private Sub CloseButton_Click()
 Unload UserForm1
End Sub

 This procedure, which is executed when the user clicks the Close button, simply unloads
the UserForm.

 4. Press Shift+F7 to redisplay UserForm1 (or click the View Object icon at the top of the
Project Explorer window).

Chapter 13: Introducing UserForms 441

 5. Double-click the OK button and enter the following procedure.

 (This is the event handler for the OKButton’s Click event.)

Private Sub OKButton_Click()
 Dim NextRow As Long
‘ Make sure Sheet1 is active
 Sheets(“Sheet1”).Activate
‘ Determine the next empty row
 NextRow = _
 Application.WorksheetFunction.CountA(Range(“A:A”)) + 1
‘ Transfer the name
 Cells(NextRow, 1) = TextName.Text

‘ Transfer the sex
 If OptionMale Then Cells(NextRow, 2) = “Male”
 If OptionFemale Then Cells(NextRow, 2) = “Female”
 If OptionUnknown Then Cells(NextRow, 2) = “Unknown”

‘ Clear the controls for the next entry
 TextName.Text = “”
 OptionUnknown = True
 TextName.SetFocus
End Sub

 6. Activate Excel and click the CommandButton again to display the UserForm and then
re-un the procedure again.

 You’ll find that the UserForm controls now function correctly. You can use them to add
new names to the list in the worksheet.

Here’s how the OKButton_Click procedure works: First, the procedure makes sure that the
proper worksheet (Sheet1) is active. It then uses Excel’s COUNTA function to determine the
next blank cell in column A. Next, it transfers the text from the TextBox control to column A. It
then uses a series of If statements to determine which OptionButton was selected and writes
the appropriate text (Male, Female, or Unknown) to column B. Finally, the dialog box is reset to
make it ready for the next entry. Notice that clicking OK doesn’t close the dialog box. To end
data entry (and unload the UserForm), click the Close button.

Validating the data
Play around with this example some more, and you’ll find that it has a small problem: It doesn’t
ensure that the user actually enters a name into the text box. To make sure that the user enters a
name, insert the following code in the OKButton_Click procedure, before the text is trans-
ferred to the worksheet. It ensures that the user enters a name (well, at least some text) in the
TextBox. If the TextBox is empty, a message appears, and the focus is set to the TextBox so that
the user can try again. The Exit Sub statement ends the procedure with no further action.

Part IV: Working with UserForms442

‘ Make sure a name is entered
 If TextName.Text = “” Then
 MsgBox “You must enter a name.”
 TextName.SetFocus
 Exit Sub
 End If

The finished dialog box
After making all these modifications, you’ll find that the dialog box works flawlessly. (Don’t for-
get to test the hot keys.) In real life, you’d probably need to collect more information than just
name and sex. However, the same basic principles apply. You just need to deal with more
UserForm controls.

A workbook with this example is available on the companion CD-ROM in a file named
get name and sex.xlsm.

Understanding UserForm Events
Each UserForm control (as well as the UserForm itself) is designed to respond to certain types of
events, and a user or Excel can trigger these events. For example, clicking a CommandButton
generates a Click event for the CommandButton. You can write code that is executed when a
particular event occurs.

Some actions generate multiple events. For example, clicking the upward arrow of a
SpinButton control generates a SpinUp event and also a Change event. When a UserForm is
displayed by using the Show method, Excel generates an Initialize event and an Activate
event for the UserForm. (Actually, the Initialize event occurs when the UserForm is loaded
into memory and before it’s actually displayed.)

Excel also supports events associated with a Sheet object, Chart objects, and the
ThisWorkbook object. I discuss these types of events in Chapter 18.

Learning about events
To find out which events are supported by a particular control, do the following:

 1. Add a control to a UserForm.

 2. Double-click the control to activate the code module for the UserForm.

 The VBE will insert an empty event-handler procedure for the default event for the
control.

Chapter 13: Introducing UserForms 443

 3. Click the drop-down list in the upper-right corner of the module window, and you’ll see a
complete list of events for the control.

 Figure 13-12 shows the list of events for a CheckBox control.

Figure 13-12: The event list for a CheckBox control.

 4. Select an event from the list, and the VBE will create an empty event-handler procedure
for you.

To find out specific details about an event, consult the Help system. The Help system
also lists the events available for each control. When you locate an event for an object,
make sure that the Help system table of contents is displayed. Then you can see a list
of all other events for the object.

Event-handler procedures incorporate the name of the object in the procedure’s name.
Therefore, if you change the name of a control, you’ll also need to make the appropri-
ate changes to the control’s event-handler procedure(s). The name changes aren’t per-
formed automatically! To make things easy on yourself, it’s a good idea to provide
names for your controls before you begin creating event-handler procedures.

UserForm events
Several events are associated with showing and unloading a UserForm:

 Initialize: Occurs before a UserForm is loaded or shown but doesn’t occur if the
UserForm was previously hidden.

 Activate: Occurs when a UserForm is shown.

Part IV: Working with UserForms444

 Deactivate: Occurs when a UserForm is deactivated but doesn’t occur if the form is
hidden.

 QueryClose: Occurs before a UserForm is unloaded.

 Terminate: Occurs after the UserForm is unloaded.

Often, it‘s critical that you choose the appropriate event for your event-handler proce-
dure and that you understand the order in which the events occur. Using the Show
method invokes the Initialize and Activate events (in that order). Using the Load
command invokes only the Initialize event. Using the Unload command triggers
the QueryClose and Terminate events (in that order). Using the Hide method
doesn’t trigger either of these events.

The companion CD-ROM contains a workbook (named userform events.xlsm) that
monitors all these events and displays a message box when an event occurs. If you’re con-
fused about UserForm events, studying the code in this example should clear things up.

SpinButton events
To help clarify the concept of events, this section takes a close look at the events associated with
a SpinButton control. Some of these events are associated with other controls, and some are
unique to the SpinButton control.

The companion CD-ROM contains a workbook that demonstrates the sequence of
events that occur for a SpinButton and the UserForm that contains it. The workbook,
named spinbutton events.xlsm, contains a series of event-handler routines — one
for each SpinButton and UserForm event. Each of these routines simply displays a
message box that tells you the event that just fired.

Table 13-1 lists all the events for the SpinButton control.

Table 13-1: SpinButton Events

Event Description

AfterUpdate Occurs after the control is changed through the user interface.

BeforeDragOver Occurs when a drag-and-drop operation is in progress.

BeforeDropOrPaste Occurs when the user is about to drop or paste data onto the control.

BeforeUpdate Occurs before the control is changed.

Change Occurs when the Value property changes.

Enter Occurs before the control actually receives the focus from a control on the
same UserForm.

Chapter 13: Introducing UserForms 445

Event Description

Error Occurs when the control detects an error and can’t return the error informa-
tion to a calling program.

Exit Occurs immediately before a control loses the focus to another control on the
same form.

KeyDown Occurs when the user presses a key and the object has the focus.

KeyPress Occurs when the user presses any key that produces a typeable character.

KeyUp Occurs when the user releases a key and the object has the focus.

SpinDown Occurs when the user clicks the lower (or left) SpinButton arrow.

SpinUp Occurs when the user clicks the upper (or right) SpinButton arrow.

A user can operate a SpinButton control by clicking it with the mouse or (if the control has the
focus) by using the up-arrow and down-arrow keys.

Mouse-initiated events
When the user clicks the upper SpinButton arrow, the following events occur in this precise order:

 1. Enter (triggered only if the SpinButton did not already have the focus)

 2. Change

 3. SpinUp

Keyboard-initiated events
The user can also press Tab to set the focus to the SpinButton and then use the arrow keys to
increment or decrement the control. If so, the following events occur (in this order):

 1. Enter

 2. KeyDown

 3. Change

 4. SpinUp (or SpinDown)

 5. KeyUp

What about changes via code?
The SpinButton control can also be changed by VBA code — which also triggers the appropri-
ate event(s). For example, the following statement sets the SpinButton1 Value property to 0
and also triggers the Change event for the SpinButton control — but only if the SpinButton
value was not already 0:

SpinButton1.Value = 0

Part IV: Working with UserForms446

You might think that you could disable events by setting the EnableEvents property of the
Application object to False. Unfortunately, this property applies only to events that involve
true Excel objects: Workbooks, Worksheets, and Charts.

Pairing a SpinButton with a TextBox
A SpinButton has a Value property, but this control doesn’t have a caption in which to display
its value. In many cases, however, you’ll want the user to see the SpinButton value. And some-
times you’ll want the user to be able to change the SpinButton value directly instead of clicking
the SpinButton repeatedly.

The solution is to pair a SpinButton with a TextBox, which enables the user to specify a value
either by typing it into the TextBox directly or by clicking the SpinButton to increment or decre-
ment the value in the TextBox.

Figure 13-13 shows a simple example. The SpinButton’s Min property is 1, and its Max property is
100. Therefore, clicking the SpinButton’s arrows will change its value to an integer between 1 and
100.

Figure 13-13: This SpinButton is paired with a TextBox.

This workbook is available on the companion CD-ROM. The file is named spinbutton
and textbox.xlsm.

The code required to link a SpinButton with a TextBox is relatively simple. It’s basically a matter
of writing event-handler procedures to ensure that the SpinButton’s Value property is always in
sync with the TextBox’s Text property.

The following procedure is executed whenever the SpinButton’s Change event is triggered. That
is, the procedure is executed when the user clicks the SpinButton or changes its value by press-
ing the up arrow or down arrow.

Private Sub SpinButton1_Change()
 TextBox1.Text = SpinButton1.Value
End Sub

The procedure simply assigns the SpinButton’s Value to the Text property of the TextBox
control. Here, the controls have their default names (SpinButton1 and TextBox1). If the user
enters a value directly into the TextBox, its Change event is triggered, and the following proce-
dure is executed:

Chapter 13: Introducing UserForms 447

Private Sub TextBox1_Change()
 NewVal = Val(TextBox1.Text)
 If NewVal >= SpinButton1.Min And _
 NewVal <= SpinButton1.Max Then _
 SpinButton1.Value = NewVal
End Sub

This procedure starts by using VBA’s Val function to convert the text in the TextBox to a value.
(If the TextBox contains non-numeric text, the Val function returns 0.) The next statement
determines whether the value is within the proper range for the SpinButton. If so, the
SpinButton’s Value property is set to the value entered in the TextBox.

About the Tag property
Every UserForm and control has a Tag property. This property doesn’t represent anything
specific, and, by default, is empty. You can use the Tag property to store information for your
own use.

For example, you may have a series of TextBox controls in a UserForm. The user may be
required to enter text into some but not all of them. You can use the Tag property to identify
(for your own use) which fields are required. In this case, you can set the Tag property to a
string such as Required. Then when you write code to validate the user’s entries, you can refer
to the Tag property.

The following example is a function that examines all TextBox controls on UserForm1 and
returns the number of required TextBox controls that are empty:

Function EmptyCount()
 Dim ctl As Control
 EmptyCount= 0
 For Each ctl In UserForm1.Controls
 If TypeName(ctl) = “TextBox” Then
 If ctl.Tag = “Required” Then
 If ctl.Text = “” Then
 EmptyCount = EmptyCount + 1
 End If
 End If
 End If
 Next ctl
End Function

As you work with UserForms, you’ll probably think of other uses for the Tag property.

Part IV: Working with UserForms448

The example is set up so that clicking the OK button (which is named OKButton) transfers the
SpinButton’s value to the active cell. The event handler for this CommandButton’s Click event
is as follows:

Private Sub OKButton_Click()
‘ Enter the value into the active cell
 If CStr(SpinButton1.Value) = TextBox1.Text Then
 ActiveCell = SpinButton1.Value
 Unload Me
 Else
 MsgBox “Invalid entry.”, vbCritical
 TextBox1.SetFocus
 TextBox1.SelStart = 0
 TextBox1.SelLength = Len(TextBox1.Text)
 End If
End Sub

This procedure does one final check: It makes sure that the text entered in the TextBox matches
the SpinButton’s value. This check is necessary in the case of an invalid entry. For example, if the
user enters 3r into the TextBox, the SpinButton’s value would not be changed, and the result
placed in the active cell would not be what the user intended. Notice that the SpinButton’s
Value property is converted to a string by using the CStr function. This conversion ensures that
the comparison won’t generate an error if a value is compared with text. If the SpinButton’s value
doesn’t match the TextBox’s contents, a message box is displayed. Notice that the focus is set to
the TextBox object, and the contents are selected (by using the SelStart and SelLength
properties). This setup makes it very easy for the user to correct the entry.

Referencing UserForm Controls
When working with controls on a UserForm, the VBA code is usually contained in the code win-
dow for the UserForm. You can also refer to UserForm controls from a general VBA module. To
do so, you need to qualify the reference to the control by specifying the UserForm name. For
example, consider the following procedure, which is located in a VBA module. It simply displays
the UserForm named UserForm1.

Sub GetData()
 UserForm1.Show
End Sub

Chapter 13: Introducing UserForms 449

Assume that UserForm1 contains a text box (named TextBox1), and you want to provide a
default value for the text box. You could modify the procedure as follows:

Sub GetData()
 UserForm1.TextBox1.Value = “John Doe”
 UserForm1.Show
End Sub

Another way to set the default value is to take advantage of the UserForm’s Initialize event.
You can write code in the UserForm_Initialize procedure, which is located in the code
module for the UserForm. Here’s an example:

Private Sub UserForm_Initialize()
 TextBox1.Value = “John Doe”
End Sub

Notice that when the control is referenced in the code module for the UserForm, you don’t need
to qualify the references with the UserForm name. However, qualifying references to controls
does have an advantage: You’ll then be able to take advantage of the Auto List Members feature,
which lets you choose the control names from a drop-down list.

Understanding the controls collection
The controls on a UserForm make up a collection. For example, the following statement displays
the number of controls on UserForm1:

MsgBox UserForm1.Controls.Count

VBA does not maintain a collection of each control type. For example, there is no collection of
CommandButton controls. However, you can determine the type of control by using the
TypeName function. The following procedure uses a For Each structure to loop through the
Controls collection and then displays the number of CommandButton controls on
UserForm1:

Sub CountButtons()
 Dim cbCount As Integer
 Dim ctl as Control
 cbCount = 0
 For Each ctl In UserForm1.Controls
 If TypeName(ctl) = “CommandButton” Then _
 cbCount = cbCount + 1
 Next ctl
 MsgBox cbCount
End Sub

Part IV: Working with UserForms450

Rather than use the actual name of the UserForm, it’s preferable to use Me. Then, if you
change the name of the UserForm, you won’t need to replace the references in your
code.

Customizing the Toolbox
When a UserForm is active in the VBE, the Toolbox displays the controls that you can add to the
UserForm. If the Toolbox isn’t visible, choose View➜Toolbox to display it. This section describes
ways to customize the Toolbox.

Adding new pages to the Toolbox
The Toolbox initially contains a single tab. Right-click this tab and select New Page to add a new
tab to the Toolbox. You can also change the text displayed on the tab by selecting Rename from
the shortcut menu.

Customizing or combining controls
A very handy feature lets you customize a control and then save it for future use. You can, for
example, create a CommandButton control that’s set up to serve as an OK button. Set the fol-
lowing properties to customize the CommandButton: Width, Height, Caption, Default, and
Name. Then drag the customized CommandButton to the Toolbox to create a new control. Right-
click the new control to rename it or change its icon.

You can also create a new Toolbox entry that consists of multiple controls. For example, you can
create two CommandButtons that represent a UserForm’s OK and Cancel buttons. Customize
them as you like and then select them both and drag them to the Toolbox. Then, you can use this
new Toolbox control to add two customized buttons in one fell swoop.

This type of customization also works with controls that act as containers. For example, create a
Frame control and add four customized OptionButtons, neatly spaced and aligned. Then drag
the Frame to the Toolbox to create a customized Frame control.

To help identify customized controls, right-click the control and select Customize xxx from the
shortcut menu (where xxx is the control’s name). You see a new dialog box that lets you change
the ToolTip text, edit the icon, or load a new icon image from a file.

You may want to place your customized controls on a separate page in the Toolbox.
This lets you export the entire page so that you can share it with other Excel users. To
export a Toolbox page, right-click the tab and select Export Page.

Chapter 13: Introducing UserForms 451

The companion CD-ROM contains a pag file (named newcontrols.pag) that contains
some customized controls. You can import this file as a new page in your Toolbox.
Right-click a tab and select Import Page. Then locate the pag file. Your Toolbox will
resemble Figure 13-14. The new controls include an exclamation point image, a “critical”
red x image, a question mark image, an information image, OK and Cancel buttons, a
Frame with four OptionButton controls, a TextBox, a Spinner, and six CheckBox controls.

Figure 13-14: The Toolbox, with a new page of controls.

Adding new ActiveX controls
UserForms can use other ActiveX controls developed by Microsoft or other vendors. To add an
additional ActiveX control to the Toolbox, right-click the Toolbox and select Additional Controls.
You see the dialog box shown in Figure 13-15.

The Additional Controls dialog box lists all ActiveX controls that are installed on your system.
Select the control(s) that you want to add and then click OK to add an icon for each selected
control.

Part IV: Working with UserForms452

Figure 13-15: The Additional Controls dialog box lets you add other ActiveX controls.

Not all ActiveX controls that are installed on your system will work in Excel UserForms.
In fact, most of them probably won’t work. Also, some controls require a license in
order to use them in an application. If you (or the users of your application) aren’t
licensed to use a particular control, an error will occur.

Creating UserForm Templates
You may find that when you design a new UserForm, you tend to add the same controls each
time. For example, every UserForm might have two CommandButtons that serve as OK and
Cancel buttons. In the previous section, I describe how to create a new control that combines
these two (customized) buttons into a single control. Another option is to create your UserForm
template and then export it so that you can import it into other projects. An advantage is that the
event-handler code for the controls is stored with the template.

Start by creating a UserForm that contains all the controls and customizations that you’d need to
reuse in other projects. Then make sure that the UserForm is selected and choose File➜Export
File (or press Ctrl+E). You’ll be prompted for a filename.

Then, when you start your next project, choose File➜Import File to load the saved UserForm.

Chapter 13: Introducing UserForms 453

A UserForm Checklist
Before you unleash a UserForm on end users, be sure that everything is working correctly. The
following checklist should help you identify potential problems:

 Are similar controls the same size?

 Are the controls evenly spaced?

 Is the dialog box too overwhelming? If so, you may want to group the controls by using a
MultiPage control.

 Can every control be accessed with a hot key?

 Are any of the hot keys duplicated?

 Is the tab order set correctly?

 Will your VBA code take appropriate action if the user presses Esc or clicks the Close
button on the UserForm?

 Are there any misspellings in the text?

 Does the dialog box have an appropriate caption?

 Will the dialog box display properly at all video resolutions?

 Are the controls grouped logically (by function)?

 Do ScrollBar and SpinButton controls allow valid values only?

 Does the UserForm use any controls that might not be installed on every system?

 Are ListBoxes set properly (Single, Multi, or Extended)? See Chapter 14 for details on
ListBox controls.

Emulating Excel’s dialog boxes
The look and feel of Windows dialog boxes differs from program to program. When developing
applications for Excel, it’s best to try to mimic Excel’s dialog box style whenever possible.

In fact, a good way to learn how to create effective dialog boxes is to try to copy one of Excel’s
dialog boxes down to the smallest detail. For example, make sure that you get all the hot keys
defined and be sure that the tab order is the same. To re-create one of Excel’s dialog boxes, you
need to test it under various circumstances and see how it behaves. I guarantee that your analy-
sis of Excel’s dialog boxes will improve your own dialog boxes.

You’ll find that it’s impossible to duplicate some of Excel’s dialog boxes.

Part IV: Working with UserForms454

455

14
UserForm Examples
In This Chapter

● Using a UserForm for a simple menu

● Selecting ranges from a UserForm

● Using a UserForm as a splash screen

● Changing the size of a UserForm while it’s displayed

● Zooming and scrolling a sheet from a UserForm

● Understanding various techniques that involve a ListBox control

● Using an external control

● Using the MultiPage control

● Animating a Label control

Creating a UserForm “Menu”
Sometimes, you might want to use a UserForm as a type of menu. In other words, the UserForm
presents some options, and the user makes a choice. This section presents two ways to do this:
using CommandButtons or using a ListBox.

Chapter 15 contains additional examples of more advanced UserForm techniques.

Using CommandButtons in a UserForm
Figure 14-1 shows an example of a UserForm that uses CommandButton controls as a simple
menu. Setting up this sort of UserForm is easy, and the code behind the UserForm is straightfor-
ward. Each CommandButton has its own event-handler procedure. For example, the following
procedure is executed when CommandButton1 is clicked:

Part IV: Working with UserForms456

Figure 14-1: This dialog box uses CommandButtons as a menu.

Private Sub CommandButton1_Click()
 Me.Hide
 Call Macro1
 Unload Me
End Sub

This procedure hides the UserForm, calls Macro1, and then closes the UserForm. The other but-
tons have similar event-handler procedures.

Using a ListBox in a UserForm
Figure 14-2 shows another example that uses a ListBox as a menu. Before the UserForm is dis-
played, its Initialize event-handler procedure is called. This procedure, which follows, uses
the AddItem method to add six items to the ListBox:

Figure 14-2: This dialog box uses a ListBox as a menu.

Private Sub UserForm_Initialize()
 With ListBox1
 .AddItem “Macro1”
 .AddItem “Macro2”
 .AddItem “Macro3”
 .AddItem “Macro4”
 .AddItem “Macro5”
 .AddItem “Macro6”
 End With
End Sub

Chapter 14: UserForm Examples 457

The Execute button also has a procedure to handle its Click event:

Private Sub ExecuteButton_Click()
 Select Case ListBox1.ListIndex
 Case -1
 MsgBox “Select a macro from the list.”
 Exit Sub
 Case 0: Call Macro1
 Case 1: Call Macro2
 Case 2: Call Macro3
 Case 3: Call Macro4
 Case 4: Call Macro5
 Case 5: Call Macro6
 End Select
 Unload Me
End Sub

This procedure accesses the ListIndex property of the ListBox to determine which item is
selected. The procedure uses a Select Case structure to execute the appropriate macro. If the
ListIndex is –1, nothing is selected in the ListBox, and the user sees a message.

In addition, this UserForm has a procedure to handle the double-click event for the ListBox.
Double-clicking an item in the ListBox executes the corresponding macro.

The two examples in this section are available on the companion CD-ROM. The filename
is userform menus.xlsm.

Chapter 15 shows a similar example in which you can use a UserForm to simulate a tool-
bar.

Selecting Ranges from a UserForm
Many of Excel’s built-in dialog boxes allow the user to specify a range. For example, the Goal
Seek dialog box (displayed by choosing Data➜Data Tools➜What-If Analysis➜Goal Seek) asks
the user to select two single-cell ranges. The user can either type the range addresses (or names)
directly or use the mouse to point and click in a sheet to make a range selection.

Your UserForms can also provide this type of functionality, thanks to the RefEdit control. The
RefEdit control doesn’t look exactly like the range selection control used in Excel’s built-in dia-
log boxes, but it works in a similar manner. If the user clicks the small button on the right side of
the control, the dialog box disappears temporarily, and a small range selector is displayed —
which is exactly what happens with Excel’s built-in dialog boxes.

Part IV: Working with UserForms458

Unfortunately, the RefEdit control has a few quirks that still haven’t been fixed. You’ll
find that this control doesn’t allow the user to use shortcut range selection keys (for
example, pressing End, followed by Shift+↓ will not select cells to the end of the col-
umn). In addition, after clicking the small button on the right side of the control (to
temporarily hide the dialog box), you’re limited to mouse selections only. You can’t use
the keyboard at all to make a selection.

Figure 14-3 shows a UserForm that contains a RefEdit control. This dialog box enables the user
to perform a simple mathematical operation on all nonformula (and non-empty) cells in the
selected range. The operation that’s performed corresponds to the selected OptionButton.

This example is available on the companion CD-ROM in a file named
range selection demo.xlsm.

Figure 14-3: The RefEdit control shown here allows the user to select a range.

Following are a few things to keep in mind when using a RefEdit control:

 The RefEdit control returns a text string that represents a range address. You can con-
vert this string to a Range object by using a statement such as

Set UserRange = Range(RefEdit1.Text)

 Initializing the RefEdit control to display the current range selection is good practice.
You can do so in the UserForm_Initialize procedure by using a statement such as

RefEdit1.Text = ActiveWindow.RangeSelection.Address

Chapter 14: UserForm Examples 459

 For best results, avoid using a RefEdit control inside of a Frame or a MultiPage con-
trol. Doing so may cause Excel to crash.

 Don’t assume that RefEdit will always return a valid range address. Pointing to a range
isn’t the only way to get text into this control. The user can type any text and can also
edit or delete the displayed text. Therefore, you need to make sure that the range is valid.
The following code is an example of a way to check for a valid range. If an invalid range is
detected, the user is given a message, and focus is set to the RefEdit control so that
the user can try again.

On Error Resume Next
Set UserRange = Range(RefEdit1.Text)
If Err.Number <> 0 Then
 MsgBox “Invalid range selected”
 RefEdit1.SetFocus
 Exit Sub
End If
On Error GoTo 0

 The user can also click the worksheet tabs while selecting a range with the RefEdit con-
trol. Therefore, you can’t assume that the selection is on the active sheet. However, if a dif-
ferent sheet is selected, the range address is preceded by a sheet name. For example:

Sheet2!A1:C4

 If you need to get a single cell selection from the user, you can pick out the upper-left cell
of a selected range by using a statement such as

Set OneCell = Range(RefEdit1.Text).Range(“A1”)

As I discuss in Chapter 12, you can also use Excel’s InputBox method to allow the user
to select a range.

Creating a Splash Screen
Some developers like to display some introductory information when the application is opened.
This display is commonly known as a splash screen. You’re undoubtedly familiar with Excel’s
splash screen, which appears for a few seconds when Excel is loading.

You can create a splash screen for your Excel application with a UserForm. This example is essen-
tially a UserForm that displays automatically and then dismisses itself after five seconds.

The companion CD-ROM contains a workbook that demonstrates this procedure. The
file is named splash screen.xlsm.

Part IV: Working with UserForms460

Follow these instructions to create a splash screen for your project:

 1. Create your workbook.

 2. Activate the Visual Basic Editor (VBE) and insert a new UserForm into the project.

 The code in this example assumes that this form is named UserForm1.

 3. Place any controls that you like on UserForm1.

 For example, you may want to insert an Image control that has your company’s logo.
Figure 14-4 shows an example.

Figure 14-4: This splash screen is displayed briefly when the workbook is opened.

 4. Insert the following procedure into the code module for the ThisWorkbook object:

Private Sub Workbook_Open()
 UserForm1.Show
End Sub

 5. Insert the following procedure into the code module for UserForm1.

 For a delay other than five seconds, change the argument for the TimeValue function.

Private Sub UserForm_Activate()
 Application.OnTime Now + _
 TimeValue(“00:00:05”), “KillTheForm”
End Sub

Chapter 14: UserForm Examples 461

 6. Insert the following procedure into a general VBA module:

Private Sub KillTheForm()
 Unload UserForm1
End Sub

 When the workbook is opened, the Workbook_Open procedure is executed. The proce-
dure in Step 4 displays the UserForm. At that time, the UserForm’s Activate event
occurs, which triggers the UserForm_Activate procedure (see Step 5). This proce-
dure uses the OnTime method of the Application object to execute a procedure
named KillTheForm at a particular time. In this case, the time is five seconds after the
activation event. The KillTheForm procedure simply unloads the UserForm.

 7. As an option, you can add a small CommandButton named CancelButton, set its
Cancel property to True, and insert the following event-handler procedure in the
UserForm’s code module:

Private Sub CancelButton_Click()
 Unload Me
End Sub

 Doing so lets the user cancel the splash screen before the time has expired by pressing
Esc. In the example, I placed this small button behind another object so that it’s not visible.

Keep in mind that the splash screen isn’t displayed until the workbook is entirely
loaded. In other words, if you’d like to display the splash screen to give the user some-
thing to look at while the workbook is loading, this technique won’t fill the bill.

If your application needs to run some VBA procedures at start-up, you can display the
UserForm modeless so that the code will continue running while the UserForm is dis-
played. To do so, change the Workbook_Open procedure as follows:

Private Sub Workbook_Open()
 UserForm1.Show vbModeless
 ‘ other code goes here
End Sub

Disabling a UserForm’s Close Button
When a UserForm is displayed, clicking the Close button (the X in the upper-right corner) will
unload the form. You might have a situation in which you don’t want the Close button to unload
the form. For example, you might require that the UserForm be closed only by clicking a particu-
lar CommandButton.

Part IV: Working with UserForms462

Although you can’t actually disable the Close button, you can prevent the user from closing a
UserForm by clicking it. You can do so by monitoring the UserForm’s QueryClose event.

The following procedure, which is located in the code module for the UserForm, is executed
before the form is closed (that is, when the QueryClose event occurs):

Private Sub UserForm_QueryClose _
 (Cancel As Integer, CloseMode As Integer)
 If CloseMode = vbFormControlMenu Then
 MsgBox “Click the OK button to close the form.”
 Cancel = True
 End If
End Sub

The UserForm_QueryClose procedure uses two arguments. The CloseMode argument con-
tains a value that indicates the cause of the QueryClose event. If CloseMode is equal to
vbFormControlMenu (a built-in constant), that means that the user clicked the Close button. If
a message is displayed, the Cancel argument is set to True, and the form isn’t actually closed.

The example in this section is available on the companion CD-ROM in a file named que-
ryclose demo.xlsm.

Keep in mind that a user can press Ctrl+Break to break out of the macro. In this exam-
ple, pressing Ctrl+Break while the UserForm is displayed causes the UserForm to be
dismissed. To prevent this occurrence, execute the following statement prior to dis-
playing the UserForm:

Application.EnableCancelKey = xlDisabled

Make sure that your application is debugged before you add this statement. Otherwise,
you’ll find that it’s impossible to break out of an accidental endless loop.

Changing a UserForm’s Size
Many applications use dialog boxes that change their own size. For example, Excel’s Find and
Replace dialog box (displayed when you choose Home➜Editing➜Find & Select➜Replace)
increases its height when the user clicks the Options button.

The example in this section demonstrates how to get a UserForm to change its size dynamically.
Changing a dialog box’s size is done by altering the Width or Height property of the UserForm
object.

Chapter 14: UserForm Examples 463

Refer to Chapter 15 for an example that allows the user to change the UserForm’s size
by dragging the lower-right corner.

Figure 14-5 shows the dialog box as it is first displayed, and Figure 14-6 shows it after the user
clicks the Options button. Notice that the button’s caption changes, depending on the size of the
UserForm.

Figure 14-5: A sample dialog box in its standard mode.

Figure 14-6: The same dialog box enlarged to show some options.

While you’re creating the UserForm, set it to its largest size to enable you to work with the con-
trols. Then use the UserForm_Initialize procedure to set it to its default (smaller) size.

The code uses two constants, defined at the top of the module:

Const SmallSize As Integer = 124
Const LargeSize As Integer = 164

This example displays a list of worksheets in the active workbook and lets the user select which
sheets to print. Following is the event handler that’s executed when the CommandButton named
OptionsButton is clicked:

Private Sub OptionsButton_Click()
 If OptionsButton.Caption = “Options >>” Then
 Me.Height = LargeSize
 OptionsButton.Caption = “<< Options”

Part IV: Working with UserForms464

 Else
 Me.Height = SmallSize
 OptionsButton.Caption = “Options >>”
 End If
End Sub

This procedure examines the Caption of the CommandButton and sets the UserForm’s Height
property accordingly.

When controls aren’t displayed because they’re outside the visible portion of the
UserForm, the accelerator keys for such controls continue to function. In this example,
the user can press the Alt+L hot key (to select the Landscape mode option) even if that
option isn’t visible. To block access to nondisplayed controls, you can write code to dis-
able the controls when they aren’t displayed.

The example in this section is available on the companion CD-ROM. The file is named
change userform size.xlsm.

Zooming and Scrolling a Sheet from a UserForm
The example in this section demonstrates how to use ScrollBar controls to allow sheet scroll-
ing and zooming while a dialog box is displayed. Figure 14-7 shows how the example dialog box
is set up. When the UserForm is displayed, the user can adjust the worksheet’s zoom factor (from
10% to 400%) by using the ScrollBar at the top. The two ScrollBars in the bottom section of the
dialog box allow the user to scroll the worksheet horizontally and vertically.

This example, named zoom and scroll sheet.xlsm, is available on the companion
CD-ROM.

If you look at the code for this example, you’ll see that it’s remarkably simple. The controls are
initialized in the UserForm_Initialize procedure, which follows:

Private Sub UserForm_Initialize()
 LabelZoom.Caption = ActiveWindow.Zoom & “%”
‘ Zoom
 With ScrollBarZoom
 .Min = 10
 .Max = 400
 .SmallChange = 1

Chapter 14: UserForm Examples 465

 .LargeChange = 10
 .Value = ActiveWindow.Zoom
 End With

‘ Horizontally scrolling
 With ScrollBarColumns
 .Min = 1
 .Max = ActiveSheet.UsedRange.Columns.Count
 .Value = ActiveWindow.ScrollColumn
 .LargeChange = 25
 .SmallChange = 1
 End With

‘ Vertically scrolling
 With ScrollBarRows
 .Min = 1
 .Max = ActiveSheet.UsedRange.Rows.Count
 .Value = ActiveWindow.ScrollRow
 .LargeChange = 25
 .SmallChange = 1
 End With
End Sub

Figure 14-7: Here, ScrollBar controls allow zooming and scrolling of the worksheet.

Part IV: Working with UserForms466

This procedure sets various properties of the ScrollBar controls by using values based on the
active window.

When the ScrollBarZoom control is used, the ScrollBarZoom_Change procedure (which fol-
lows) is executed. This procedure sets the ScrollBar control’s Value to the ActiveWindow’s
Zoom property value. It also changes a label to display the current zoom factor.

Private Sub ScrollBarZoom_Change()
 With ActiveWindow
 .Zoom = ScrollBarZoom.Value
 LabelZoom = .Zoom & “%”
 End With
End Sub

Worksheet scrolling is accomplished by the two procedures that follow. These procedures set the
ScrollRow or ScrollColumns property of the ActiveWindow object equal to the appropri-
ate ScrollBar control value.

Private Sub ScrollBarColumns_Change()
 ActiveWindow.ScrollColumn = ScrollBarColumns.Value
End Sub

Private Sub ScrollBarRows_Change()
 ActiveWindow.ScrollRow = ScrollBarRows.Value
End Sub

Rather than use the Change event in the preceding procedures, you can use the
Scroll event. The difference is that the event is triggered when the ScrollBars are
dragged — resulting in smooth zooming and scrolling. To use the Scroll event, just
make the Change part of the procedure name Scroll.

ListBox Techniques
The ListBox control is extremely versatile, but it can be a bit tricky to work with. This section
contains of a number of examples that demonstrate common techniques that involve the
ListBox control.

In most cases, the techniques described in this section also work with a ComboBox
control.

Chapter 14: UserForm Examples 467

Following are a few points to keep in mind when working with ListBox controls. Examples in
the sections that follow demonstrate many of these points:

 You can retrieve the items in a ListBox from a range of cells (specified by the
RowSource property), or you can add them by using VBA code (using the AddItem
method).

 You can set up a ListBox to allow a single selection or a multiple selection. You use the
MultiSelect property to specify the type of selection allowed.

 If a ListBox isn’t set up for a multiple selection, you can link the value of the ListBox to a
worksheet cell by using the ControlSource property.

 You can display a ListBox with no items selected (the ListIndex property will be –1).
However, after an item is selected, the user can’t deselect all items. The exception is if the
MultiSelect property is True.

 A ListBox can contain multiple columns (controlled by the ColumnCount property) and
even a descriptive header (controlled by the ColumnHeads property).

 The vertical height of a ListBox displayed in a UserForm window isn’t always the same as
the vertical height when the UserForm is actually displayed.

 You can display the items in a ListBox either as check boxes (if multiple selection is
allowed) or as option buttons (if a single selection is allowed). The display type is con-
trolled by the ListStyle property.

For complete details on the properties and methods for a ListBox control, consult the Help system.

Adding items to a ListBox control
Before displaying a UserForm that uses a ListBox control, you need to fill the ListBox with
items. You can fill a ListBox at design time using items stored in a worksheet range, or at runtime
using VBA to add the items to the ListBox.

The two examples in this section presume that

 You have a UserForm named UserForm1.

 This UserForm contains a ListBox control named ListBox1.

 The workbook contains a sheet named Sheet1, and range A1:A12 contains the items to
be displayed in the ListBox.

Adding items to a ListBox at design time
To add items to a ListBox at design time, the ListBox items must be stored in a worksheet range.
Use the RowSource property to specify the range that contains the ListBox items. Figure 14-8
shows the Properties window for a ListBox control. The RowSource property is set to
Sheet1!A1:A12. When the UserForm is displayed, the ListBox will contain the 12 items in this

Part IV: Working with UserForms468

range. The items appear in the ListBox at design time as soon as you specify the range for the
RowSource property.

Figure 14-8: Setting the RowSource property at design time.

In most cases, you’ll want to include the worksheet name when you specify the
RowSource property; otherwise, the ListBox will use the specified range on the active
worksheet. In some cases, you may need to fully qualify the range by including the
workbook name. For example:

[budget.xlsx]Sheet1!A1:A12

A better practice is to define a name for the range and use that name in your code. This
habit will ensure that the proper range is used even if rows above the range are added
or deleted.

Adding items to a ListBox at runtime
To add ListBox items at runtime, you have two choices:

 Set the RowSource property to a range address by using code.

 Write code that uses the AddItem method to add the ListBox items.

Chapter 14: UserForm Examples 469

As you might expect, you can set the RowSource property via code rather than with the
Properties window. For example, the following procedure sets the RowSource property for a
ListBox before displaying the UserForm. In this case, the items consist of the cell entries in a
range named Categories on the Budget worksheet.

 UserForm1.ListBox1.RowSource = “Budget!Categories”
 UserForm1.Show

If the ListBox items aren’t contained in a worksheet range, you can write VBA code to fill the
ListBox before the dialog box appears. The following procedure fills the ListBox with the names
of the months by using the AddItem method.

Sub ShowUserForm2()
‘ Fill the list box
 With UserForm1.ListBox1
 .RowSource=””
 .AddItem “January”
 .AddItem “February”
 .AddItem “March”
 .AddItem “April”
 .AddItem “May”
 .AddItem “June”
 .AddItem “July”
 .AddItem “August”
 .AddItem “September”
 .AddItem “October”
 .AddItem “November”
 .AddItem “December”
 End With
 UserForm1.Show
End Sub

In the preceding code, notice that I set the RowSource property to an empty string.
This setting is to avoid a potential error that occurs if the Properties window has a non-
empty RowSource setting. If you try to add items to a ListBox that has a non-null
RowSource setting, you’ll get a “permission denied” error.

You can also use the AddItem method to retrieve ListBox items from a range. Here’s an example
that fills a ListBox with the contents of A1:A12 on Sheet1.

For Row = 1 To 12
 UserForm1.ListBox1.AddItem Sheets(“Sheet1”).Cells(Row, 1)
Next Row

Part IV: Working with UserForms470

Using the List property is even simpler. The statement that follows has the same effect as the
preceding For Next loop.

UserForm1.ListBox1.List = Application.Transpose(Sheets(“Sheet1”). _
Range(“A1:A12”))

Note that I used the Transpose function because the List property expects a horizontal array
and the range is in a column rather than a row.

You can also use the List property if your data is stored in a one-dimensional array. For exam-
ple, assume that you have an array named MyList that contains 50 elements. The following
statement will create a 50-item list in ListBox1:

UserForm1.ListBox1.List = MyList

The examples in this section are available on the companion CD-ROM. The file is named
listbox fill.xlsm.

Adding only unique items to a ListBox
In some cases, you may need to fill a ListBox with unique (nonduplicated) items from a list. For
example, assume that you have a worksheet that contains customer data. One of the columns
might contain the state (see Figure 14-9). You’d like to fill a ListBox with the state names of your
customers, but you don’t want to include duplicate state names.

One technique involves using a Collection object. After creating a new Collection object,
you can add items to the object with the following syntax:

object.Add item, key, before, after

The key argument, if used, must be a unique text string that specifies a separate key that you
can use to access a member of the collection. The important word here is unique. If you attempt
to add a non-unique key to a collection, an error occurs, and the item isn’t added. You can take
advantage of this situation and use it to create a collection that consists only of unique items.

The following procedure starts by declaring a new Collection object named NoDupes. It
assumes that a range named Data contains a list of items, some of which may be duplicated.

Chapter 14: UserForm Examples 471

Figure 14-9: A Collection object is used to fill a ListBox with the unique items from column B.

The code loops through the cells in the range and attempts to add the cell’s value to the
NoDupes collection. It also uses the cell’s value (converted to a string) for the key argument.
Using the On Error Resume Next statement causes VBA to ignore the error that occurs if
the key isn’t unique. When an error occurs, the item isn’t added to the collection — which is just
what you want. The procedure then transfers the items in the NoDupes collection to the ListBox.
The UserForm also contains a label that displays the number of unique items.

Sub RemoveDuplicates1()
 Dim AllCells As Range, Cell As Range
 Dim NoDupes As New Collection

 On Error Resume Next
 For Each Cell In Range(“State”)
 NoDupes.Add Cell.Value, CStr(Cell.Value)
 Next Cell
 On Error GoTo 0
‘ Add the non-duplicated items to a ListBox
 For Each Item In NoDupes
 UserForm1.ListBox1.AddItem Item
 Next Item
‘ Display the count
 UserForm1.Label1.Caption = _
 “Unique items: “ & NoDupes.Count
‘ Show the UserForm
 UserForm1.Show
End Sub

Part IV: Working with UserForms472

This example, named listbox unique items1.xlsm, is available on the companion
CD-ROM. A workbook named listbox unique items2.xlsm has a slightly more
sophisticated version of this technique and displays the items sorted.

Determining the selected item in a ListBox
The examples in the preceding sections merely display a UserForm with a ListBox filled with vari-
ous items. These procedures omit a key point: how to determine which item or items were
selected by the user.

This discussion assumes a single-selection ListBox object — one whose MultiSelect
property is set to 0.

To determine which item was selected, access the ListBox’s Value property. The statement that
follows, for example, displays the text of the selected item in ListBox1.

MsgBox ListBox1.Value

If no item is selected, this statement will generate an error.

If you need to know the position of the selected item in the list (rather than the content of that
item), you can access the ListBox’s ListIndex property. The following example uses a message
box to display the item number of the selected ListBox item:

MsgBox “You selected item #” & ListBox1.ListIndex

If no item is selected, the ListIndex property will return –1.

The numbering of items in a ListBox begins with 0 — not 1. Therefore, the ListIndex
of the first item is 0, and the ListIndex of the last item is equivalent to the value of
the ListCount property less 1.

Determining multiple selections in a ListBox
A ListBox’s MultiSelect property can be any of three values:

 0 (fmMultiSelectSingle): Only one item can be selected. This setting is the default.

 1 (fmMultiSelectMulti): Pressing the spacebar or clicking selects or deselects an
item in the list.

 2 (fmMultiSelectExtended): Shift-clicking extends the selection from the previously
selected item to the current item. You can also use Shift and one of the arrow keys to
extend the selected items.

Chapter 14: UserForm Examples 473

If the ListBox allows multiple selections (that is, if its MultiSelect property is either 1 or 2),
trying to access the ListIndex or Value property will result in an error. Instead, you need to
use the Selected property, which returns an array whose first item has an index of 0. For
example, the following statement displays True if the first item in the ListBox list is selected:

MsgBox ListBox1.Selected(0)

The companion CD-ROM contains a workbook that demonstrates how to identify the
selected item(s) in a ListBox. It works for single-selection and multiple-selection
ListBoxes. The file is named listbox selected items.xlsm.

The following code, from the example workbook on the CD-ROM, loops through each item in the
ListBox. If the item was selected, it appends the item’s text to a variable called Msg. Finally, the
names of all the selected items are displayed in a message box.

Private Sub OKButton_Click()
 Msg = “”
 For i = 0 To ListBox1.ListCount - 1
 If ListBox1.Selected(i) Then _
 Msg = Msg & ListBox1.List(i) & vbCrLf
 Next i
 MsgBox ”You selected: ” & vbCrLf & Msg
 Unload Me
End Sub

Figure 14-10 shows the result when multiple ListBox items are selected.

Figure 14-10: This message box displays a list of items selected in a ListBox.

Part IV: Working with UserForms474

Multiple lists in a single ListBox
This example demonstrates how to create a ListBox in which the contents change depending on
the user’s selection from a group of OptionButtons.

Figure 14-11 shows the UserForm. The ListBox gets its items from a worksheet range. The proce-
dures that handle the Click event for the OptionButton controls simply set the ListBox’s
RowSource property to a different range. One of these procedures follows:

Private Sub obMonths_Click()
 ListBox1.RowSource = “Sheet1!Months”
End Sub

Figure 14-11: The contents of this ListBox depend on the OptionButton selected.

Clicking the OptionButton named obMonths changes the RowSource property of the ListBox
to use a range named Months on Sheet1.

This example, named listbox multiple lists.xlsm, is available on the companion
CD-ROM.

ListBox item transfer
Some applications require a user to select several items from a list. It’s often useful to create a
new list of the selected items and display the new list in another ListBox. For an example of this
situation, check out the Quick Access Toolbar tab of the Excel Options dialog box.

Chapter 14: UserForm Examples 475

Figure 14-12 shows a dialog box with two ListBoxes. The Add button adds the item selected in
the left ListBox to the right ListBox. The Remove button removes the selected item from the list
on the right. A check box determines the behavior when a duplicate item is added to the list:
Namely, if the Allow Duplicates check box isn’t marked, a message box appears if the user
attempts to add an item that’s already on the list.

Figure 14-12: Building a list from another list.

The code for this example is relatively simple. Here’s the procedure that is executed when the
user clicks the Add button:

Private Sub AddButton_Click()
 If ListBox1.ListIndex = -1 Then Exit Sub
 If Not cbDuplicates Then
‘ See if item already exists
 For i = 0 To ListBox2.ListCount - 1
 If ListBox1.Value = ListBox2.List(i) Then
 Beep
 Exit Sub
 End If
 Next i
 End If
 ListBox2.AddItem ListBox1.Value
End Sub

The code for the Remove button is even simpler:

Private Sub RemoveButton_Click()
 If ListBox2.ListIndex = -1 Then Exit Sub
 ListBox2.RemoveItem ListBox2.ListIndex
End Sub

Notice that both of these routines check to make sure that an item is actually selected. If the
ListBox’s ListIndex property is –1, no items are selected, and the procedure ends.

Part IV: Working with UserForms476

This example has two additional procedures that control whether the Remove button is enabled
or disabled. These events are triggered when the ListBox is entered (either via a keystroke or a
mouse click). The net effect is that the Remove button is enabled only when the user is working
in ListBox2.

Private Sub ListBox1_Enter()
 RemoveButton.Enabled = False
End Sub

Private Sub ListBox2_Enter()
 RemoveButton.Enabled = True
End Sub

This example, named listbox item transfer.xlsm, is available on the companion
CD-ROM.

Moving items in a ListBox
Often, the order of items in a list is important. The example in this section demonstrates how to
allow the user to move items up or down in a ListBox. The VBE uses this type of technique to let
you control the tab order of the items in a UserForm. (Right-click a UserForm and choose Tab
Order from the shortcut menu.)

Figure 14-13 shows a dialog box that contains a ListBox and two CommandButtons. Clicking the
Move Up button moves the selected item up in the ListBox; clicking the Move Down button
moves the selected item down.

This example, named listbox move items.xlsm, is available on the companion
CD-ROM.

Figure 14-13: The buttons allow the user to move items up or down in the ListBox.

Chapter 14: UserForm Examples 477

The event-handler procedures for the two CommandButtons follow:

Private Sub MoveUpButton_Click()
 Dim NumItems As Integer, i As Integer, ItemNum As Integer
 Dim TempItem As String, TempList()
 If ListBox1.ListIndex <= 0 Then Exit Sub
 NumItems = ListBox1.ListCount
 Dim TempList()
 ReDim TempList(0 To NumItems - 1)
‘ Fill array with list box items
 For i = 0 To NumItems - 1
 TempList(i) = ListBox1.List(i)
 Next i
‘ Selected item
 ItemNum = ListBox1.ListIndex
‘ Exchange items
 TempItem = TempList(ItemNum)
 TempList(ItemNum) = TempList(ItemNum - 1)
 TempList(ItemNum - 1) = TempItem
 ListBox1.List = TempList
‘ Change the list index
 ListBox1.ListIndex = ItemNum - 1
End Sub

Private Sub MoveDownButton_Click()
 Dim NumItems As Integer, i As Integer, ItemNum As Integer
 Dim TempItem As String, TempList()
 If ListBox1.ListIndex = ListBox1.ListCount - 1 Then Exit Sub
 NumItems = ListBox1.ListCount
 Dim TempList()
 ReDim TempList(0 To NumItems - 1)
‘ Fill array with list box items
 For i = 0 To NumItems - 1
 TempList(i) = ListBox1.List(i)
 Next i
‘ Selected item
 ItemNum = ListBox1.ListIndex
‘ Exchange items
 TempItem = TempList(ItemNum)
 TempList(ItemNum) = TempList(ItemNum + 1)
 TempList(ItemNum + 1) = TempItem
 ListBox1.List = TempList
‘ Change the list index
 ListBox1.ListIndex = ItemNum + 1
End Sub

Part IV: Working with UserForms478

Working with multicolumn ListBox controls
A normal ListBox has a single column for its contained items. You can, however, create a ListBox
that displays multiple columns and (optionally) column headers. Figure 14-14 shows an example
of a multicolumn ListBox that gets its data from a worksheet range.

This example, named listbox multicolumn1.xlsm, is available on the companion
CD-ROM.

Figure 14-14: This ListBox displays a three-column list with column headers.

To set up a multicolumn ListBox that uses data stored in a worksheet range, follow these steps:

 1. Make sure that the ListBox’s ColumnCount property is set to the correct number of col-
umns.

 2. Specify the correct multicolumn range in the Excel worksheet as the ListBox’s
RowSource property.

 3. If you want to display column headers, set the ColumnHeads property to True.

 Do not include the column headings on the worksheet in the range setting for the
RowSource property. VBA will instead automatically use the row directly above the first
row of the RowSource range.

 4. Adjust the column widths by assigning a series of values, specified in points (1⁄72 of one
inch) and separated by semicolons, to the ColumnWidths property.

Chapter 14: UserForm Examples 479

 For example, for a three-column list box, the ColumnWidths property might be set to
the following text string:

 110 pt;40 pt;30 pt

 5. Specify the appropriate column as the BoundColumn property.

 The bound column specifies which column is referenced when an instruction polls the
ListBox’s Value property.

To fill a ListBox with multicolumn data without using a range, you first create a two-dimensional
array and then assign the array to the ListBox’s List property. The following statements demon-
strate this using a 12-row x 2-column array named Data. The two-column ListBox shows the
month names in column 1 and the number of the days in the month in column 2 (see Figure
14-15). Notice that the procedure sets the ColumnCount property to 2.

Private Sub UserForm_Initialize()
‘ Fill the list box
 Dim Data(1 To 12, 1 To 2)
 For i = 1 To 12
 Data(i, 1) = Format(DateSerial(2010, i, 1), “mmmm”)
 Next i
 For i = 1 To 12
 Data(i, 2) = Day(DateSerial(2010, i + 1, 1) - 1)
 Next i
 ListBox1.ColumnCount = 2
 ListBox1.List = Data
End Sub

This example is available on the companion CD-ROM. The file is named listbox mul-
ticolumn2.xlsm.

There appears to be no way to specify column headers for the ColumnHeads property
when the list source is a VBA array.

Figure 14-15: A two-column ListBox filled with data stored in an array.

Part IV: Working with UserForms480

Using a ListBox to select worksheet rows
The example in this section displays a ListBox that consists of the entire used range of the active
worksheet (see Figure 14-16). The user can select multiple items in the ListBox. Clicking the All
button selects all items, and clicking the None button deselects all items. Clicking OK selects
those corresponding rows in the worksheet. You can, of course, select multiple noncontiguous
rows directly in the worksheet by pressing Ctrl while you click the row borders. However, you
might find that selecting rows is easier when using this method.

This example, named listbox select rows.xlsm, is available on the companion
CD-ROM.

Selecting multiple items is possible because the ListBox’s MultiSelect property is set to 1 -
fmMultiSelectMulti. The check boxes on each item are displayed because the ListBox’s
ListStyle property is set to 1 - fmListStyleOption.

The UserForm’s Initialize procedure follows. This procedure creates a Range object named
rng that consists of the active sheet’s used range. Additional code sets the ListBox’s
ColumnCount and RowSource properties and adjusts the ColumnWidths property so that
the ListBox columns are proportional to the column widths in the worksheet.

Private Sub UserForm_Initialize()
 Dim ColCnt As Integer
 Dim rng As Range
 Dim cw As String
 Dim c As Integer
 ColCnt = ActiveSheet.UsedRange.Columns.Count
 Set rng = ActiveSheet.UsedRange
 With ListBox1
 .ColumnCount = ColCnt
 .RowSource = rng.Address
 cw = “”
 For c = 1 To .ColumnCount
 cw = cw & rng.Columns(c).Width & “;”
 Next c
 .ColumnWidths = cw
 .ListIndex = 0
 End With
End Sub

Chapter 14: UserForm Examples 481

Figure 14-16: This ListBox makes selecting rows in a worksheet easy.

The All and None buttons (named SelectAllButton and SelectNoneButton, respectively)
have simple event-handler procedures as follows:

Private Sub SelectAllButton_Click()
 Dim r As Integer
 For r = 0 To ListBox1.ListCount - 1
 ListBox1.Selected(r) = True
 Next r
End Sub

Private Sub SelectNoneButton_Click()
 Dim r As Integer
 For r = 0 To ListBox1.ListCount - 1
 ListBox1.Selected(r) = False
 Next r
End Sub

Part IV: Working with UserForms482

The OKButton_Click procedure follows. This procedure creates a Range object named
RowRange that consists of the rows that correspond to the selected items in the ListBox. To
determine whether a row was selected, the code examines the Selected property of the
ListBox control. Notice that it uses the Union function to add ranges to the RowRange
object.

Private Sub OKButton_Click()
 Dim RowRange As Range
 Dim RowCnt As Integer,r As Integer
 RowCnt = 0
 For r = 0 To ListBox1.ListCount - 1
 If ListBox1.Selected(r) Then
 RowCnt = RowCnt + 1
 If RowCnt = 1 Then
 Set RowRange = ActiveSheet.UsedRange.Rows(r + 1)
 Else
 Set RowRange = _
 Union(RowRange, ActiveSheet.UsedRange.Rows(r + 1))
 End If
 End If
 Next r
 If Not RowRange Is Nothing Then RowRange.Select
 Unload Me
End Sub

This example is available on the companion CD-ROM. The file is named listbox
select rows.xlsm.

Using a ListBox to activate a sheet
The example in this section is just as useful as it is instructive. This example uses a multicolumn
ListBox to display a list of sheets within the active workbook. The columns represent

 The sheet’s name

 The type of sheet (worksheet, chart, or Excel 5/95 dialog sheet)

 The number of nonempty cells in the sheet

 Whether the sheet is visible

Figure 14-17 shows an example of the dialog box.

The code in the UserForm_Initialize procedure (which follows) creates a two-dimensional
array and collects the information by looping through the sheets in the active workbook. It then
transfers this array to the ListBox.

Chapter 14: UserForm Examples 483

Figure 14-17: This dialog box lets the user activate a sheet.

Public OriginalSheet As Object
Private Sub UserForm_Initialize()
 Dim SheetData() As String, Sht As Object
 Dim ShtCnt As Integer, ShtNum As Integer, ListPos As Integer
 Set OriginalSheet = ActiveSheet
 ShtCnt = ActiveWorkbook.Sheets.Count
 ReDim SheetData(1 To ShtCnt, 1 To 4)
 ShtNum = 1
 For Each Sht In ActiveWorkbook.Sheets
 If Sht.Name = ActiveSheet.Name Then _
 ListPos = ShtNum - 1
 SheetData(ShtNum, 1) = Sht.Name
 Select Case TypeName(Sht)
 Case “Worksheet”
 SheetData(ShtNum, 2) = “Sheet”
 SheetData(ShtNum, 3) = _
 Application.CountA(Sht.Cells)
 Case “Chart”
 SheetData(ShtNum, 2) = “Chart”
 SheetData(ShtNum, 3) = “N/A”
 Case “DialogSheet”
 SheetData(ShtNum, 2) = “Dialog”
 SheetData(ShtNum, 3) = ”N/A”
 End Select
 If Sht.Visible Then
 SheetData(ShtNum, 4) = ”True”
 Else
 SheetData(ShtNum, 4) = ”False”
 End If

Part IV: Working with UserForms484

 ShtNum = ShtNum + 1
 Next Sht
 With ListBox1
 .ColumnWidths = ”100 pt;30 pt;40 pt;50 pt”
 .List = SheetData
 .ListIndex = ListPos
 End With
End Sub

The ListBox1_Click procedure follows:

Private Sub ListBox1_Click()
 If cbPreview Then _
 Sheets(ListBox1.Value).Activate
End Sub

The value of the CheckBox control (named cbPreview) determines whether the selected sheet
is previewed when the user clicks an item in the ListBox.

Clicking the OK button (named OKButton) executes the OKButton_Click procedure, which
follows:

Private Sub OKButton_Click()
 Dim UserSheet As Object
 Set UserSheet = Sheets(ListBox1.Value)
 If UserSheet.Visible Then
 UserSheet.Activate
 Else
 If MsgBox(“Unhide sheet?”, _
 vbQuestion + vbYesNoCancel) = vbYes Then
 UserSheet.Visible = True
 UserSheet.Activate
 Else
 OriginalSheet.Activate
 End If
 End If
 Unload Me
End Sub

The OKButton_Click procedure creates an object variable that represents the selected sheet.
If the sheet is visible, it’s activated. If it’s not visible, the user is presented with a message box
asking whether it should be unhidden. If the user responds in the affirmative, the sheet is unhid-
den and activated. Otherwise, the original sheet (stored in a public object variable named
OriginalSheet) is activated.

Chapter 14: UserForm Examples 485

Double-clicking an item in the ListBox has the same result as clicking the OK button. The
ListBox1_DblClick procedure, which follows, simply calls the OKButton_Click procedure.

Private Sub ListBox1_DblClick(ByVal Cancel As MSForms.ReturnBoolean)

 Call OKButton_Click

End Sub

This example is available on the companion CD-ROM. The file is named listbox
activate sheet.xlsm.

Using the MultiPage Control in a UserForm
The MultiPage control is useful for UserForms that must display many controls. The
MultiPage control lets you group the choices and place each group on a separate tab.

Figure 14-18 shows an example of a UserForm that contains a MultiPage control. In this case,
the control has three pages, each with its own tab.

This example is available on the companion CD-ROM. The file is named multipage
control demo.xlsm.

Figure 14-18: MultiPage groups your controls on pages, making them accessible from a tab.

Part IV: Working with UserForms486

The Toolbox also contains a control named TabStrip, which resembles a MultiPage
control. However, unlike the MultiPage control, the TabStrip control isn’t a container
for other objects. The MultiPage control is much more versatile, and I’ve never had a
need to actually use the TabStrip control.

Using a MultiPage control can be a bit tricky. The following are some things to keep in mind
when using this control:

 The tab (or page) that’s displayed up front is determined by the control’s Value prop-
erty. A value of 0 displays the first tab, a value of 1 displays the second tab, and so on.

 By default, a MultiPage control has two pages. To add a new page in the VBE, right-
click a tab and select New Page from the shortcut menu.

 When you’re working with a MultiPage control, just click a tab to set the properties for
that particular page. The Properties window will display the properties that you can
adjust.

 You may find it difficult to select the actual MultiPage control because clicking the
control selects a page within the control. To select the control itself, click its border. Or,
you can use the Tab key to cycle among all the controls. Yet another option is to select
the MultiPage control from the drop-down list in the Properties window.

 If your MultiPage control has lots of tabs, you can set its MultiRow property to True
to display the tabs in more than one row.

 If you prefer, you can display buttons instead of tabs. Just change the Style property to
1. If the Style property value is 2, the MultiPage control won’t display tabs or buttons.

 The TabOrientation property determines the location of the tabs on the MultiPage
control.

 For each page, you can set a transition effect by changing the TransitionEffect
property. For example, clicking a tab can cause the new page to push the former page
out of the way. Use the TransitionPeriod property to set the speed of the transition
effect.

Using an External Control
The example in this section uses the Windows Media Player control. Although this control isn’t an
Excel control (it’s installed with Windows), it works fine in a UserForm.

To make this control available, add a UserForm to a workbook and follow these steps:

 1. Activate the VBE.

 2. Right-click the Toolbox and choose Additional Controls.

 Choose View➜Toolbox if the Toolbox isn’t visible.

Chapter 14: UserForm Examples 487

 3. In the Additional Controls dialog box, scroll down and place a check mark next to
Windows Media Player.

 4. Click OK.

 Your Toolbox will display a new control.

Figure 14-19 shows the Windows Media Player control in a UserForm, along with the
Property window. The URL property represents the media item being played (music or video). If
the item is on your hard drive, the URL property will contain the full path along with the filename.

Figure 14-19: The Date and Time Picker control in a UserForm.

Figure 14-20 shows this control being used. I reduced the height of the Windows Media
Player control to hide the video display. I added a ListBox, which is filled with MP3 audio file-
names. Clicking the Play button plays the selected file. Clicking the Close button stops the sound
and closes the UserForm. This UserForm is displayed modeless, so the user can continue working
when the dialog box is displayed.

This example is available on the companion CD-ROM. The file is named mediaplayer.
xlsm, and it’s in a separate directory that includes some public domain MP3 sound
effect files.

Part IV: Working with UserForms488

Figure 14-20: The Windows Media Player control.

This example was incredibly easy to create. The UserForm_Initialize procedure adds the
MP3 filenames to the ListBox. To keep things simple, it reads the files that are in the same direc-
tory as the workbook. A more versatile approach is to let the user select a directory.

Private Sub UserForm_Initialize()
 Dim FileName As String
‘ Fill listbox with MP3 files
 FileName = Dir(ThisWorkbook.Path & “*.mp3”, vbNormal)
 Do While Len(FileName) > 0
 ListBox1.AddItem FileName
 FileName = Dir()
 Loop
 ListBox1.ListIndex = 0
End Sub

See Chapter 27 for more information about using the Dir command.

The PlayButton_Click event-handler code consists of a single statement, which assigns the
selected filename to the URL property of the WindowsMediaPlayer1 object.

Private Sub PlayButton_Click()
‘ URL property loads track, and starts player
 WindowsMediaPlayer1.URL = _
 ThisWorkbook.Path & “\” & ListBox1.List(ListBox1.ListIndex)
End Sub

You can probably think of lots of enhancements for this simple application.

Chapter 14: UserForm Examples 489

Animating a Label
The final example in this chapter demonstrates how to animate a Label control. The UserForm
shown in Figure 14-21 is an interactive random number generator.

Two TextBox controls hold the lower and upper values for the random number. A Label con-
trol initially displays four question marks, but the text is animated to show random numbers
when the user clicks the Start button. The Start button changes to a Stop button, and clicking it
again stops the animation and displays the random number. Figure 14-22 shows the dialog box
displaying a random number between 1 and 10,000.

Figure 14-21: Generating a random number.

Figure 14-22: A random number has been chosen.

Part IV: Working with UserForms490

The code that’s attached to the button is as follows:

Dim Stopped As Boolean
Private Sub StartStopButton_Click()
 Dim Low As Double, Hi As Double

 If StartStopButton.Caption = “Start” Then
‘ validate low and hi values
 If Not IsNumeric(TextBox1.Text) Then
 MsgBox “Non-numeric starting value.”, vbInformation
 With TextBox1
 .SelStart = 0
 .SelLength = Len(.Text)
 .SetFocus
 End With
 Exit Sub
 End If

 If Not IsNumeric(TextBox2.Text) Then
 MsgBox “Non-numeric ending value.”, vbInformation
 With TextBox2
 .SelStart = 0
 .SelLength = Len(.Text)
 .SetFocus
 End With
 Exit Sub
 End If

‘ Make sure they aren’t in the wrong order
 Low = Application.Min(Val(TextBox1.Text), Val(TextBox2.Text))
 Hi = Application.Max(Val(TextBox1.Text), Val(TextBox2.Text))

‘ Adjust font size, if necessary
 Select Case Application.Max(Len(TextBox1.Text), Len(TextBox2.Text))
 Case Is < 5: Label1.Font.Size = 72
 Case 5: Label1.Font.Size = 60
 Case 6: Label1.Font.Size = 48
 Case Else: Label1.Font.Size = 36
 End Select

 StartStopButton.Caption = “Stop”
 Stopped = False
 Randomize
 Do Until Stopped
 Label1.Caption = Int((Hi - Low + 1) * Rnd + Low)
 DoEvents ‘ Causes the animation
 Loop
 Else
 Stopped = True

Chapter 14: UserForm Examples 491

 StartStopButton.Caption = “Start”
 End If
End Sub

Because the button serves two purposes (starting and stopping), the procedure uses a public
variable, Stopped, to keep track of the state. The first part of the procedure consists of two
If-Then structures to validate the contents of the TextBox controls. Two more statements
ensure that the low value is in fact less than the high value. The next section adjusts the Label
control’s font size, based on the maximum value. The Do Until loop is responsible for generat-
ing and displaying the random numbers. Notice the DoEvents statement. This statement causes
Excel to “yield” to the operating system. Without the statement, the Label control wouldn’t dis-
play each random number as it’s generated. In other words, the DoEvents statement is what
makes the animation possible.

The UserForm also contains a CommandButton that serves as a Cancel button. This control is
positioned off the UserForm so that it’s not visible. This CommandButton has its Cancel prop-
erty set to True, so pressing Esc is equivalent to clicking the button. Its click event-handler pro-
cedure simply sets the Stopped variable to True and unloads the UserForm:

Private Sub CancelButton_Click()
 Stopped = True
 Unload Me
End Sub

This example, named random number generator.xlsm, is available on the compan-
ion CD-ROM.

Part IV: Working with UserForms492

493

15
Advanced UserForm
Techniques
In This Chapter

● Using modeless UserForms

● Displaying a progress indicator

● Creating a wizard — an interactive series of dialog boxes

● Creating a function that emulates VBA’s MsgBox function

● Allowing users to move UserForm controls

● Displaying a UserForm with no title bar

● Simulating a toolbar with a Userform

● Allowing users to resize a UserForm

● Handling multiple controls with a single event handler

● Using a dialog box to select a color

● Displaying a chart in a UserForm

● Using an Enhanced Data Form

● Creating a moving tile puzzle

A Modeless Dialog Box
Most dialog boxes that you encounter are modal dialog boxes, which you must dismiss from the
screen before the user can do anything with the underlying application. Some dialog boxes, how-
ever, are modeless, which means the user can continue to work in the application while the dialog
box is displayed.

Part IV: Working with UserForms494

To display a modeless UserForm, use a statement such as

UserForm1.Show vbModeless

The word vbModeless is a built-in constant that has a value of 0. Therefore, the following state-
ment works identically:

UserForm1.Show 0

Figure 15-1 shows a modeless dialog box that displays information about the active cell. When
the dialog box is displayed, the user is free to move the cell cursor, activate other sheets, and
perform other Excel actions. The information displayed in the dialog box changes when the
active cell changes.

Figure 15-1: This modeless dialog box remains visible while the user continues working.

This example, named modeless userform1.xlsm, is available on the companion
CD-ROM.

The key is determining when to update the information in the dialog box. To do so, the example
monitors two workbook events: SheetSelectionChange and SheetActivate. These event-
handler procedures are located in the code module for the ThisWorkbook object.

Chapter 15: Advanced UserForm Techniques 495

Refer to Chapter 19 for additional information about events.

The event-handler procedures follow:

Private Sub Workbook_SheetSelectionChange _
 (ByVal Sh As Object, ByVal Target As Range)
 Call UpdateBox
End Sub

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 Call UpdateBox
End Sub

The two previous procedures call the UpdateBox procedure, which follows:

Sub UpdateBox()
 With UserForm1
‘ Make sure a worksheet is active
 If TypeName(ActiveSheet) <> “Worksheet” Then
 .lblFormula.Caption = “N/A”
 .lblNumFormat.Caption = “N/A”
 .lblLocked.Caption = “N/A”
 Exit Sub
 End If

 .Caption = “Cell: “ & ActiveCell.Address(False, False)
‘ Formula
 If ActiveCell.HasFormula Then
 .lblFormula.Caption = ActiveCell.Formula
 Else
 .lblFormula.Caption = “(none)”
 End If
‘ Number format
 .lblNumFormat.Caption = ActiveCell.NumberFormat
‘ Locked
 .lblLocked.Caption = ActiveCell.Locked
 End With
End Sub

The UpdateBox procedure changes the UserForm’s caption to show the active cell’s address;
then it updates the three Label controls (lblFormula, lblNumFormat, and lblLocked).

Part IV: Working with UserForms496

Following are a few points to help you understand how this example works:

 The UserForm is displayed modeless so that you can still access the worksheet while it’s
displayed.

 Code at the top of the procedure checks to make sure that the active sheet is a work-
sheet. If the sheet isn’t a worksheet, the Label controls are assigned the text N/A.

 The workbook monitors the active cell by using a Selection_Change event (which is
located in the ThisWorkbook code module).

 The information is displayed in Label controls on the UserForm.

Figure 15-2 shows a more sophisticated version of this example. This version displays quite a bit
of additional information about the selected cell. Long-time Excel users might notice the similar-
ity to the Info window — a handy feature that was removed from Excel several versions ago. The
code is too lengthy to display here, but you can view the well-commented code in the example
workbook.

Figure 15-2: This modeless UserForm displays various information about the active cell.

This example, named modeless userform2.xlsm, is available on the companion
CD-ROM.

Chapter 15: Advanced UserForm Techniques 497

Following are some key points about this more sophisticated version:

 The UserForm has a check box (Auto Update). When this check box is selected, the
UserForm is updated automatically. When Auto Update isn’t turned on, the user can use
the Update button to refresh the information.

 The workbook uses a class module to monitor two events for all open workbooks: the
SheetSelectionChange event and the SheetActivate event. As a result, the code
to display the information about the current cell is executed automatically whenever
these events occur in any workbook (assuming that the Auto Update option is in effect).
Some actions (such as changing a cell’s number format) do not trigger either of these
events. Therefore, the UserForm also contains an Update button.

Refer to Chapter 29 for more information about class modules.

 The counts displayed for the cell precedents and dependents fields include cells in the
active sheet only. This is a limitation of the Precedents and Dependents properties.

 Because the length of the information will vary, VBA code is used to size and vertically
space the labels — and also change the height of the UserForm if necessary.

Displaying a Progress Indicator
One of the most common requests among Excel developers involves progress indicators. A prog-
ress indicator is a graphical thermometer-type display that shows the progress of a task, such as
a lengthy macro.

In this section, I describe how to create three types of progress indicators for

 A macro that’s not initiated by a UserForm (a stand-alone progress indicator).

 A macro that is initiated by a UserForm. In this case, the UserForm uses a MultiPage
control that displays the progress indicator while the macro is running.

 A macro that is initiated by a UserForm. In this case, the UserForm increases in height
while the macro is running, and the progress indicator appears at the bottom of the dia-
log box.

Using a progress indicator requires that your code is able to gauge how far along your macro
might be in completing its given task. How you do this will vary, depending on the macro. For
example, if your macro writes data to cells and you know the number of cells that will be written
to, it’s a simple matter to write code that calculates the percent completed. Even if you can’t
accurately gauge the progress of a macro, it’s a good idea to give the user some indication that
the macro is still running and Excel hasn’t crashed.

Part IV: Working with UserForms498

A progress indicator will slow down your macro a bit because of the extra overhead of
having to update it. If speed is absolutely critical, you might prefer to forgo using a
progress indicator.

Creating a stand-alone progress indicator
This section describes how to set up a stand-alone progress indicator — that is, one that isn’t ini-
tiated by displaying a UserForm — to display the progress of a macro. The macro simply clears
the worksheet and writes 20,000 random numbers to a range of cells:

Sub GenerateRandomNumbers()
‘ Inserts random numbers on the active worksheet
 Const RowMax As Long = 500
 Const ColMax As Long = 40
 Dim r As Long, c As Long
 If TypeName(ActiveSheet) <> “Worksheet” Then Exit Sub
 Cells.Clear
 For r = 1 To RowMax
 For c = 1 To ColMax
 Cells(r, c) = Int(Rnd * 1000)
 Next c
 Next r
End Sub

Displaying progress in the status bar
A simple way to display the progress of a macro is to use Excel’s status bar. The advantage is
that a status bar is very easy to program. However, the disadvantage is that most users aren’t
accustomed to watching the status bar and prefer a more visual display.

To write text to the status bar, use a statement such as

Application.StatusBar = “Please wait...”

You can, of course, update the status bar while your macro progresses. For example, if you have
a variable named Pct that represents the percent completed, you can write code that periodi-
cally executes a statement such as this:

Application.StatusBar = “Processing… “ & Pct & “% Completed”

When your macro finishes, you must reset the status bar to its normal state with the following
statement:

Application.StatusBar = FalseIf you don’t reset the status bar, the final
message will continue to display.

Chapter 15: Advanced UserForm Techniques 499

After you make a few modifications to this macro (described in the next section), the UserForm,
shown in Figure 15-3, displays the progress.

Figure 15-3: A UserForm displays the progress of a macro.

This example, named progress indicator1.xlsm, is available on the companion
CD-ROM.

Building the stand-alone progress indicator UserForm
Follow these steps to create the UserForm that will be used to display the progress of your task:

 1. Insert a new UserForm and change its Caption property setting to Progress.

 2. Add a Frame control and name it FrameProgress.

 3. Add a Label control inside the Frame, name it LabelProgress, remove the label’s
caption, and make its background color (BackColor property) something that will
stand out.

 The label’s size and placement don’t matter for now.

 4. Add another label above the frame to describe what’s going on (optional).

 In this example, the label reads, Entering random numbers. . . .

 5. Adjust the UserForm and controls so that they look something like Figure 15-4.

Part IV: Working with UserForms500

Figure 15-4: This UserForm will serve as a progress indicator.

You can, of course, apply any other type of formatting to the controls. For example, I changed
the SpecialEffect property for the Frame control to make it “sunken.”

Creating the event-handler procedures for the stand-alone progress indicator
The trick here involves running a procedure automatically when the UserForm is displayed. One
option is to use the Initialize event. However, this event occurs before the UserForm is actu-
ally displayed, so it’s not appropriate. The Activate event, on the other hand, is triggered when
the UserForm is displayed, so it’s perfect for this application.

Insert the following procedure in the code window for the UserForm. This procedure simply calls
a procedure named GenerateRandomNumbers when the UserForm is displayed. This proce-
dure, which is stored in a VBA module, is the actual macro that runs while the progress indicator
is displayed.

Private Sub UserForm_Activate()
 Call GenerateRandomNumbers
End Sub

The modified version of the GenerateRandomNumber procedure (which was presented earlier)
follows. Notice that additional code keeps track of the progress and stores it in a variable named
PctDone.

Sub GenerateRandomNumbers()
‘ Inserts random numbers on the active worksheet
 Dim Counter As Long
 Const RowMax As Long = 500
 Const ColMax As Long = 40
 Dim r As Integer, c As Long
 Dim PctDone As Double

 If TypeName(ActiveSheet) <> “Worksheet” Then Exit Sub
 Cells.Clear
 Counter = 1

Chapter 15: Advanced UserForm Techniques 501

 For r = 1 To RowMax
 For c = 1 To ColMax
 Cells(r, c) = Int(Rnd * 1000)
 Counter = Counter + 1
 Next c
 PctDone = Counter / (RowMax * ColMax)
 Call UpdateProgress(PctDone)
 Next r
 Unload UserForm1
End Sub

The GenerateRandomNumbers procedure contains two loops. Within the inner loop is a call to
the UpdateProgress procedure, which takes one argument (the PctDone variable, which rep-
resents the progress of the macro). PctDone will contain a value between 0 and 100.

Sub UpdateProgress(Pct)
 With UserForm1
 .FrameProgress.Caption = Format(Pct, “0%”)
 .LabelProgress.Width = Pct * (.FrameProgress.Width - 10)
 .Repaint
 End With
End Sub

Creating the start-up procedure for a stand-alone progress indicator
All that’s missing is a procedure to display the UserForm. Enter the following procedure in a VBA
module:

Sub ShowUserForm()
 With UserForm1
 .LabelProgress.Width = 0
 .Show
 End With
End Sub

An additional accoutrement is to make the progress bar color match the workbook’s
current theme. To do so, just add this statement to the ShowUserForm procedure:

.LabelProgress.BackColor = ActiveWorkbook.Theme. _
 ThemeColorScheme.Colors(msoThemeAccent1)

Part IV: Working with UserForms502

How the stand-alone progress indicator works
When you execute the ShowUserForm procedure, the Label object’s width is set to 0. Then the
Show method of the UserForm1 object displays the UserForm (which is the progress indicator).
When the UserForm is displayed, its Activate event is triggered, which executes the
GenerateRandomNumbers procedure. The GenerateRandomNumbers procedure contains
code that calls the UpdateProgress procedure every time the r loop counter variable changes.
Notice that the UpdateProgress procedure uses the Repaint method of the UserForm
object. Without this statement, the changes to the label would not be updated. Before the
GenerateRandomNumbers procedure ends, the last statement unloads the UserForm.

To customize this technique, you need to figure out how to determine the percentage completed
and assign it to the PctDone variable. This calculation will vary, depending on your application.
If your code runs in a loop (as in this example), determining the percentage completed is easy. If
your code is not in a loop, you might need to estimate the progress completed at various points
in your code.

Showing a progress indicator by using a MultiPage control
In the preceding example, a UserForm didn’t initiate the macro. In many cases, your lengthy
macro is kicked off when the user clicks the OK button on a UserForm. The technique that I
describe in this section is a better solution and assumes the following:

 Your project is completed and debugged.

 Your project uses a UserForm (without a MultiPage control) to initiate a lengthy
macro.

 You have a way to gauge the progress of your macro.

The companion CD-ROM contains an example that demonstrates this technique. The file
is named progress indicator2.xlsm.

Like the previous example, this one enters random numbers into a worksheet. The difference
here is that the application contains a UserForm that allows the user to specify the number of
rows and columns for the random numbers (see Figure 15-5).

Modifying your UserForm for a progress indicator with a MultiPage control
This step assumes that you have a UserForm all set up. You’ll add a MultiPage control. The first
page of the MultiPage control will contain all your original UserForm controls. The second
page will contain the controls that display the progress indicator. When the macro begins exe-
cuting, VBA code will change the Value property of the MultiPage control. This will effectively
hide the original controls and display the progress indicator.

Chapter 15: Advanced UserForm Techniques 503

Figure 15-5: The user specifies the number of rows and columns for the random numbers.

The first step is to add a MultiPage control to your UserForm. Then move all the existing con-
trols on the UserForm and paste them to Page1 of the MultiPage control.

Next, activate Page2 of the MultiPage control and set it up as shown in Figure 15-6. This is
essentially the same combination of controls used in the example in the previous section.

 1. Add a Frame control and name it FrameProgress.

 2. Add a Label control inside the Frame, name it LabelProgress, remove the label’s
caption, and make its background color red.

 3. Add another label to describe what’s going on (optional).

 4. Next, activate the MultiPage control itself (not a page on the control) and set its
Style property to 2 – fmTabStyleNone.

 (This will hide the tabs.) You’ll probably need to adjust the size of the MultiPage con-
trol to account for the fact that the tabs aren’t displayed.

The easiest way to select the MultiPage control when the tabs are hidden is to use the
drop-down list in the Properties window. To select a particular page, specify a Value
for the MultiPage control: 0 for Page1, 1 for Page2, and so on.

Part IV: Working with UserForms504

Figure 15-6: Page2 of the MultiPage control will display the progress indicator.

Inserting the UpdateProgress procedure for a progress indicator with a
MultiPage control
Insert the following procedure in the code module for the UserForm:

Sub UpdateProgress(Pct)
 With UserForm1
 .FrameProgress.Caption = Format(Pct, “0%”)
 .LabelProgress.Width = Pct * (.FrameProgress.Width - 10)
 .Repaint
 End With
End Sub

The UpdateProgress procedure is called from the macro that’s executed when the user clicks
the OK button, and it performs the updating of the progress indicator.

Chapter 15: Advanced UserForm Techniques 505

Modifying your procedure for a progress indicator with a MultiPage control
You need to modify the procedure that is executed when the user clicks the OK button — the
Click event-handler procedure for the button named OKButton_Click. First, insert the fol-
lowing statement at the top of your procedure:

MultiPage1.Value = 1

This statement activates Page2 of the MultiPage control (the page that displays the progress
indicator).

In the next step, you’re pretty much on your own. You need to write code to calculate the per-
cent completed and assign this value to a variable named PctDone. Most likely, this calculation
will be performed inside of a loop. Then insert the following statement, which will update the
progress indicator:

Call UpdateProgress(PctDone)

How a progress indicator with a Multipage control works
This technique is very straightforward and, as you’ve seen, it involves only one UserForm. The
code switches pages of the MultiPage control and converts your normal dialog box into a
progress indicator. Because the MultiPage tabs are hidden, it doesn’t even resemble a
MultiPage control.

Showing a progress indicator without using a MultiPage control
The example in this section is similar to the example in the preceding section. However, this tech-
nique is simpler because it doesn’t use a MultiPage control. Rather, the progress indicator is
stored at the bottom of the UserForm — but the UserForm’s height is reduced so that the prog-
ress indicator controls aren’t visible. When it’s time to display the progress indicator, the
UserForm’s height is increased, which makes the progress indicator visible.

The companion CD-ROM contains an example that demonstrates this technique. The file
is named progress indicator3.xlsm.

Figure 15-7 shows the UserForm in the VBE. The Height property of the UserForm is 172.
However, before the UserForm is displayed, VBA code changes the Height to 124 (which
means the progress indicator controls aren’t visible to the user). When the user clicks OK, VBA
code changes the Height property to 172 with the following statement:

Me.Height = 172

Part IV: Working with UserForms506

Figure 15-8 shows the UserForm with the progress indicator section unhidden.

Figure 15-7: The progress indicator will be hidden by reducing the height of the UserForm.

Figure 15-8: The progress indicator in action.

Chapter 15: Advanced UserForm Techniques 507

Creating Wizards
Many applications incorporate wizards to guide users through an operation. Excel’s Text Import
Wizard is a good example. A wizard is essentially a series of dialog boxes that solicit information
from the user. Usually, the user’s choices in earlier dialog boxes influence the contents of later
dialog boxes. In most wizards, the user is free to go forward or backward through the dialog box
sequence or to click the Finish button to accept all defaults.

You can create wizards by using VBA and a series of UserForms. However, I’ve found that the
most efficient way to create a wizard is to use a single UserForm and a MultiPage control with
the tabs hidden.

Figure 15-9 shows an example of a simple four-step wizard, which consists of a single UserForm
that contains a MultiPage control. Each step of the wizard displays a different page in the
MultiPage control.

Figure 15-9: This four-step wizard uses a MultiPage control.

The wizard example in this section is available on the companion CD-ROM. The file is
named wizard demo.xlsm.

The sections that follow describe how I created the sample wizard.

Part IV: Working with UserForms508

Setting up the MultiPage control for the wizard
Start with a new UserForm and add a MultiPage control. By default, this control contains two
pages. Right-click the MultiPage tab and insert enough new pages to handle your wizard (one
page for each wizard step). The example on the CD-ROM is a four-step wizard, so the
MultiPage control has four pages. The captions of the MultiPage tabs are irrelevant because
they won’t be seen. The MultiPage control’s Style property will eventually be set to 2 -
fmTabStyleNone.

While working on the UserForm, you’ll want to keep the MultiPage tabs visible to
make it easier to access various pages.

Next, add the desired controls to each page of the MultiPage control. These controls will, of
course, vary depending on your application. You may need to resize the MultiPage control
while you work in order to have room for the controls.

Adding the buttons to the wizard’s UserForm
Now add the buttons that control the progress of the wizard. These buttons are placed outside
the MultiPage control because they’re used while any of the pages are displayed. Most wizards
have four buttons:

 Cancel: Cancels the wizard and performs no action.

 Back: Returns to the previous step. During Step 1 of the wizard, this button should be dis-
abled.

 Next: Advances to the next step. During the last wizard step, this button should be dis-
abled.

 Finish: Finishes the wizard.

In some cases, the user is allowed to click the Finish button at any time and accept the
defaults for items that were skipped over. In other cases, the wizard requires a user
response for some items. If this is the case, the Finish button is disabled until all
required input is made. The example on the CD-ROM requires an entry in the TextBox in
Step 1.

In the example, these CommandButtons are named CancelButton, BackButton,
NextButton, and FinishButton.

Programming the wizard’s buttons
Each of the four wizard buttons requires a procedure to handle its Click event. The event han-
dler for the CancelButton control follows. This procedure uses a MsgBox function (see Figure

Chapter 15: Advanced UserForm Techniques 509

15-10) to verify that the user really wants to exit. If the user clicks the Yes button, the UserForm is
unloaded with no action taken. This type of verification, of course, is optional.

Private Sub CancelButton_Click()
 Dim Msg As String
 Dim Ans As Integer
 Msg = “Cancel the wizard?”
 Ans = MsgBox(Msg, vbQuestion + vbYesNo, APPNAME)
 If Ans = vbYes Then Unload Me
End Sub

Figure 15-10: Clicking the Cancel button displays a confirmation message box.

The event-handler procedures for the Back and Next buttons follow:

Private Sub BackButton_Click()
 MultiPage1.Value = MultiPage1.Value - 1
 UpdateControls
End Sub
Private Sub NextButton_Click()
 MultiPage1.Value = MultiPage1.Value + 1
 UpdateControls
End Sub

These two procedures are very simple. They change the Value property of the MultiPage con-
trol and then call another procedure named UpdateControls (which follows).

The UpdateControls procedure is responsible for enabling and disabling the BackButton
and NextButton controls.

Sub UpdateControls()
 Select Case MultiPage1.Value
 Case 0
 BackButton.Enabled = False
 NextButton.Enabled = True
 Case MultiPage1.Pages.Count - 1
 BackButton.Enabled = True
 NextButton.Enabled = False

Part IV: Working with UserForms510

 Case Else
 BackButton.Enabled = True
 NextButton.Enabled = True
 End Select

‘ Update the caption
 Me.Caption = APPNAME & “ Step “ _
 & MultiPage1.Value + 1 & “ of “ _
 & MultiPage1.Pages.Count
‘ The Name field is required
 If tbName.Text = “” Then
 FinishButton.Enabled = False
 Else
 FinishButton.Enabled = True
 End If
End Sub

The procedure changes the UserForm’s caption to display the current step and the total number
of steps. APPNAME is a public constant, defined in Module1. The procedure then examines the
name field on the first page (a TextBox named tbName). This field is required, so the user can’t
click the Finish button if it’s empty. If the TextBox is empty, the FinishButton is disabled; oth-
erwise, it’s enabled.

Programming dependencies in a wizard
In most wizards, a user’s response on a particular step can affect what’s displayed in a subse-
quent step. In this example, the user indicates which products he uses in Step 3 and then rates
those products in Step 4. The OptionButtons for a product’s rating are visible only if the user has
indicated a particular product.

Programmatically, you accomplish this task by monitoring the MultiPage’s Change event.
Whenever the value of the MultiPage is changed (by clicking the Back or Next button), the
MultiPage1_Change procedure is executed. If the MultiPage control is on the last tab (Step
4), the procedure examines the values of the CheckBox controls in Step 3 and makes the appro-
priate adjustments in Step 4.

In this example, the code uses two arrays of controls — one for the product CheckBox controls
(Step 3) and one for the Frame controls (Step 4). The code uses a For-Next loop to hide the
Frames for the products that aren’t used and then adjusts their vertical positioning. If none of the
check boxes in Step 3 is checked, everything in Step 4 is hidden except a TextBox that displays
Click Finish to exit (if a name is entered in Step 1) or A name is required in
Step 1 (if a name isn’t entered in Step 1). The MultiPage1_Change procedure follows:

Private Sub MultiPage1_Change()
 Dim TopPos As Long
 Dim FSpace As Long
 Dim AtLeastOne As Boolean

Chapter 15: Advanced UserForm Techniques 511

 Dim i As Long
‘ Set up the Ratings page?
 If MultiPage1.Value = 3 Then
‘ Create an array of CheckBox controls
 Dim ProdCB(1 To 3) As MSForms.CheckBox
 Set ProdCB(1) = cbExcel
 Set ProdCB(2) = cbWord
 Set ProdCB(3) = cbAccess

‘ Create an array of Frame controls
 Dim ProdFrame(1 To 3) As MSForms.Frame
 Set ProdFrame(1) = FrameExcel
 Set ProdFrame(2) = FrameWord
 Set ProdFrame(3) = FrameAccess

 TopPos = 22
 FSpace = 8
 AtLeastOne = False
‘ Loop through all products
 For i = 1 To 3
 If ProdCB(i) Then
 ProdFrame(i).Visible = True
 ProdFrame(i).Top = TopPos
 TopPos = TopPos + ProdFrame(i).Height + FSpace
 AtLeastOne = True
 Else
 ProdFrame(i).Visible = False
 End If
 Next i

‘ Uses no products?
 If AtLeastOne Then
 lblHeadings.Visible = True
 Image4.Visible = True
 lblFinishMsg.Visible = False
 Else
 lblHeadings.Visible = False
 Image4.Visible = False
 lblFinishMsg.Visible = True
 If tbName = “” Then
 lblFinishMsg.Caption = _
 “A name is required in Step 1.”
 Else
 lblFinishMsg.Caption = _
 “Click Finish to exit.”
 End If
 End If
 End If
End Sub

Part IV: Working with UserForms512

Performing the task with the wizard
When the user clicks the Finish button, the wizard performs its task: transferring the information
from the UserForm to the next empty row in the worksheet. This procedure, named
FinishButton_Click, is very straightforward. It starts by determining the next empty work-
sheet row and assigns this value to a variable (r). The remainder of the procedure simply trans-
lates the values of the controls and enters data into the worksheet.

Private Sub FinishButton_Click()
 Dim r As Long
 r = Application.WorksheetFunction. _
 CountA(Range(“A:A”)) + 1
‘ Insert the name
 Cells(r, 1) = tbName.Text

‘ Insert the gender
 Select Case True
 Case obMale: Cells(r, 2) = “Male”
 Case obFemale: Cells(r, 2) = “Female”
 Case obNoAnswer: Cells(r, 2) = “Unknown”
 End Select
‘ Insert usage
 Cells(r, 3) = cbExcel
 Cells(r, 4) = cbWord
 Cells(r, 5) = cbAccess

‘ Insert ratings
 If obExcel1 Then Cells(r, 6) = “”
 If obExcel2 Then Cells(r, 6) = 0
 If obExcel3 Then Cells(r, 6) = 1
 If obExcel4 Then Cells(r, 6) = 2
 If obWord1 Then Cells(r, 7) = “”
 If obWord2 Then Cells(r, 7) = 0
 If obWord3 Then Cells(r, 7) = 1
 If obWord4 Then Cells(r, 7) = 2
 If obAccess1 Then Cells(r, 8) = “”
 If obAccess2 Then Cells(r, 8) = 0
 If obAccess3 Then Cells(r, 8) = 1
 If obAccess4 Then Cells(r, 8) = 2

‘ Unload the form
 Unload Me
End Sub

After you test your wizard, and everything is working properly, you can set the MultiPage
control’s Style property to 2 - fmTabStyleNone to hide the tabs.

Chapter 15: Advanced UserForm Techniques 513

Emulating the MsgBox Function
VBA’s MsgBox function (discussed in Chapter 12) is a bit unusual because, unlike most functions,
it displays a dialog box. But, similar to other functions, it also returns a value: an integer that rep-
resents which button the user clicked.

This section describes a custom function that I created that emulates VBA’s MsgBox function. On
first thought, creating such a function might seem rather easy. Think again! The MsgBox function
is extraordinarily versatile because of the arguments that it accepts. Consequently, creating a
function to emulate MsgBox is no small feat.

The point of this exercise is not to create an alternative messaging function. Rather, it’s
to demonstrate how to develop a relatively complex function that also incorporates a
UserForm. However, some people might like the idea of being able to customize their
messages. If so, you’ll find that this function is very easy to customize. For example,
you can change the font, colors, button text, and so on.

I named my pseudo-MsgBox function MyMsgBox. The emulation is close, but not perfect. The
MyMsgBox function has the following limitations:

 It does not support the Helpfile argument (which adds a Help button that, when
clicked, opens a Help file).

 It does not support the Context argument (which specifies the context ID for the Help
file).

 It does not support the system modal option, which puts everything in Windows on hold
until you respond to the dialog box.

 It does not play a sound when it is called.

The syntax for MyMsgBox is

MyMsgBox(prompt[, buttons] [, title])

This syntax is exactly the same as the MsgBox syntax except that it doesn’t use the last two
optional arguments (Helpfile and Context). MyMsgBox also uses the same predefined con-
stants as MsgBox: vbOKOnly, vbQuestion, vbDefaultButton1, and so on.

If you’re not familiar with the VBA MsgBox function, consult the Help system to become
familiar with its arguments.

Part IV: Working with UserForms514

MsgBox emulation: MyMsgBox code
The MyMsgBox function uses a UserForm named MyMsgBoxForm. The function itself, which fol-
lows, is very short. The bulk of the work is done in the UserForm_Initialize procedure.

The complete code for the MyMsgBox function is too lengthy to list here, but it’s avail-
able in a workbook named msgbox emulation.xlsm, available on the companion
CD-ROM. The workbook is set up so that you can easily try various options.

Public Prompt1 As String
Public Buttons1 As Integer
Public Title1 As String
Public UserClick As Integer
Function MyMsgBox(ByVal Prompt As String, _
 Optional ByVal Buttons As Integer, _
 Optional ByVal Title As String) As Integer
 Prompt1 = Prompt
 Buttons1 = Buttons
 Title1 = Title
 MyMsgBoxForm.Show
 MyMsgBox = UserClick
End Function

Figure 15-11 shows MyMsgBox in use. It looks very similar to the VBA message box, but I used a
different font for the message text (Calibri 12-point bold) and also used some different icons.

Figure 15-11: The result of the MsgBox emulation function.

If you use a multiple monitor system, the position of the displayed UserForm may not be cen-
tered in Excel’s window. To solve that problem, use the following code to display the
MyMsgBoxForm:

 With MyMsgBoxForm
 .StartUpPosition = 0
 .Left = Application.Left + (0.5 * Application.Width) - (0.5 * .Width)
 .Top = Application.Top + (0.5 * Application.Height) - (0.5 * .Height)
 .Show
 End With

Chapter 15: Advanced UserForm Techniques 515

Here’s the code that I used to execute the function:

Prompt = “You have chosen to save this workbook” & vbCrLf
Prompt = Prompt & “on a drive that is not available to” & vbCrLf
Prompt = Prompt & “all employees.” & vbCrLf & vbCrLf
Prompt = Prompt & “OK to continue?”
Buttons = vbQuestion + vbYesNo
Title = “We have a problem”
Ans = MyMsgBox(Prompt, Buttons, Title)

This example, of course, doesn’t really wipe out your entire hard drive.

How the MyMsgBox function works
Notice the use of four Public variables. The first three (Prompt1, Buttons1, and Title1)
represent the arguments that are passed to the function. The other variable (UserClick) repre-
sents the values returned by the function. The UserForm_Initialize procedure needs a way
to get this information and send it back to the function, and using Public variables is the only
way to accomplish that.

The UserForm (shown in Figure 15-12) contains four Label controls. Each of these Label con-
trols has an image, which I pasted into the Picture property. The UserForm also has three
CommandButton controls and a TextBox control.

I originally used Image controls to hold the four icons, but the images displayed with a
faint outline. I switched to Label controls because the image is not displayed with an
outline.

The code in the UserForm_Initialize procedure examines the arguments and does the
following:

 Determines which, if any, image to display (and hides the others)

 Determines which button(s) to display (and hides the others)

 Determines which button is the default button

 Centers the buttons in the dialog box

 Determines the captions for the CommandButtons

 Determines the position of the text within the dialog box

 Determines how wide to make the dialog box (by using an API function call to get the
video resolution)

Part IV: Working with UserForms516

 Determines how tall to make the dialog box

 Displays the UserForm

Figure 15-12: The UserForm for the MyMsgBox function.

Three additional event-handler procedures are included (one for each CommandButton). These
routines determine which button was clicked and return a value for the function by setting a
value for the UserClick variable.

Interpreting the second argument (buttons) is a bit challenging. This argument can consist of a
number of constants added together. For example, the second argument can be something like
this:

VbYesNoCancel + VbQuestion + VbDefaultButton3

This argument creates a three-button MsgBox (with Yes, No, and Cancel buttons), displays the
question mark icon, and makes the third button the default button. The actual argument is 547 (3
+ 32 + 512).

The challenge was pulling three pieces of information from a single number. The solution involves
converting the argument to a binary number and then examining specific bits. For example, 547
in binary is 1000100011. Binary digits 4 through 6 determine the image displayed; digits 8
through 10 determine which buttons to display; and digits 1 and 2 determine which button is the
default button.

Using the MyMsgBox function
To use this function in your own project, export the MyMsgBoxMod module and the
MyMsgBoxForm UserForm. Then import these two files into your project. You can then use
the MyMsgBox function in your code just as you’d use the MsgBox function.

Chapter 15: Advanced UserForm Techniques 517

A UserForm with Movable Controls
I’m not sure of the practical significance of this technique, but the example in this section will
help you understand mouse-related events. The UserForm shown in Figure 15-13 contains three
Image controls. The user can use the mouse to drag these images around in the dialog box.

Figure 15-13: You can drag and rearrange the three Image controls by using the mouse.

This example is available on the companion CD-ROM. The file is named
move controls.xlsm.

Each of the Image controls has two associated event procedures: MouseDown and MouseMove.
The event procedures for the Image1 control are shown here. (The others are identical except
for the control names.)

Private Sub Image1_MouseDown(ByVal Button As Integer, _
 ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
‘ Starting position when button is pressed
 OldX = X
 OldY = Y
 Image1.ZOrder 0
End Sub

Private Sub Image1_MouseMove(ByVal Button As Integer, _
 ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
‘ Move the image
 If Button = 1 Then
 Image1.Left = Image1.Left + (X - OldX)
 Image1.Top = Image1.Top + (Y - OldY)
 End If
End Sub

Part IV: Working with UserForms518

When the mouse button is pressed, the MouseDown event occurs, and the X and Y positions of
the mouse pointer are stored. Two public variables are used to keep track of the original position
of the controls: OldX and OldY. This procedure also changes the ZOrder property, which puts
the image “on top” of the others.

When the mouse is being moved, the MouseMove event occurs repeatedly. The event procedure
checks the mouse button. If the Button argument is 1, it means that the left mouse button is
depressed. If so, then the Image control is shifted relative to its old position.

Also, notice that the mouse pointer changes when it’s over an image. That’s because the
MousePointer property is set to 15 - fmMousePointerSizeAll. This mouse pointer style
is commonly used to indicate that something can be moved.

A UserForm with No Title Bar
Excel provides no direct way to display a UserForm without its title bar. But this feat is possible
with the help of a few API functions. Figure 15-14 shows a UserForm with no title bar.

Figure 15-14: This UserForm lacks a title bar.

Another example of a UserForm without a title bar is in Figure 15-15. This dialog box contains an
Image control and a CommandButton control.

Both of these examples are in a workbook named no title bar.xlsm, which is avail-
able on the companion CD-ROM. The CD also contains another version of the splash
screen example presented in Chapter 14. This version, named splash screen2.xlsm,
displays the UserForm without a title bar.

Displaying a UserForm without a title bar requires four windows API functions: GetWindowLong,
SetWindowLong, DrawMenuBar, and FindWindowA (see the example file on the CD for the
function declaration). The UserForm_Initialize procedure calls these functions:

Private Sub UserForm_Initialize()
 Dim lngWindow As Long, lFrmHdl As Long
 lFrmHdl = FindWindowA(vbNullString, Me.Caption)
 lngWindow = GetWindowLong(lFrmHdl, GWL_STYLE)
 lngWindow = lngWindow And (Not WS_CAPTION)
 Call SetWindowLong(lFrmHdl, GWL_STYLE, lngWindow)
 Call DrawMenuBar(lFrmHdl)
End Sub

Chapter 15: Advanced UserForm Techniques 519

Figure 15-15: Another UserForm without a title bar.

One problem is that, without a title bar, the user has no way to reposition the dialog box. The
solution is to use the MouseDown and MouseMove events, as described in the preceding section.

Because the FindWindowA function uses the UserForm’s caption, this technique won’t
work if the Caption property is set to an empty string.

Simulating a Toolbar with a UserForm
Creating a custom toolbar in versions prior to Excel 2007 was relatively easy. Beginning with
Excel 2007, you can no longer create a custom toolbar. More accurately, you can still create a
custom toolbar with VBA, but Excel ignores many of your VBA instructions. Beginning with Excel
2007, all custom toolbars are displayed in the Add-Ins➜Custom Toolbars Ribbon group. You
can’t move, float, resize, or dock these toolbars.

This section describes how to create a toolbar alternative: a modeless UserForm that simulates a
floating toolbar. Figure 15-16 shows a UserForm that may substitute for a toolbar.

This example, named simulated toolbar.xlm, is available on the companion CD-ROM.

The UserForm contains eight Image controls, and each executes a macro. Figure 15-17 shows the
UserForm in the VBE. Notice that

 The controls aren’t aligned.

 The UserForm isn’t the final size.

 The title bar is the standard size.

Part IV: Working with UserForms520

Figure 15-16: A UserForm set up to function as a toolbar.

The VBA code takes care of the cosmetic details. It aligns the controls and adjusts the size of the
UserForm to eliminate wasted space. In addition, the code uses Windows API functions to make
the UserForm’s title bar smaller — just like a real toolbar. To make the UserForm look even more
like a toolbar, I also set the ControlTipText property of each Image control — which displays
a very toolbar-like tooltip when the mouse is hovered over the control.

Figure 15-17: The UserForm that simulates a toolbar.

If you open the file on the CD-ROM, you’ll also notice that the images change slightly when the
mouse is hovered over them. That’s because each Image control has an associated MouseMove
event handler that changes the SpecialEffect property. Here’s the MouseMove event han-
dler procedure for Image1 (the others are identical):

Chapter 15: Advanced UserForm Techniques 521

Private Sub Image1_MouseMove(ByVal Button As Integer, _
 ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
 Call NoRaise
 Image1.SpecialEffect = fmSpecialEffectRaised
End Sub

This procedure calls the NoRaise procedure, which turns off the raised special effect for each
control.

Private Sub NoRaise()
‘ Remove the raised effect from all controls
 Dim ctl As Control
 For Each ctl In Controls
 ctl.SpecialEffect = fmSpecialEffectFlat
 Next ctl
End Sub

The net effect is that the user gets some visual feedback when the mouse moves over a control —
just like a real toolbar. The toolbar simulation only goes so far, however. You can’t resize the
UserForm (for example, make the images display vertically rather than horizontally). And, of
course, you can’t dock the pseudo-toolbar to one of the Excel window borders.

The images displayed on the controls are characters from the Wingding font. I used
Excel’s Insert➜Text➜Symbol command to enter the character into a cell. Then I copied
it to the Clipboard and pasted it into the Picture property in the Properties box. This
is a quick and easy way to add images to UserForm controls.

A Resizable UserForm
Excel uses several resizable dialog boxes. For example, you can resize the Name Manager dialog
box by clicking and dragging the bottom-right corner.

If you’d like to create a resizable UserForm, you’ll quickly discover that there’s no direct way to
do it. One solution is to resort to Windows API calls. That method works, but it’s complicated to
set up. In addition, that method doesn’t generate any events, so your code can’t respond when
the UserForm is resized. In this section, I present a much simpler technique for creating a user-
resizable UserForm.

Credit for this technique goes to Andy Pope, an Excel expert and Microsoft MVP who
lives in the UK. Andy is one of the most creative Excel developers I’ve ever met. For a
real treat (and interesting downloads), visit his Web site at http://andypope.info.

Part IV: Working with UserForms522

Figure 15-18 shows the UserForm that’s described in this section. It contains a ListBox control
that displays data from a worksheet. Notice the scrollbars on the ListBox. That means the ListBox
contains information that doesn’t fit. Also, notice the bottom-right corner of the dialog box. It
displays a (perhaps) familiar sizing control.

Figure 15-18: This is a resizable UserForm.

Figure 15-19 shows the same UserForm after the user resized it. Notice that the size of the ListBox
is also increased, and the Close button remains in the same relative position. You can stretch this
UserForm to the limits of your monitor.

This example is available on the companion CD-ROM. The filename is resizable
userform.xlsm.

The trick here involves a Label control, which is added to the UserForm at runtime. The sizing
control at the bottom-right corner is actually a Label control that displays a single character:
The letter o (character 111) from the Marlett font, character set 2. This control (named objRe-
sizer) is added to the UserForm in the UserForm_Initialize procedure:

Private Sub UserForm_Initialize()
‘ Add a resizing control to bottom right corner of UserForm
 Set objResizer = Me.Controls.Add(“Forms.label.1”, MResizer, True)
 With objResizer
 .Caption = Chr(111)
 .Font.Name = “Marlett”
 .Font.Charset = 2
 .Font.Size = 14
 .BackStyle = fmBackStyleTransparent
 .AutoSize = True
 .ForeColor = RGB(100, 100, 100)
 .MousePointer = fmMousePointerSizeNWSE
 .ZOrder

Chapter 15: Advanced UserForm Techniques 523

 .Top = Me.InsideHeight - .Height
 .Left = Me.InsideWidth - .Width
 End With
End Sub

Figure 15-19: The UserForm after being increased in size.

Although the Label control is added at runtime, the event-handler code for the object
is contained in the module. Including code for an object that doesn’t exist does not
present a problem.

This technique relies on these facts:

 The user can move a control on a UserForm (see “A UserForm with Movable Controls,”
earlier in this chapter).

 Events exist that can identify mouse movements and pointer coordinates. Specifically,
these events are MouseDown and MouseMove.

 VBA code can change the size of a UserForm at runtime, but a user cannot.

Part IV: Working with UserForms524

Do a bit of creative thinking about these facts, and you see that it’s possible to translate the
user’s movement of a Label control into information that you can use to resize a UserForm.

When the user clicks the objResizer Label object, the objResizer_MouseDown event-
handler procedure is executed:

Private Sub objResizer_MouseDown(ByVal Button As Integer, _
 ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
 If Button = 1 Then
 LeftResizePos = X
 TopResizePos = Y
 End If
End Sub

This procedure executes only if the left mouse button is pressed (that is, the Button argument is
1) and the cursor is on the objResizer label. The X and Y mouse coordinates at the time of the
button click are stored in module-level variables: LeftResizePos and TopResizePos.

Subsequent mouse movements fire the MouseMove event, and the objResizer_MouseMove
event handler kicks into action. Here’s an initial take on this procedure:

Private Sub objResizer_MouseMove(ByVal Button As Integer, _
 ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
 If Button = 1 Then
 With objResizer
 .Move .Left + X - LeftResizePos, .Top + Y - TopResizePos
 Me.Width = Me.Width + X - LeftResizePos
 Me.Height = Me.Height + Y - TopResizePos
 .Left = Me.InsideWidth - .Width
 .Top = Me.InsideHeight - .Height
 End With
 End If
End Sub

If you study the code, you’ll see that the UserForm’s Width and Height properties are adjusted,
based on the movement of the objResizer Label control. Figure 15-20 shows how the
UserForm looks after the user moves the Label control down and to the right.

The problem, of course, is that the other controls in the UserForm don’t respond to the
UserForm’s new size. The ListBox should be expanded, and the CommandButton should be relo-
cated so that it remains in the lower-left corner.

Chapter 15: Advanced UserForm Techniques 525

Figure 15-20: VBA code converts Label control movements into new Width and Height properties for the
UserForm.

More VBA code is needed to adjust the controls in the UserForm when the UserForm size is
changed. The location for this new code is in the objResizer_MouseMove event-handler pro-
cedure. The statements that follow do the job:

‘ Adjust the ListBox
 On Error Resume Next
 With ListBox1
 .Width = Me.Width - 22
 .Height = Me.Height - 100
 End With
 On Error GoTo 0
‘ Adjust the Close Button
 With CloseButton
 .Left = Me.Width - 70
 .Top = Me.Height - 54
 End With

These two controls are adjusted relative to the UserForm’s size (that is, Me). After adding this
new code, the dialog box works like a charm. The user can make it as large as needed, and the
controls adjust.

It should be clear that the most challenging part of creating a resizable dialog box is figuring out
how to adjust the controls. When you have more than two or three controls, things can get very
complicated.

Part IV: Working with UserForms526

Handling Multiple UserForm Controls with One
Event Handler
Every CommandButton on a UserForm must have its own procedure to handle its events. For
example, if you have two CommandButtons, you’ll need two event-handler procedures for the
controls’ click events:

Private Sub CommandButton1_Click()
‘ Code goes here
End Sub

Private Sub CommandButton2_Click()
‘ Code goes here
End Sub

In other words, you can’t assign a macro to execute when any CommandButton is clicked. Each
Click event handler is hard-wired to its CommandButton. You can, however, have each event
handler call another all-inclusive macro in the event-handler procedures, but you’ll need to pass
an argument to indicate which button was clicked. In the following examples, clicking either
CommandButton1 or CommandButton2 executes the ButtonClick procedure, and the sin-
gle argument tells the ButtonClick procedure which button was clicked:

Private Sub CommandButton1_Click()
 Call ButtonClick(1)
End Sub

Private Sub CommandButton2_Click()
 Call ButtonClick(2)
End Sub

If your UserForm has many CommandButtons, setting up all these event handlers can get
tedious. You might prefer to have a single procedure that can determine which button was
clicked and take the appropriate action.

This section describes a way around this limitation by using a class module to define a new class.

This example, named multiple buttons.xlsm, is available on the companion
CD-ROM.

The following steps describe how to re-create the example UserForm shown in Figure 15-21:

Chapter 15: Advanced UserForm Techniques 527

Figure 15-21: Many CommandButtons with a single event-handler procedure.

 1. Create your UserForm as usual and add several CommandButtons.

 (The example on the CD contains 16 CommandButton controls.) This example assumes
that the form is named UserForm1.

 2. Insert a class module into your project (choose Insert➜Class Module), give it the name
BtnClass, and enter the following code.

 You will need to customize the ButtonGroup_Click procedure.

Public WithEvents ButtonGroup As MsForms.CommandButton

Private Sub ButtonGroup_Click()
 Dim Msg As String
 Msg = “You clicked “ & ButtonGroup.Name & vbCrLf & vbCrLf
 Msg = Msg & “Caption: “ & ButtonGroup.Caption & vbCrLf
 Msg = Msg & “Left Position: “ & ButtonGroup.Left & vbCrLf
 Msg = Msg & “Top Position: “ & ButtonGroup.Top
 MsgBox Msg, vbInformation, ButtonGroup.Name
End Sub

You can adapt this technique to work with other types of controls. You need to change
the type name in the Public WithEvents declaration. For example, if you have
OptionButtons instead of CommandButtons, use a declaration statement like this:

Public WithEvents ButtonGroup As MsForms.OptionButton

 3. Insert a normal VBA module and enter the following code.

 This routine simply displays the UserForm.

Sub ShowDialog()
 UserForm1.Show
End Sub

 4. In the code module for the UserForm, enter the UserForm_Initialize code that
follows.

Part IV: Working with UserForms528

 This procedure is kicked off by the UserForm’s Initialize event. Notice that the code
excludes a button named OKButton from the button group. Therefore, clicking the OK
button doesn’t execute the ButtonGroup_Click procedure.

Dim Buttons() As New BtnClass

Private Sub UserForm_Initialize()
 Dim ButtonCount As Integer
 Dim ctl As Control
‘ Create the Button objects
 ButtonCount = 0
 For Each ctl In UserForm1.Controls
 If TypeName(ctl) = “CommandButton” Then
 ‘Skip the OKButton
 If ctl.Name <> “OKButton” Then
 ButtonCount = ButtonCount + 1
 ReDim Preserve Buttons(1 To ButtonCount)
 Set Buttons(ButtonCount).ButtonGroup = ctl
 End If
 End If
 Next ctl
End Sub

After performing these steps, you can execute the ShowDialog procedure to display the
UserForm. Clicking any of the CommandButtons (except the OK button) executes the
ButtonGroup_Click procedure. Figure 15-22 shows an example of the message displayed
when a button is clicked.

Figure 15-22: The ButtonGroup_Click procedure describes the button that was clicked.

Chapter 15: Advanced UserForm Techniques 529

Selecting a Color in a UserForm
The example in this section is a function that displays a dialog box (similar in concept to the
MyMsgBox function, presented earlier). The function, named GetAColor, returns a color value:

Public ColorValue As Variant

Function GetAColor() As Variant
 UserForm1.Show
 GetAColor = ColorValue
End Function

You can use the GetAColor function with a statement like the following:

UserColor = GetAColor()

Executing this statement displays the UserForm. The user selects a color and clicks OK. The func-
tion then assigns the user’s selected color value to the UserColor variable.

The UserForm, shown in Figure 15-23, contains three ScrollBar controls — one for each of the
color components (red, green, and blue). The value range for each ScrollBar is from 0 to 255. The
module contains procedures for the ScrollBar Change events. For example, here’s the proce-
dure that’s executed when the first ScrollBar is changed:

Private Sub ScrollBarRed_Change()
 LabelRed.BackColor = RGB(ScrollBarRed.Value, 0, 0)
 Call UpdateColor
End Sub

The UpdateColor procedure adjusts the color sample displayed, and also updates the RGB values.

Figure 15-23: This dialog box lets the user select a color by specifying the red, green, and blue components.

This example, named getacolor function.xlsm, is available on the companion
CD-ROM.

Part IV: Working with UserForms530

The GetAColor UserForm has another twist: It remembers the last color that was selected.
When the function ends, the three ScrollBar values are stored in the Windows Registry, using this
code (APPNAME is a string defined in Module1):

SaveSetting APPNAME, “Colors”, “RedValue”, ScrollBarRed.Value
SaveSetting APPNAME, “Colors”, “BlueValue”, ScrollBarBlue.Value
SaveSetting APPNAME, “Colors”, “GreenValue”, ScrollBarGreen.Value

The UserForm_Initialize procedure retrieves these values and assigns them to the scroll-
bars:

ScrollBarRed.Value = GetSetting(APPNAME, “Colors”, “RedValue”, 128)
ScrollBarGreen.Value = GetSetting(APPNAME, “Colors”, “GreenValue”, 128)
ScrollBarBlue.Value = GetSetting(APPNAME, “Colors”, “BlueValue”, 128)

The last argument for the GetSetting function is the default value, which is used if the Registry
key is not found. In this case, each color defaults to 128, which produces middle gray.

The SaveSetting and GetSetting functions always use this Registry key:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\

Figure 15-24 shows the Registry data, displayed with the Windows Regedit.exe program.

To learn more about how Excel uses colors, refer to Chapter 30.

Figure 15-24: The user’s ScrollBar values are stored in the Windows Registry and retrieved the next time
the GetAColor function is used.

Chapter 15: Advanced UserForm Techniques 531

Displaying a Chart in a UserForm
Oddly, Excel provides no direct way to display a chart in a UserForm. You can, of course, copy
the chart and paste it to the Picture property of an Image control, but this creates a static
image of the chart, so it won’t display any changes that are made to the chart.

This section describes a technique to display a chart in a UserForm. Figure 15-25 shows a
UserForm with a chart displayed in an Image object. The chart actually resides on a worksheet,
and the UserForm always displays the current chart. This technique works by copying the chart
to a temporary graphics file and then using the LoadPicture function to specify that file for
the Image control’s Picture property.

This workbook is available on the companion CD-ROM. The filename is chart in
userform.xlsm.

To display a chart in a UserForm, follow these general steps:

 1. Create your chart or charts as usual.

 2. Insert a UserForm and then add an Image control.

 3. Write VBA code to save the chart as a GIF file and then set the Image control’s
Picture property to the GIF file.

 You need to use VBA’s LoadPicture function to do this.

 4. Add other bells and whistles as desired.

 For example, the UserForm in the demo file contains controls that let you change the
chart type. Alternatively, you could write code to display multiple charts.

Figure 15-25: With a bit of trickery, a UserForm can display “live” charts.

Part IV: Working with UserForms532

Saving a chart as a GIF file
The following code demonstrates how to create a GIF file (named temp.gif) from a chart (in
this case, the first chart object on the sheet named Data):

Set CurrentChart = Sheets(“Data”).ChartObjects(1).Chart
Fname = ThisWorkbook.Path & “\temp.gif”
CurrentChart.Export FileName:=Fname, FilterName:=”GIF”

Changing the Image control Picture property
If the Image control on the UserForm is named Image1, the following statement loads the
image (represented by the Fname variable) into the Image control:

Image1.Picture = LoadPicture(Fname)

This technique works fine, but you may notice a slight delay when the chart is saved
and then retrieved. On a fast system, however, this delay is not noticeable.

Making a UserForm Semitransparent
Normally, a UserForm is opaque — it completely hides whatever is underneath it. However, you
can make a UserForm semitransparent, such that the user can see the worksheet under the
UserForm.

Creating a semitransparent UserForm requires a number of Windows API functions. You can set
the transparency level using values that range from 0 (UserForm is invisible) to 255 (UserForm is
completely opaque, as usual). Values in between 0 and 255 specify a level of semitransparency.

Figure 15-26 shows an example of a UserForm with a transparency level of 128.

This workbook is available on the companion CD-ROM. The filename is
semi-transparent userform.xlsm.

What good is a semitransparent UserForm? After giving this question some thought, I came up
with a potential use for this technique: creating a light-box effect. You’ve probably seen Web
sites that use the light-box effect. The Web page is dimmed (as if the lights are lowered), and an
image or pop-up is displayed. This effect serves to focus the user’s attention to a specific item on
the screen.

Chapter 15: Advanced UserForm Techniques 533

Figure 15-26: A semitransparent UserForm.

Figure 15-27 shows an Excel workbook that uses the light-box effect. Excel’s window is dimmed,
but the message box displays normally. How does it work? I created a UserForm with a black
background. Then I wrote code to resize and position the UserForm so that it completely covers
Excel’s window. Here’s the code to accomplish the coverup:

With Me
 .Height = Application.Height
 .Width = Application.Width
 .Left = Application.Left
 .Top = Application.Top
End With

Then, the UserForm was made semitransparent, which gives Excel’s window a dimmed appear-
ance. The message box (or another UserForm) is displayed on top of the semitransparent
UserForm.

This workbook is available on the companion CD-ROM. The filename is excel
light-box.xlsm.

Part IV: Working with UserForms534

Figure 15-27: Creating a light-box effect in Excel.

An Enhanced Data Form
The example in this section is probably one of the more complex UserForms that you’ll encoun-
ter. I designed it as a replacement for Excel’s built-in Data Form, which is shown in Figure 15-28.

Displaying Excel’s Data Form is not easy in Excel 2010. This command isn’t part of
Excel’s user interface, so you need to add the command to the Ribbon or to the Quick
Access toolbar. To add it to the Quick Access toolbar, right-click the Quick Access tool-
bar and choose Customize Quick Access Toolbar. Then, in the Excel Options dialog box,
add the Form command from the Commands Not in the Ribbon group. Then, the Form
command will appear on your Quick Access toolbar.

Like Excel’s Data Form, my Enhanced Data Form works with a list in a worksheet. But as you can
see in Figure 15-29, it has a dramatically different appearance and offers several advantages.

Chapter 15: Advanced UserForm Techniques 535

Figure 15-28: Excel’s Data Form.

Figure 15-29: My Enhanced Data Form.

Part IV: Working with UserForms536

About the Enhanced Data Form
The Enhanced Data Form features the enhancements listed in Table 15-1.

Table 15-1: Comparing the Enhanced Data Form with the Excel Data Form

Enhanced Data Form Excel Data Form

Handles any number of records and fields. Limited to 32 fields.

Dialog box can be displayed in any size that you like,
and can be resized by the user.

Dialog box adjusts its size based on the number of
fields. In fact, it can take up the entire screen!

Fields can consist of either InputBox or ComboBox
controls.

Uses only InputBoxes.

Can modify the width of the descriptive column
headers.

Can’t change column header fields.

Can easily change the language used in the dialog
box (VBA password required).

Can’t change language.

Record displayed in the dialog box is always visible
on-screen and is highlighted so that you know
exactly where you are.

Doesn’t scroll the screen for you and doesn’t high-
light the current record.

At start-up, the dialog box always displays the
record at the active cell.

Always starts with the first record in the database.

When you close the dialog box, the current record is
selected for you.

Doesn’t change your selection when you exit.

Lets you insert a new record at any position in the
database.

Adds new records only at the end of the database.

Includes an Undo button for Data Entry, Insert
Record, Delete Record, and New Record.

Includes only a Restore button.

Search criteria are stored in a separate panel, so you
always know exactly what you’re searching for.

The search criteria aren’t always apparent.

Supports approximate matches while searching (*, ?,
and #).

Excel’s Data Form doesn’t support wildcard char-
acters.

The complete VBA source code is available, so you
can customize it to your needs.

Data Form isn’t written in VBA and can’t be cus-
tomized.

The Enhanced Data Form is a commercial product (sort of). Versions for Excel 97 and
later are available on the companion CD-ROM. These files may be distributed freely.

If you’d like to customize the code or UserForm, access to the complete VBA source is
available for a modest fee. You can find out the details at http://spreadsheetpage.
com.

Chapter 15: Advanced UserForm Techniques 537

Installing the Enhanced Data Form add-in
To try out the Enhanced Data Form, install the add-in:

 1. Copy the dataform3.xlam file from the CD-ROM to a directory on your hard drive.

 2. In Excel, press Alt+TI to display the Add-Ins dialog box.

 3. In the Add-Ins dialog box, click Browse and locate the dataform3.xlam file in the
directory from Step 1.

After performing these steps, you can access the Enhanced Data Form by using Data➜

DataForm➜J-Walk Enhanced DataForm. You can use the Enhanced Data Form to work with any
worksheet list or table.

A Puzzle on a UserForm
The example in this section is a familiar sliding puzzle, displayed on a UserForm (see Figure
15-30). This puzzle was invented by Noyes Chapman in the late 1800s. In addition to providing a
few minutes of amusement, you may find the coding instructive.

Figure 15-30: A sliding tile puzzle in a UserForm.

The goal is to arrange the shuffled tiles (CommandButton controls) in numerical order. Click a
button next to the empty space, and the button moves to the empty space. The ComboBox con-
trol lets the user choose from three configurations: 3 x 3, 4 x 4, and 5 x 5. The New button shuf-
fles the tiles, and a Label control keeps track of the number of moves.

This application uses a class module to handle all the button events (see “Handling Multiple
UserForm Controls with One Event Handler,” earlier in this chapter).

Part IV: Working with UserForms538

The VBA code is rather lengthy, so it’s not listed here. Here are a few points to keep in mind
when examining the code:

 The CommandButton controls are added to the UserForm via code. The number and
size of the buttons are determined by the ComboBox value.

 The tiles are shuffled by simulating a few thousand random clicks on the buttons.
Another option is to simply assign random numbers, but that could result in some unsolv-
able games.

 The blank space is actually a CommandButton with its Visible property set to False.

 The class module contains one event procedure (MouseUp), which is executed whenever
the user clicks a tile.

 When the user clicks a CommandButton tile, its Caption is swapped with the hidden
button. The code doesn’t actually move any buttons.

This workbook, named sliding tile puzzle.xlsm, is available on the companion
CD-ROM.

Video Poker on a UserForm
And finally, proof that Excel doesn’t have to be boring. Figure 15-31 shows a UserForm set up as a
casino-style video poker game. The game features

 A choice between two games: Joker’s Wild and Jacks Or Better

 A chart that shows your winning (or losing) history

 The ability to change the payoffs

 Help (displayed on a worksheet)

 An emergency button that quickly hides the UserForm

All that’s missing is the casino noise.

This workbook, named video poker.xlsm, is available on the companion CD-ROM.

Chapter 15: Advanced UserForm Techniques 539

Figure 15-31: A feature-packed video poker game.

As you might expect, the code is much too lengthy to list here, but if you examine the workbook,
you’ll find lots of useful UserForm tips — including a class module example.

Part IV: Working with UserForms540

PART V
Advanced Programming
Techniques
CHAPTER 16
Developing Excel Utilities with VBA

CHAPTER 17
Working with Pivot Tables

CHAPTER 18
Working with Charts

CHAPTER 19
Understanding Excel’s Events

CHAPTER 20
Interacting with Other Applications

CHAPTER 21
Creating and Using Add-Ins

543

16
Developing Excel Utilities
with VBA
In This Chapter

● Exploring Excel utilities and utilities in general

● Developing utilities with VBA

● Creating good utilities

● Manipulating text in cells

● Finding additional Excel utilities

About Excel Utilities
A utility, in general, is something that enhances software, adding useful features or making exist-
ing features more accessible. A utility isn’t an end product, such as a quarterly report. Rather, it’s
a tool that helps you produce an end product. An Excel utility is (almost always) an add-in that
enhances Excel with new features or capabilities.

Excel is a great product, but many users soon develop a wish list of features that they’d like to
see added to the software. For example, users who work with dates may want a pop-up calendar
feature to facilitate entering dates into cells. And some users desire an easier way to export a
range of data to a separate file or to save a chart as a graphics file. These are all examples of fea-
tures that aren’t currently available in Excel. You can, however, add these features by creating a
utility.

Utilities don’t need to be complicated. Some of the most useful ones are actually very simple. For
example, have you noticed that Excel 2010 doesn’t have a Ribbon command to toggle the page
break display in a worksheet? If you don’t like to see those dotted lines in your worksheet, it
requires a trip to the Excel Options dialog box to turn them off. Even worse, you can’t add that
command to the Ribbon or Quick Access toolbar.

Part V: Advanced Programming Techniques544

Here’s an extremely simple VBA macro that toggles the page break display:

Sub TogglePageBreaks()
 With ActiveSheet
 .DisplayPageBreaks = Not .DisplayPageBreaks
 End With
End Sub

You can store this macro in your Personal Macro Workbook so that it’s always available. Or you
may prefer to package your favorite utilities in an add-in. For quicker access, you can assign your
utility macros to a shortcut key or a right-click shortcut menu or modify your Quick Access tool-
bar or the Ribbon.

As you’ll see, creating utilities for Excel is an excellent way to make a great product even better.

Using VBA to Develop Utilities
Excel 5, released in 1992, was the first version of Excel to include VBA. When I received the beta
version of Excel 5, I was very impressed by VBA’s potential. VBA was light-years ahead of Excel’s
powerful (but cryptic) XLM macro language, and I decided that I wanted to explore this new lan-
guage and see what it was capable of.

In an effort to learn VBA, I wrote a collection of Excel utilities by using only VBA. I figured that I
would learn the language more quickly if I gave myself a tangible goal. The result was a product
that I call the Power Utility Pak for Excel, which is available to you at a discounted price as a ben-
efit of buying this book. (Use the coupon in the back of the book to order your copy.)

I learned several things from my initial efforts on this project:

 VBA can be difficult to grasp at first, but it becomes much easier with practice.

 Experimentation is the key to mastering VBA. Every project that I undertake usually
involves dozens of small coding experiments that eventually lead to a finished product.

 VBA enables you to extend Excel in a way that is consistent with Excel’s look and feel,
including custom worksheet functions and dialog boxes. And, if you’re willing to step out-
side of VBA, you can write XML code to customize the Ribbon automatically when your
application is opened.

 Excel can do almost anything. When you reach a dead end, chances are that another path
leads to a solution. It helps if you’re creative and know where to look for help.

Few other software packages include such an extensive set of tools that enable the end user to
extend the software.

Chapter 16: Developing Excel Utilities with VBA 545

What Makes a Good Utility?
An Excel utility, of course, should ultimately make your job easier or more efficient. But if you’re
developing utilities for other users, what makes an Excel utility valuable? I’ve put together a list
of elements that are common to good utilities:

 It adds something to Excel. This addition could be a new feature, a way to combine
existing features, or just a way to make an existing feature easier to use.

 It’s general in nature. Ideally, a utility should be useful under a wide variety of conditions.
Of course, writing a general-purpose utility is more difficult than it is to write one that
works in a highly defined environment.

 It’s flexible. The best utilities provide many options to handle various situations.

 It looks, works, and feels like an Excel command. Although adding your own special
touch to utilities is tempting, other users will find them easier to use if they look and act
like familiar Excel commands and dialog boxes.

 It provides help for the user when needed. In other words, the utility requires documen-
tation that’s thorough and accessible.

 It traps errors. An end user should never see a VBA error message. Any error messages
that appear should be ones that you write.

 Users can undo its effects. Users who don’t like the result caused by your utility should
be able to reverse their path.

Text Tools: The Anatomy of a Utility
In this section, I describe an Excel utility that I developed and use very frequently. It’s also part of
my Power Utility Pak add-in. The Text Tools utility enables the user to manipulate text in a
selected range of cells. Specifically, this utility enables the user to do the following:

 Change the case of the text (uppercase, lowercase, proper case, sentence case, or toggle
case).

 Add characters to the text (at the beginning, at the end, or at a specific character
position).

 Remove characters from the text (from the beginning, from the end, or from a specific
position within the string).

 Remove spaces from the text (either all spaces or excess spaces).

 Delete characters from the text (nonprinting characters, alphabetic characters, non-
numeric characters, non-alphabetic characters, or numeric characters).

Part V: Advanced Programming Techniques546

Figure 16-1 shows the Text Tools Utility dialog box.

Figure 16-1: Use the Text Tools utility to change the case of selected text.

The Text Tools utility is available on the CD-ROM that accompanies this book. It’s a
stand-alone version of the tool that’s included with the Power Utility Pak. The file,
named text tools.xlam, is a standard Excel add-in. When installed, it adds a new
command to the Ribbon: Home➜Utilities➜Text Tools. The VBA project isn’t protected
with a password, so you can examine the code to see how it works, or make changes to
better suit your needs.

Background for Text Tools
Excel has many worksheet functions that can manipulate text strings in useful ways. For example,
you can make the text in a cell uppercase (UPPER), add characters to text (CONCATENATE),
remove spaces (TRIM), and so on. But to perform any of these operations, you need to write for-
mulas, copy them, convert the formulas to values, and then paste the values over the original
text. In other words, Excel doesn’t make modifying text particularly easy. Wouldn’t it be nice if
Excel had some text manipulation tools that didn’t require formulas?

By the way, many good utility ideas come from statements that begin, “Wouldn’t it be nice if . . .?”

Chapter 16: Developing Excel Utilities with VBA 547

Project goals for Text Tools
The first step in designing a utility is to envision exactly how you want the utility to work. Here’s
my original plan, stated in the form of a dozen goals:

 Its main features will be those listed at the beginning of this section.

 It will enable the user to specify that the preceding types of changes work with nontext
cells as well as with text cells.

 It will have the same look and feel of other Excel commands. In other words, it will have a
dialog box that looks like Excel’s dialog boxes.

 It will be in the form of an add-in and will also be accessible from the Ribbon.

 It will operate with the current selection of cells (including multiple selections), and it will
enable the user to modify the range selection while the dialog box is displayed.

 It will remember the last operation used and display those settings the next time the dia-
log box is invoked.

 It will have no effect on cells that contain formulas.

 It will be fast and efficient. For example, if the user selects an entire column, the utility
should ignore the empty cells in the column.

 It will use a nonmodal dialog box, so the user can keep the dialog box on-screen and
ready to use.

 It will be compact in size so that it doesn’t hide too much of the worksheet.

 It will enable the user to undo the changes.

 Comprehensive help will be available.

The Text Tools workbook
The Text Tools utility is an XLAM add-in file. During development, I worked with the file as a
macro-enabled XLSM workbook. When I was satisfied that all was working properly, I saved the
workbook as an add-in.

The Text Tools workbook consists of the following components:

 One worksheet: Every workbook (including add-ins) must have at least one worksheet. I
take advantage of this fact and use this worksheet to store information used in the Undo
procedure (see “Implementing Undo,” later in this chapter).

 One VBA module: This module contains public variable and constant declarations, the
code to display the UserForm, and the code to handle the undo procedure.

 One UserForm: This contains the dialog box. The code that does the actual text manipu-
lation work is stored in the code module for the UserForm.

Part V: Advanced Programming Techniques548

The file also contains some manual modifications that I made in order to get the com-
mand to display on the Ribbon. See “Adding the RibbonX code,” later in this chapter.
Unfortunately, you can’t modify Excel’s Ribbon using only VBA.

How the Text Tools utility works
The Text Tools add-in contains some RibbonX code that creates a new item in the Ribbon:
Home➜Utilities➜Text Tools. Selecting this item executes the StartTextTools procedure,
which calls the ShowTextToolsDialog procedure.

To find out why this utility requests both the StartTextTools procedure and the
ShowTextToolsDialog procedure, see “Adding the RibbonX code,” later in this
chapter.

The user can specify various text modifications and click the Apply button to perform them. The
changes are visible in the worksheet, and the dialog box remains displayed. Each operation can
be undone, or the user can perform additional text modifications. Clicking the Help button dis-
plays a Help window, and clicking the Close button dismisses the dialog box. Note that this is a
modeless dialog box. In other words, you can keep working in Excel while the dialog box is dis-
played. In that sense, a modeless dialog box is similar to a toolbar.

The UserForm for the Text Tools utility
When I create a utility, I usually begin by designing the user interface. In this case, it’s the dialog
box that’s displayed to the user. Creating the dialog box forces me to think through the project
one more time.

Installing an add-in
To install an add-in, including the text tools.xlam add-in, follow these steps:

 1. Choose File➜ Options.

 2. In the Excel Options dialog box, click the Add-Ins tab.

 3. In the drop-down list labeled Manage, select Excel Add-Ins and then click Go to display the
Add-Ins dialog box.

 4. If the add-in that you want to install is listed in the Add-Ins Available list, place a check
mark next to the item.

 If the add-in isn’t listed, click Browse to locate the XLAM or XLA add-in file.

 5. Click OK, and the add-in will be installed.

 It will remain installed until you deselect it from the list.

In the preceding instructions, you can skip Steps 1 through 3 and press Alt+TI, which is the pre-
Excel 2007 keyboard sequence to display the Add-Ins dialog box.

Chapter 16: Developing Excel Utilities with VBA 549

Figure 16-2 shows the UserForm for the Text Tools utility.

Figure 16-2: The UserForm for the Text Tools utility.

Notice that the controls on this UserForm are laid out differently from how they actually appear
to the user. That’s because some options use different controls, and the positioning of the con-
trols is handled dynamically in the code. The controls are listed and described next.

 The Operation ComboBox: This always appears on the left, and you use it to select the
operation to be performed.

 Proc1 ComboBox: Most of the text manipulation options use this ComboBox to further
specify the operation.

 Proc2 ComboBox: Two of the text manipulation options use this ComboBox to specify
the operation even further. Specifically, this additional ComboBox is used by Add Text
and Remove by Position.

 Check box: The Skip Non-Text Cells check box is an option relevant to some of the
operations.

 Help button: Clicking this CommandButton displays help.

 Close button: Clicking this CommandButton unloads the UserForm.

 Apply button: Clicking this CommandButton applies the selected text manipulation
option.

 Progress bar: This consists of a Label control inside a Frame control.

 Text box: This text box is used for the Add Text option.

Part V: Advanced Programming Techniques550

Figure 16-3 shows how the UserForm looks for each of the five operations. Notice that the con-
figuration of the controls varies, depending on which option is selected.

Figure 16-3: The UserForm layout changes for each operation.

The Module1 VBA module
The Module1 VBA module contains the declarations, a simple procedure that starts the utility,
and a procedure that handles the undo operation.

Declarations in the Module1 VBA module
Following are the declarations at the top of the Module1 module:

Public Const APPNAME As String = “Text Tools Utility”
Public Const PROGRESSTHRESHOLD = 2000
Public UserChoices(1 To 8) As Variant ‘stores user’s last choices
Public UndoRange As Range ‘ For undoing
Public UserSelection As Range ‘For undoing

I declare a Public constant containing a string that stores the name of the application. This
string is used in the UserForm caption and in various message boxes.

Chapter 16: Developing Excel Utilities with VBA 551

The PROGRESSTHRESHOLD constant specifies the number of cells that will display the progress
indicator. When this constant is 2,000, the progress indicator will be shown only if the utility is
working on 2,000 or more cells.

The UserChoices array holds the value of each control. This information is stored in the
Windows Registry when the user closes the dialog box and is retrieved when the utility is exe-
cuted again. I added this convenience feature because I found that many users tend to perform
the same operation every time they use the utility.

Two other Range object variables are used to store information used for undoing.

The ShowTextToolsDialog procedure in the Module1 VBA module
The ShowTextToolsDialog procedure follows:

Sub ShowTextToolsDialog()

 Dim InvalidContext As Boolean

 If Val(Application.Version) < 12 Then

 MsgBox “This utility requires Excel 2007 or later.”, vbCritical

 Exit Sub

 End If

 If ActiveSheet Is Nothing Then InvalidContext = True

 If TypeName(ActiveSheet) <> “Worksheet” Then InvalidContext = True

 If InvalidContext Then

 MsgBox “Select some cells in a range.”, vbCritical, APPNAME

 Else

 UserForm1.Show vbModeless

 End If

End Sub

The procedure starts by checking the version of Excel. If the version is prior to Excel 2007, the
user is informed that the utility requires Excel 2007 or later.

You can certainly design this utility so that it also works with previous versions. For
simplicity, I made this utility an application for Excel 2007 or later.

If the user is running the appropriate version, the ShowTextToolsDialog procedure checks to
make sure that a sheet is active, and then it makes sure that the sheet is a worksheet. If either
one isn’t true, the InvalidContext variable is set to True. The If-Then-Else construct
checks this variable and displays either a message (see Figure 16-4) or the UserForm. Notice that
the Show method uses the vbModeless argument, which makes it a modeless UserForm (that
is, the user can keep working in Excel while it’s displayed).

Notice that the code doesn’t ensure that a range is selected. This additional error handling is
included in the code that’s executed when the Apply button is clicked.

Part V: Advanced Programming Techniques552

Figure 16-4: This message is displayed if no workbook is active or if the active sheet isn’t a worksheet.

While I was developing this utility, I assigned a keyboard shortcut (Ctrl+Shift+T) to the
ShowTextToolsDialog procedure for testing purposes. That’s because I saved the
Ribbon modification task for last, and I needed a way to test the utility. After I added
the Ribbon button, I removed the keyboard shortcut.

To assign a keyboard shortcut to a macro, press Alt+F8 to display the Macro dialog
box. Type ShowTextToolsDialog in the Macro Name box and then click Options. Use the
Macro Options dialog box to assign (or unassign) the shortcut key combination.

The UndoTextTools procedure in the Module1 VBA module
The UndoTextTools procedure is executed when the user clicks the Undo button (or presses
Ctrl+Z). This technique is explained later in this chapter (see “Implementing Undo”).

The UserForm1 code module
All the real work is done by VBA code contained in the code module for UserForm1. Here, I
briefly describe each of the procedures in this module. The code is too lengthy to list here, but
you can view it by opening the text tools.xlam file on the companion CD-ROM.

The UserForm_Initialize procedure in the UserForm1 code module
This procedure is executed before the UserForm is displayed. It sizes the UserForm and retrieves
(from the Windows Registry) the previously selected values for the controls. It also adds the list
items to the ComboBox (named ComboBoxOperation) that determines which operation will be
performed. These items are

 Change case

 Add text

 Remove by position

 Remove spaces

 Delete characters

Chapter 16: Developing Excel Utilities with VBA 553

The ComboBoxOperation_Change procedure in the UserForm1 code module
This procedure is executed whenever the user selects an item in the ComboBoxOperation. It
does the work of displaying or hiding the other controls. For example, if the user selects the
Change Case option, the code unhides the second ComboBox control (named ComboProc1) and
fills it with the following choices:

 UPPER CASE

 lower case

 Proper Case

 Sentence case

 tOGGLE cASE

The ApplyButton_Click procedure in the UserForm1 code module
This procedure is executed when the Apply button is clicked. It does some error checking to
ensure that a range is selected and then calls the CreateWorkRange function to make sure that
empty cells aren’t included in the cells to be processed. See the upcoming section, “Making the
Text Tools utility efficient.”

The ApplyButton_Click procedure also calls the SaveForUndo procedure, which saves the
current data in case the user needs to undo the operation. See “Implementing Undo,” later in this
chapter.

The procedure then uses a Select Case construct to call the appropriate procedure to per-
form the operation. It calls one of the following Sub procedures:

 ChangeCase

 AddText

 RemoveText

 RemoveSpaces

 RemoveCharacters

Some of these procedures make calls to function procedures. For example, the ChangeCase
procedure might call the ToggleCase or SentenceCase procedure.

The CloseButton_Click procedure in the UserForm1 code module
This procedure is executed when the Close button is clicked. It saves the current control settings
to the Windows Registry and then unloads the UserForm.

Part V: Advanced Programming Techniques554

The HelpButton_Click procedure in the UserForm1 code module
This procedure is executed when the Help button is clicked. It simply displays the Help file (which
is a standard compiled HTML help file).

Making the Text Tools utility efficient
The procedures in the Text Tools utility work by looping through a range of cells. It makes no
sense to loop through cells that will not be changed — for example, empty cells and cells that
contain a formula. Therefore, I added code to improve the efficiency of the cell processing.

The ApplyButton_Click procedure calls a Function procedure named CreateWorkRange.
This function creates and returns a Range object that consists of all non-empty and nonformula
cells in the user’s selected range. For example, assume that column A contains text in the range
A1:A12. If the user selects the entire column, the CreateWorkRange function would convert that
complete column range into a subset that consists of only the non-empty cells (that is, the range
A:A would be converted to A1:A12). This conversion makes the code much more efficient because
empty cells and formulas need not be included in the loop.

The CreateWorkRange function accepts two arguments:

 Rng: A Range object that represents the range selected by the user.

 TextOnly: A Boolean value. If True, the function returns only text cells. Otherwise, it
returns all non-empty cells.

Private Function CreateWorkRange(Rng, TextOnly)

‘ Creates and returns a Range object

 Set CreateWorkRange = Nothing

‘ Single cell, has a formula

 If Rng.Count = 1 And Rng.HasFormula Then

 Set CreateWorkRange = Nothing

 Exit Function

 End If

‘ Single cell, or single merged cell

 If Rng.Count = 1 Or Rng.MergeCells = True Then

 If TextOnly Then

 If Not IsNumeric(Rng(1).Value) Then

 Set CreateWorkRange = Rng

 Exit Function

 Else

 Set CreateWorkRange = Nothing

 Exit Function

 End If

 Else

 If Not IsEmpty(Rng(1)) Then

 Set CreateWorkRange = Rng

 Exit Function

Chapter 16: Developing Excel Utilities with VBA 555

 End If

 End If

 End If

 On Error Resume Next

 Set Rng = Intersect(Rng, Rng.Parent.UsedRange)

 If TextOnly = True Then

 Set CreateWorkRange = Rng.SpecialCells(xlConstants, xlTextValues)

 If Err <> 0 Then

 Set CreateWorkRange = Nothing

 On Error GoTo 0

 Exit Function

 End If

 Else

 Set CreateWorkRange = Rng.SpecialCells _

 (xlConstants, xlTextValues + xlNumbers)

 If Err <> 0 Then

 Set CreateWorkRange = Nothing

 On Error GoTo 0

 Exit Function

 End If

 End If

End Function

The CreateWorkRange function makes heavy use of the SpecialCells property. To
learn more about the SpecialCells property, try recording a macro while making
various selections in Excel’s Go To Special dialog box. You can display this dialog box
by pressing F5 and then clicking the Special button in the Go To dialog box.

It’s important to understand how the Go To Special dialog box works. Normally, it operates on
the current range selection. For example, if an entire column is selected, the result is a subset of
that column. But if a single cell is selected, it operates on the entire worksheet. Because of this,
the CreateWorkRange function checks the number of cells in the range passed to it.

Saving the Text Tools utility settings
The Text Tools utility has a very useful feature: It remembers the last settings that you used. This
feature is handy because many people tend to use the same option each time they invoke it.

The most recently used settings are stored in the Windows Registry. When the user clicks the
Close button, the code uses VBA’s SaveSetting function to save the value of each control.
When the Text Tools utility is started, it uses the GetSetting function to retrieve those values
and set the controls accordingly.

In the Windows Registry, the settings are stored at the following location:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\
Text Tools Utility\Settings

Part V: Advanced Programming Techniques556

Figure 16-5 shows these settings in the Windows Registry Editor program (regedit.exe).

Figure 16-5: Use the Windows Registry Editor program to view the settings stored in the Registry.

If you examine the code for the Text Tools utility, you’ll find that I used an eight-element array
(named UserChoices) to store the settings. I could have used separate variables for each set-
ting, but using an array made the coding a bit easier.

The following VBA code reads the settings from the Registry and stores them in the
UserChoices array:

‘ Get previous settings

 UserChoices(1) = GetSetting(APPNAME, “Settings”, “OperationIndex”, 0)

 UserChoices(2) = GetSetting(APPNAME, “Settings”, “ChangeCaseIndex”, 0)

 UserChoices(3) = GetSetting(APPNAME, “Settings”, “TextToAdd”, “”)

 UserChoices(4) = GetSetting(APPNAME, “Settings”, “AddTextIndex”, 0)

 UserChoices(5) = GetSetting(APPNAME, “Settings”, “CharsToRemoveIndex”, 0)

 UserChoices(6) = GetSetting(APPNAME, “Settings”, “RemovePositionIndex”, 0)

 UserChoices(7) = GetSetting(APPNAME, “Settings”, “RemoveSpacesIndex”, 0)

 UserChoices(8) = GetSetting(APPNAME, “Settings”, “RemoveCharactersIndex”, 0)

 cbSkipNonText.Value = GetSetting(APPNAME, “cbSkipNonText”, 0)

The code that follows is executed when the dialog box is closed. These statements retrieve the
values from the UserChoices array and write them to the Registry.

‘ Store settings

 SaveSetting APPNAME, “Settings”, “OperationIndex”, UserChoices(1)

 SaveSetting APPNAME, “Settings”, “ChangeCaseIndex”, UserChoices(2)

 SaveSetting APPNAME, “Settings”, “TextToAdd”, UserChoices(3)

 SaveSetting APPNAME, “Settings”, “AddTextIndex”, UserChoices(4)

 SaveSetting APPNAME, “Settings”, “CharsToRemoveIndex”, UserChoices(5)

 SaveSetting APPNAME, “Settings”, “RemovePositionIndex”, UserChoices(6)

Chapter 16: Developing Excel Utilities with VBA 557

 SaveSetting APPNAME, “Settings”, “RemoveSpacesIndex”, UserChoices(7)

 SaveSetting APPNAME, “Settings”, “RemoveCharactersIndex”, UserChoices(8)

 SaveSetting APPNAME, “Settings”, “cbSkipNonText”, cbSkipNonText.Value * -1

Implementing Undo
Unfortunately, Excel doesn’t provide a direct way to undo an operation performed using VBA.
Undoing a VBA macro is possible, but it takes quite a bit of work. And, unlike Excel’s Undo fea-
ture, the undo technique used in the Text Tools utility is a single level. In other words, the user
can undo only the most recent operation. Refer to the sidebar, “Undoing a VBA procedure,” for
additional information about using Undo with your applications.

The Text Tools utility implements Undo by saving the original data in a worksheet. If the user
undoes the operation, that data is then copied back to the user’s workbook.

In the Text Tools utility, recall that the Module1 VBA module declared two public variables for
handling undo:

Public UndoRange As Range
Public UserSelection As Range

Before modifying any data, the ApplyButton_Click procedure calls the SaveForUndo pro-
cedure. The procedure starts with three statements:

Set UserSelection = Selection
Set UndoRange = WorkRange
ThisWorkbook.Sheets(1).UsedRange.Clear

The UserSelection object variable saves the user’s current selection so that you can reselect
it after the undo operation. WorkRange is a Range object that’s returned by the CreateWork
Range function. The range consists of the non-empty and nonformula cells in the user’s selec-
tion. The preceding third statement erases any existing saved data from the worksheet.

Next, the following loop is executed:

 For Each RngArea In WorkRange.Areas
 ThisWorkbook.Sheets(1).Range _
 (RngArea.Address).Formula = RngArea.Formula
 Next RngArea

This code loops through each area of the WorkRange and stores the data in the worksheet. (If
the WorkRange consists of a contiguous range of cells, it will contain only one area.)

Part V: Advanced Programming Techniques558

After the specified operation is performed, the code then uses the OnUndo method to specify the
procedure to execute if the user chooses Undo. For example, after performing a case change
operation, this statement is executed:

Application.OnUndo “Undo Change Case”, “UndoTextTools”

Excel’s Undo drop-down list will then contain a menu item: Undo Change Case (see Figure 16-6).
If the user selects the command, the UndoTextTools procedure, shown next, will be executed.

Figure 16-6: The Text Tools utility includes a single level of undo.

Private Sub UndoTextTools()
‘ Undoes the last operation
 Dim a As Range
 On Error GoTo ErrHandler
 Application.ScreenUpdating = False
 With UserSelection
 .Parent.Parent.Activate
 .Parent.Activate
 .Select
 End With
 For Each a In UndoRange.Areas
 a.Formula = ThisWorkbook.Sheets(1).Range(a.Address).Formula
 Next a
 Application.ScreenUpdating = True
 On Error GoTo 0
 Exit Sub
ErrHandler:
 Application.ScreenUpdating = True
 MsgBox “Can’t undo”, vbInformation, APPNAME
 On Error GoTo 0
End Sub

The UndoTextTools procedure first ensures that the correct workbook and worksheet are acti-
vated and then selects the original range selected by the user. Then it loops through each area of
the stored data (which is available because of the UndoRange public variable) and puts the data
back to its original location (overwriting the changes, of course).

Chapter 16: Developing Excel Utilities with VBA 559

The companion CD-ROM contains a simpler example that demonstrates how to enable
the Undo command after a VBA procedure is executed. This example, named simple
undo demo.xlsm, stores the data in an array rather than a worksheet. The array is
made up of a custom data type that includes the value and address of each cell.

Displaying the Help file
I created a simple compiled HTML Help file named texttools.chm for this utility. Clicking the
HelpButton on the UserForm executes this procedure:

Private Sub HelpButton_Click()
 Application.Help (ThisWorkbook.Path & “\” & “texttools.chm”, 0)
End Sub

Figure 16-7 shows one of the Help screens.

Undoing a VBA procedure
Computer users have become accustomed to being able to undo an operation. You can undo
almost every operation that you perform in Excel. Even better, beginning with Excel 2007,
Microsoft increased the number of undo levels from 16 to 100.

If you program in VBA, you may have wondered whether you can undo the effects of a proce-
dure. Although the answer is yes, the qualified answer is it’s not always easy.

Making the effects of your VBA procedures undoable isn’t automatic. Your procedure needs to
store the previous state so that it can be restored if the user chooses the Undo command (which
is located in the Quick Access toolbar). How you store the previous state can vary depending on
what the procedure does. You can save the old information in a worksheet or in an array. In
extreme cases, you may need to save an entire worksheet. If your procedure modifies a range,
for example, you need to save only the contents of that range.

Also, keep in mind that executing a VBA Sub procedure wipes out Excel’s undo stack. In other
words, after you run a macro, it’s impossible to undo any previous operations.

The Application object contains an OnUndo method, which lets the programmer specify text
to appear on the Undo drop-down list and a procedure to execute if the user chooses the Undo
command. For example, the following statement causes the Undo drop-down list to display
Undo my cool macro. If the user chooses Undo➜Undo My Cool Macro, the UndoMyMacro
procedure is executed:

Application.OnUndo “Undo my cool macro”, “UndoMyMacro”

Part V: Advanced Programming Techniques560

Figure 16-7: A Help screen for the Text Tools utility.

The companion CD-ROM includes all of the source files that were used to create the
Help file. These files are in a directory named \helpsource. If you’re not familiar with
HTML Help files, refer to Chapter 24 for additional information.

Adding the RibbonX code
The final task in creating this utility is to provide a way to execute it. Before Excel 2007, inserting
a new menu command or toolbar button was relatively easy. But, with the new Ribbon user inter-
face, this once-simple job is significantly more challenging.

I used the Custom UI Editor for Microsoft Office to add the RibbonX code that generates a new
Ribbon group and command. The Custom UI Editor isn’t included with Microsoft Office, but you
can locate and download the program on the Internet.

Chapter 22 contains additional information about working with the Ribbon and the
Custom UI Editor.

Figure 16-8 shows a portion of the Ribbon with a new group (called Utilities) added to the end of
the Home tab. This group contains a single control that, when clicked, executes this procedure:

Sub StartTextTools(control As IRibbonControl)
 Call ShowTextToolsDialog
End Sub

Chapter 16: Developing Excel Utilities with VBA 561

Figure 16-8: The Ribbon contains a new group in the Home tab.

Figure 16-9 shows the RibbonX code in the Custom UI Editor.

Figure 16-9: Using the Custom UI Editor to provide a way to execute the utility from the Ribbon.

When a workbook has a customized Ribbon, the Ribbon customizations appear only
when that workbook is active. But, fortunately, there is an exception to this rule. When
the Ribbon customization is contained in an XLAM add-in file (as in this example), the
Ribbon modifications appear as long as the add-in file is opened, regardless of which
workbook is active.

Part V: Advanced Programming Techniques562

Post-mortem of the project
The previous sections describe each component of the Text Tools utility. At this point, it’s useful
to revisit the original project goals to see whether they were met. The original goals, along with
my comments, are as follows:

 Its main features will be those listed at the beginning of this section. Accomplished.

 It will enable the user to request the preceding types of changes on nontext cells as
well as text cells. Accomplished.

 It will have the same look and feel of other Excel commands. In other words, it will have
a dialog box that looks like Excel’s dialog boxes. The Text Tools utility deviates from
Excel’s normal look and feel by using an Apply button rather than an OK button. And,
unlike most of Excel’s dialog boxes, Text Tools uses a modeless, stay-on-top dialog box.
In light of the enhanced usability, I think these deviations are quite reasonable.

 It will be in the form of an add-in and will be accessible from the Ribbon. Accomplished.

 It will operate with the current selection of cells (including multiple selections), and it
will enable the user to modify the range selection while the dialog box is displayed.
Accomplished. And because the dialog box need not be dismissed, it didn’t require the
use of a RefEdit control.

 It will remember the last operation used and display those settings the next time the
dialog box is invoked. Accomplished (thanks to the Windows Registry).

 It will have no effect on cells that contain formulas. Accomplished.

 It will be fast and efficient. For example, if the user selects an entire range, the utility
should ignore empty cells. Accomplished.

 It will use a nonmodal dialog box so that the user can keep the dialog box on-screen
and ready to use. Accomplished.

 It will be compact in size so that it doesn’t hide too much of the worksheet.
Accomplished.

 It will enable the user to undo the changes. Accomplished.

 Comprehensive help will be available. Accomplished.

Understand the Text Tools utility
If you don’t fully understand how this utility works, I urge you to load the add-in and use the
Debugger to step through the code. Try it out with different types of selections, including an
entire worksheet. You’ll see that regardless of the size of the original selection, only the appropri-
ate cells are processed, and empty cells are completely ignored. If a worksheet has only one cell
with text in it, the utility operates just as quickly whether you select that cell or the entire
worksheet.

Chapter 16: Developing Excel Utilities with VBA 563

If you convert the add-in to a standard workbook, you’ll be able to see how the original data is
stored in the worksheet for undo. To convert the add-in to a workbook, double-click the
ThisWorkbook code module in the Properties window. Press F4 to display the Properties box
and then change the IsAddin property to False.

More about Excel Utilities
If you are interested in creating Excel utilities, I urge you to download a trial copy of Power Utility
Pak. This product includes about 60 useful utilities (plus many custom worksheet functions). If
you find it helpful, you can use the coupon in the back of this book to order a copy at a dis-
counted price. The complete VBA source code also is available for a small fee.

In addition to the Power Utility Pak, many other utilities are available, and you can download
most of them from the Internet.

Part V: Advanced Programming Techniques564

565

17
Working with Pivot Tables
In This Chapter

● Creating pivot tables with VBA

● Looking at examples of VBA procedures that create pivot tables

● Using VBA to create a worksheet table from a summary table

An Introductory Pivot Table Example
Excel’s pivot table feature is, arguably, its most innovative and powerful feature. Pivot tables first
appeared in Excel 5, and the feature has been improved in every subsequent version. This chap-
ter is not an introduction to pivot tables. I assume that you’re familiar with this feature and its
terminology and that you know how to create and modify pivot tables manually.

As you probably know, creating a pivot table from a database or list enables you to summarize
data in ways that otherwise would not be possible — and it’s amazingly fast and requires no for-
mulas. You also can write VBA code to generate and modify pivot tables.

This section gets the ball rolling with a simple example of using VBA to create a pivot table.

Figure 17-1 shows a very simple worksheet range. It contains four fields: SalesRep, Region, Month,
and Sales. Each record describes the sales for a particular sales representative in a particular
month.

This workbook, named simple pivot table.xlsm, is available on the companion
CD-ROM.

Part V: Advanced Programming Techniques566

Figure 17-1: This table is a good candidate for a pivot table.

Creating a pivot table
Figure 17-2 shows a pivot table created from the data, along with the PivotTable Field List task
bar. This pivot table summarizes the sales performance by sales representative and month. This
pivot table is set up with the following fields:

Figure 17-2: A pivot table created from the data in Figure 17-1.

 Region: A report filter field in the pivot table.

 SalesRep: A row field in the pivot table.

Chapter 17: Working with Pivot Tables 567

 Month: A column field in the pivot table.

 Sales: A values field in the pivot table that uses the Sum function.

I turned on the macro recorder before I created this pivot table and specified a new worksheet
for the pivot table location. The code that was generated follows:

Sub RecordedMacro()
 Range(“A1”).Select
 Sheets.Add
 ActiveWorkbook.PivotCaches.Create _
 (SourceType:=xlDatabase, _
 SourceData:=”Sheet1!R1C1:R13C4”, _
 Version:=xlPivotTableVersion14).CreatePivotTable _
 TableDestination:=”Sheet2!R3C1”, _
 TableName:=”PivotTable1”, _
 DefaultVersion:=xlPivotTableVersion14)
 Sheets(“Sheet2”).Select
 Cells(3, 1).Select
 With ActiveSheet.PivotTables(“PivotTable1”) _
 .PivotFields(“SalesRep”)
 .Orientation = xlRowField
 .Position = 1
 End With
 With ActiveSheet.PivotTables(“PivotTable1”) _
 .PivotFields(“Month”)
 .Orientation = xlColumnField
 .Position = 1
 End With
 ActiveSheet.PivotTables(“PivotTable1”) _
 .AddDataField ActiveSheet.PivotTables(“PivotTable1”) _
 .PivotFields(“Sales”), “Sum of Sales”, xlSum
 With ActiveSheet.PivotTables(“PivotTable1”). _
 PivotFields(“Region”)
 .Orientation = xlPageField
 .Position = 1
 End With
End Sub

If you execute this macro, it will almost certainly produce an error. Examine the code, and you’ll
see that the macro recorder hard-coded the worksheet name (Sheet2) for the pivot table. If
that sheet already exists (or if the new sheet that’s added has a different name), the macro ends
with an error. It also hard-coded the pivot table name. The name won’t be PivotTable1 if the
workbook has other pivot tables.

But even though the recorded macro doesn’t work, it’s not completely useless. The code pro-
vides lots of insight for writing code to generate pivot tables.

Part V: Advanced Programming Techniques568

Examining the recorded code for the pivot table
VBA code that works with pivot tables can be confusing. to make any sense of the recorded macro,
you need to know about a few relevant objects, all of which are explained in the Help system.

 PivotCaches: A collection of PivotCache objects in a Workbook object (the data
used by a pivot table is stored in a pivot cache).

 PivotTables: A collection of PivotTable objects in a Worksheet object.

 PivotFields: A collection of fields in a PivotTable object.

 PivotItems: A collection of individual data items within a field category.

 CreatePivotTable: A method that creates a pivot table by using the data in a pivot
cache.

Cleaning up the recorded pivot table code
As with most recorded macros, the preceding example isn’t as efficient as it could be. And, as I
noted, it’s very likely to generate an error. You can simplify the code to make it more understandable

Data appropriate for a pivot table
A pivot table requires that your data is in the form of a rectangular database. You can store the
database in either a worksheet range (which can be a table or just a normal range) or an exter-
nal database file. Although Excel can generate a pivot table from any database, not all databases
benefit.

Generally speaking, fields in a database table consist of two types:

● Data: Contains a value or data to be summarized. For the bank account example, the
Amount field is a data field.

● Category: Describes the data. For the bank account data, the Date, AcctType, OpenedBy,
Branch, and Customer fields are category fields because they describe the data in the
Amount field.

A database table that’s appropriate for a pivot table is said to be normalized. In other words,
each record (or row) contains information that describes the data.

A single database table can have any number of data fields and category fields. When you cre-
ate a pivot table, you usually want to summarize one or more of the data fields. Conversely, the
values in the category fields appear in the pivot table as rows, columns, or filters.

If you’re not clear on the concept, the companion CD-ROM contains a workbook named nor-
malized data.xlsx. This workbook contains an example of a range of data before and after
being normalized so it’s suitable for a pivot table.

Chapter 17: Working with Pivot Tables 569

and also to prevent the error. The hand-crafted code that follows generates the same pivot table as
the procedure previously listed:

Sub CreatePivotTable()
 Dim PTCache As PivotCache
 Dim PT As PivotTable

‘ Create the cache
 Set PTCache = ActiveWorkbook.PivotCaches.Create(_
 SourceType:=xlDatabase, _
 SourceData:=Range(“A1”).CurrentRegion)

‘ Add a new sheet for the pivot table
 Worksheets.Add

‘ Create the pivot table
 Set PT = ActiveSheet.PivotTables.Add(_
 PivotCache:=PTCache, _
 TableDestination:=Range(“A3”))

‘ Specify the fields
 With PT
 .PivotFields(“Region”).Orientation = xlPageField
 .PivotFields(“Month”).Orientation = xlColumnField
 .PivotFields(“SalesRep”).Orientation = xlRowField
 .PivotFields(“Sales”).Orientation = xlDataField
 ‘no field captions
 .DisplayFieldCaptions = False
 End With
End Sub

The CreatePivotTable procedure is simplified (and might be easier to understand) because it
declares two object variables: PTCache and PT. A new PivotCache object is created by using
the Create method. A worksheet is added, and it becomes the active sheet (the destination for
the pivot table). Then a new PivotTable object is created by using the Add method of the
PivotTables collection. The last section of the code adds the four fields to the pivot table and
specifies their location within it by assigning a value to the Orientation property.

The original macro hard-coded both the data range used to create the PivotCache object
(‘Sheet1!R1C1:R13C4’) and the pivot table location (Sheet2). In the CreatePivotTable
procedure, the pivot table is based on the current region surrounding cell A1. This ensures that
the macro will continue to work properly if more data is added.

Adding the worksheet before the pivot table is created eliminates the need to hard-code the
sheet reference. Yet another difference is that the hand-written macro doesn’t specify a pivot
table name. Because the PT object variable is created, your code doesn’t ever have to refer to
the pivot table by name.

Part V: Advanced Programming Techniques570

Pivot table compatibility
If you plan to share a workbook that contains a pivot table with users of previous versions of
Excel, you need to pay careful attention to compatibility. If you look at the recorded macro in
the “Creating a pivot table” section, you see the following statement:

DefaultVersion:=xlPivotTableVersion14

If your workbook is in compatibility mode, the recorded statement is:

DefaultVersion:=xlPivotTableVersion10

You’ll also find that the recorded code is completely different because Microsoft has made sig-
nificant changes in pivot tables beginning with Excel 2007.

Assume that you create a pivot table in Excel 2010 and give the workbook to a coworker who
has Excel 2003. The coworker will see the pivot table, but it will not be refreshable. In other
words, it’s just a dead table of numbers.

To create a backward compatible pivot table in Excel 2010, you must save your file in XLS for-
mat and then re-open it. After doing so, pivot tables that you create will work with versions prior
to Excel 2007. But, of course, you won’t be able to take advantage of all the new pivot table fea-
tures introduced in Excel 2007 and Excel 2010.

Fortunately, Excel’s Compatibility Checker will alert you regarding this type of compatibility
issue (see the accompanying figure). However, it won’t check your pivot table–related macros
for compatibility.

The macros in this chapter do not generate backward compatible pivot tables.

Chapter 17: Working with Pivot Tables 571

The code also could be more general through the use of indices rather than literal
strings for the PivotFields collections. This way, if the user changes the column
headings, the code will still work. For example, more general code would use
PivotFields(1) rather than PivotFields(‘Region’).

As always, the best way to master this topic is to record your actions within a macro to find out
its relevant objects, methods, and properties. Then study the Help topics to understand how
everything fits together. In almost every case, you’ll need to modify the recorded macros. Or,
after you understand how to work with pivot tables, you can write code from scratch and avoid
the macro recorder.

Creating a More Complex Pivot Table
In this section, I present VBA code to create a relatively complex pivot table.

Figure 17-3 shows part of a large worksheet table. This table has 15,840 rows and consists of hier-
archical budget data for a corporation. The corporation has five divisions, and each division con-
tains 11 departments. Each department has four budget categories, and each budget category
contains several budget items. Budgeted and actual amounts are included for each of the 12
months. The goal is to summarize this information with a pivot table.

Figure 17-3: The data in this workbook will be summarized in a pivot table.

Part V: Advanced Programming Techniques572

This workbook is available on the companion CD-ROM. The file is named budget
pivot table.xlsm.

Figure 17-4 shows a pivot table created from the data. Notice that the pivot table contains a cal-
culated field named Variance. This field is the difference between the Budget amount and the
Actual amount.

Figure 17-4: A pivot table created from the budget data.

Chapter 17: Working with Pivot Tables 573

Another option is to insert a new column in the table and create a formula to calculate
the difference between the budget and actual amounts. If the data is from an external
source (rather than in a worksheet), that option may not be possible.

The code that created the pivot table
Here’s the VBA code that created the pivot table:

Sub CreatePivotTable()
 Dim PTcache As PivotCache
 Dim PT As PivotTable

 Application.ScreenUpdating = False
‘ Delete PivotSheet if it exists
 On Error Resume Next
 Application.DisplayAlerts = False
 Sheets(“PivotSheet”).Delete
 On Error GoTo 0

‘ Create a Pivot Cache
 Set PTcache = ActiveWorkbook.PivotCaches.Create(_
 SourceType:=xlDatabase, _
 SourceData:=Range(“A1”).CurrentRegion.Address)
‘ Add new worksheet
 Worksheets.Add
 ActiveSheet.Name = “PivotSheet”
 ActiveWindow.DisplayGridlines = False
‘ Create the Pivot Table from the Cache
 Set PT = ActiveSheet.PivotTables.Add(_
 PivotCache:=PTcache, _
 TableDestination:=Range(“A1”), _
 TableName:=”BudgetPivot”)

 With PT
‘ Add fields
 .PivotFields(“Category”).Orientation = xlPageField
 .PivotFields(“Division”).Orientation = xlPageField
 .PivotFields(“Department”).Orientation = xlRowField
 .PivotFields(“Month”).Orientation = xlColumnField
 .PivotFields(“Budget”).Orientation = xlDataField
 .PivotFields(“Actual”).Orientation = xlDataField
 .DataPivotField.Orientation = xlRowField

‘ Add a calculated field to compute variance
 .CalculatedFields.Add “Variance”, “=Budget-Actual”
 .PivotFields(“Variance”).Orientation = xlDataField

‘ Specify a number format

Part V: Advanced Programming Techniques574

 .DataBodyRange.NumberFormat = “0,000”

‘ Apply a style
 .TableStyle2 = “PivotStyleMedium2”

‘ Hide Field Headers
 .DisplayFieldCaptions = False

‘ Change the captions
 .PivotFields(“Sum of Budget”).Caption = “ Budget”
 .PivotFields(“Sum of Actual”).Caption = “ Actual”
 .PivotFields(“Sum of Variance”).Caption = “ Variance”
 End With
End Sub

How the more complex pivot table works
The CreatePivotTable procedure starts by deleting the PivotSheet worksheet if it already
exists. It then creates a PivotCache object, inserts a new worksheet named PivotSheet, and
creates the pivot table from the PivotCache. The code then adds the following fields to the
pivot table:

 Category: A report filter (page) field

 Division: A report filter (page) field

 Department: A row field

 Month: A column field

 Budget: A data field

 Actual: A data field

Notice that the Orientation property of the DataPivotField is set to xlRowField in the
following statement:

.DataPivotField.Orientation = xlRowField

This statement determines the overall orientation of the pivot table, and it represents the Sum
Value field in the Pivot Table Field list (see Figure 17-5). Try moving that field to the Column
Labels section to see how it affects the pivot table layout.

Next, the procedure uses the Add method of the CalculatedFields collection to create the
calculated field Variance, which subtracts the Actual amount from the Budget amount.
This calculated field is assigned as a data field.

Chapter 17: Working with Pivot Tables 575

To add a calculated field to a pivot table manually, use the PivotTable➜Options ➜
Calculations➜Fields, Items, & Sets ➜Calculated Field command, which displays the
Insert Calculated Field dialog box.

Finally, the code makes a few cosmetic adjustments:

 Applies a number format to the DataBodyRange (which represents the entire pivot
table data).

 Applies a style.

 Hides the captions (equivalent to the PivotTable Tools➜Options➜Show ➜Field Headers
control).

Figure 17-5: The Pivot Table Field List.

 Changes the captions displayed in the pivot table. For example, Sum of Budget is
replaced by Budget. Note that the string Budget is preceded by a space. Excel doesn’t
allow you to change a caption that corresponds to a field name, so adding a space gets
around this restriction.

While creating this procedure, I used the macro recorder extensively to learn about the
various properties. That, combined with the information in the Help system (and a fair
amount of trial and error), provided all the information I needed.

Part V: Advanced Programming Techniques576

Creating Multiple Pivot Tables
The final example creates a series of pivot tables that summarize data collected in a customer
survey. That data is stored in a worksheet database (see Figure 17-6) and consists of 150 rows.
Each row contains the respondent’s sex plus a numerical rating using a 1–5 scale for each of the
14 survey items.

This workbook, named survey data pivot tables.xlsm, is available on the com-
panion CD-ROM.

Figure 17-6: Creating a series of pivot tables will summarize this survey data.

Figure 17-7 shows a few of the 28 pivot tables produced by the macro. Each survey item is sum-
marized in two pivot tables (one showing percentages, and one showing the actual frequencies).

The VBA code that created the pivot tables follows:

Sub MakePivotTables()
‘ This procedure creates 28 pivot tables
 Dim PTCache As PivotCache
 Dim PT As PivotTable
 Dim SummarySheet As Worksheet
 Dim ItemName As String

Chapter 17: Working with Pivot Tables 577

 Dim Row As Long, Col As Long, i As Long

 Application.ScreenUpdating = False

‘ Delete Summary sheet if it exists
 On Error Resume Next
 Application.DisplayAlerts = False
 Sheets(“Summary”).Delete
 On Error GoTo 0

‘ Add Summary sheet
 Set SummarySheet = Worksheets.Add
 ActiveSheet.Name = “Summary”

‘ Create Pivot Cache
 Set PTCache = ActiveWorkbook.PivotCaches.Create(_
 SourceType:=xlDatabase, _
 SourceData:=Sheets(“SurveyData”).Range(“A1”). _

Figure 17-7: Six of the 28 pivot tables created by a VBA procedure.

Part V: Advanced Programming Techniques578

 CurrentRegion)

 Row = 1
 For i = 1 To 14
 For Col = 1 To 6 Step 5 ‘2 columns
 ItemName = Sheets(“SurveyData”).Cells(1, i + 2)
 With Cells(Row, Col)
 .Value = ItemName
 .Font.Size = 16
 End With
‘ Create pivot table
 Set PT = ActiveSheet.PivotTables.Add(_
 PivotCache:=PTCache, _
 TableDestination:=SummarySheet.Cells(Row + 1, Col))

‘ Add the fields
 If Col = 1 Then ‘Frequency tables
 With PT.PivotFields(ItemName)
 .Orientation = xlDataField
 .Name = “Frequency”
 .Function = xlCount
 End With
 Else ‘ Percent tables
 With PT.PivotFields(ItemName)
 .Orientation = xlDataField
 .Name = “Percent”
 .Function = xlCount
 .Calculation = xlPercentOfColumn
 .NumberFormat = “0.0%”
 End With
 End If

 PT.PivotFields(ItemName).Orientation = xlRowField
 PT.PivotFields(“Sex”).Orientation = xlColumnField
 PT.TableStyle2 = “PivotStyleMedium2”
 PT.DisplayFieldCaptions = False
 If Col = 6 Then
‘ add data bars to the last column
 PT.ColumnGrand = False
 PT.DataBodyRange.Columns(3).FormatConditions. _
 AddDatabar
 With pt.DataBodyRange.Columns(3).FormatConditions(1)
 .BarFillType = xlDataBarFillSolid
 .MinPoint.Modify newtype:=xlConditionValueNumber, newvalue:=0
 .MaxPoint.Modify newtype:=xlConditionValueNumber, newvalue:=1
 End With
 End If
 Next Col
 Row = Row + 10

Chapter 17: Working with Pivot Tables 579

 Next i

‘ Replace numbers with descriptive text
 With Range(“A:A,F:F”)
 .Replace “1”, “Strongly Disagree”
 .Replace “2”, “Disagree”
 .Replace “3”, “Undecided”
 .Replace “4”, “Agree”
 .Replace “5”, “Strongly Agree”
 End With
End Sub

Notice that all these pivot tables were created from a single PivotCache object.

The pivot tables are created within a nested loop. The Col loop counter goes from 1 to 6 by
using the Step parameter. The instructions vary a bit for the second column of pivot tables.
Specifically, the pivot tables in the second column do the following:

 Display the count as a percent of the column.

 Do not show grand totals for the rows.

 Are assigned a number format.

 Display format conditioning data bars.

The Row variable keeps track of the starting row of each pivot table. The final step is to replace the
numeric categories in columns A and F with text. For example, 1 is replaced with Strongly Agree.

Creating a Reverse Pivot Table
A pivot table is a summary of data in a table. But what if you have a summary table, and you’d
like to create a table from it? Figure 17-8 shows an example. Range B2:F14 contains a summary
table — similar to a very simple pivot table. Columns I:K contain a 48-row table created from the
summary table. In the table, each row contains one data point, and the first two columns describe
that data point. In other words, the transformed data is normalized. (See the sidebar, “Data
appropriate for a pivot table,” earlier in this chapter.)

Excel doesn’t provide a way to transform a summary table into a normalized table, so it’s a good
job for a VBA macro. After I created this macro, I spent a bit more time and added a UserForm,
shown in Figure 17-9. The UserForm gets the input and output ranges and also has an option to
convert the output range to a table.

This workbook, named reverse pivot table.xlsm, is available on the companion
CD-ROM.

Part V: Advanced Programming Techniques580

Figure 17-8: The summary table on the left will be converted to the table on the right.

Figure 17-9: This dialog box asks the user for the ranges.

Chapter 17: Working with Pivot Tables 581

When the user clicks the OK button in the UserForm, VBA code validates the ranges and then
calls the ReversePivot procedure with this statement:

Call ReversePivot(SummaryTable, OutputRange, cbCreateTable)

It passes three arguments:

 SummaryTable: A Range object that represents the summary table.

 OutputRange: A Range object that represents the upper-left cell of the output range.

 cbCreateTable: The Checkbox object on the UserForm.

This procedure will work for any size summary table. The number of data rows in the output table
will be equal to (r-1) * (c-1), where r and c represent the number of rows and columns in
the SummaryTable.

The code for the ReversePivot procedure follows:

Sub ReversePivot(SummaryTable As Range, _
 OutputRange As Range, CreateTable As Boolean)
 Dim r As Long, c As Long
 Dim OutRow As Long, OutCol As Long
‘ Convert the range
 OutRow = 2
 Application.ScreenUpdating = False
 OutputRange.Range(“A1:C3”) = Array(“Column1”, “Column2”, “Column3”)
 For r = 2 To SummaryTable.Rows.Count
 For c = 2 To SummaryTable.Columns.Count
 OutputRange.Cells(OutRow, 1) = SummaryTable.Cells(r, 1)
 OutputRange.Cells(OutRow, 2) = SummaryTable.Cells(1, c)
 OutputRange.Cells(OutRow, 3) = SummaryTable.Cells(r, c)
 OutRow = OutRow + 1
 Next c
 Next r
‘ Make it a table?
 If CreateTable Then _
 ActiveSheet.ListObjects.Add xlSrcRange, _
 OutputRange.CurrentRegion, , xlYes
End Sub

The procedure is fairly simple. The code loops through the rows and columns in the input range
and then writes the data to the output range. The output range will always have three columns.
The OutRow variable keeps track of the current row in the output range. Finally, if the user
checked the check box, the output range is converted to a table by using the Add method of the
ListObjects collection.

Part V: Advanced Programming Techniques582

583

18
Working with Charts
In This Chapter

● Discovering essential background information on Excel charts

● Knowing the difference between embedded charts and chart sheets

● Understanding the Chart object model

● Using methods other than the macro recorder to help you learn about Chart objects

● Exploring examples of common charting tasks that use VBA

● Navigating more complex charting macros

● Finding out some interesting (and useful) chart-making tricks

● Working with Sparkline charts

Getting the Inside Scoop on Charts
Excel’s charting feature lets you create a wide variety of charts using data that’s stored in a
worksheet. You have a great deal of control over nearly every aspect of each chart.

An Excel chart is simply packed with objects, each of which has its own properties and methods.
Because of this, manipulating charts with Visual Basic for Applications (VBA) can be a bit of a
challenge. In this chapter, I discuss the key concepts that you need to understand in order to
write VBA code that generates or manipulates charts. The secret, as you’ll see, is a good under-
standing of the object hierarchy for charts.

Excel 2010 includes a new feature called Sparklines. A Sparkline is a small chart con-
tained in a cell. The Sparklines feature uses an entirely separate object model than
charts. I cover this feature in this chapter.

Part V: Advanced Programming Techniques584

Chart locations
In Excel, a chart can be located in either of two places within a workbook:

 As an embedded object on a worksheet: A worksheet can contain any number of
embedded charts.

 In a separate chart sheet: A chart sheet normally holds a single chart.

Most users create charts manually by using the commands in the Insert➜Charts group. But you
can also create charts by using VBA. And, of course, you can use VBA to modify existing charts.

The fastest way to create a chart manually is to select your data and then press Alt+F1.
Excel creates an embedded chart and uses the default chart type. To create a new
default chart on a chart sheet, select the data and press F11.

A key concept when working with charts is the active chart — that is, the chart that’s currently
selected. When the user clicks an embedded chart or activates a chart sheet, a Chart object is
activated. In VBA, the ActiveChart property returns the activated Chart object (if any). You
can write code to work with this Chart object, much like you can write code to work with the
Workbook object returned by the ActiveWorkbook property.

Here’s an example: If a chart is activated, the following statement will display the Name property
for the Chart object:

MsgBox ActiveChart.Name

If a chart isn’t activated, the preceding statement generates an error.

As you see later in this chapter, you don’t need to activate a chart in order to manipu-
late it with VBA.

The macro recorder and charts
If you’ve read other chapters in the book, you know that I often recommend using the macro
recorder to learn about objects, properties, and methods. In the Excel 2007 edition of this book,
I was forced to mention a serious problem with the macro recorder and charts: The macro
recorder simply didn’t record all your actions. Fortunately, this problem has been corrected in
Excel 2010. Recording chart macros works fairly well in Excel 2010. The generated code isn’t per-
fect, but it’s much better than it was in Excel 2007.

As always, recorded macros are best viewed as a learning tool. The recorded code will almost
always steer you to the relevant objects, properties, and methods.

Chapter 18: Working with Charts 585

The Chart object model
When you first start exploring the object model for a Chart object, you’ll probably be very con-
fused — which isn’t surprising; the object model is very confusing. It’s also very deep.

For example, assume that you want to change the title displayed in an embedded chart. The top-
level object, of course, is the Application object (Excel). The Application object contains a
Workbook object, and the Workbook object contains a Worksheet object. The Worksheet
object contains a ChartObject object, which contains a Chart object. The Chart object has a
ChartTitle object, and the ChartTitle object has a Text property that stores the text
that’s displayed as the chart’s title.

Here’s another way to look at this hierarchy for an embedded chart:

Application
 Workbook
 Worksheet
 ChartObject
 Chart
 ChartTitle

Your VBA code must, of course, follow this object model precisely. For example, to set a chart’s
title to YTD Sales, you can write a VBA instruction like this:

WorkSheets(“Sheet1”).ChartObjects(1).Chart.ChartTitle. _
 Text = “YTD Sales”

This statement assumes the active workbook is the Workbook object. The statement works with
the first item in the ChartObjects collection on the worksheet named Sheet1. The Chart
property returns the actual Chart object, and the ChartTitle property returns the
ChartTitle object. Finally, you get to the Text property.

Note that the preceding statement will fail if the chart doesn’t have a title. To add a default title
to the chart (which displays the text Chart Title), use this statement:

Worksheets(“Sheet1”).ChartObjects(1).Chart.HasTitle = True

Compatibility note
The VBA code in this chapter uses many new chart-related properties and methods that were
introduced in Excel 2007. As a result, most of the code presented here won’t work with versions
prior to Excel 2007.

Part V: Advanced Programming Techniques586

For a chart sheet, the object hierarchy is a bit different because it doesn’t involve the
Worksheet object or the ChartObject object. For example, here’s the hierarchy for the
ChartTitle object for a chart in a chart sheet:

Application
 Workbook
 Chart
 ChartTitle

In terms of VBA, you could use this statement to set the chart title in a chart sheet to YTD Sales:

Sheets(“Chart1”).ChartTitle.Text = “YTD Sales”

A chart sheet is essentially a Chart object, and it has no containing ChartObject object. Put
another way, the parent object for an embedded chart is a ChartObject object, and the parent
object for a chart on a separate chart sheet is a Workbook object.

Both of the following statements will display a message box with the word Chart in it:

MsgBox TypeName(Sheets(“Sheet1”).ChartObjects(1).Chart)
Msgbox TypeName(Sheets(“Chart1”))

When you create a new embedded chart, you’re adding to the ChartObjects collec-
tion and the Shapes collection contained in a particular worksheet. (There is no
Charts collection for a worksheet.) When you create a new chart sheet, you’re adding
to the Charts collection and the Sheets collection for a particular workbook.

Creating an Embedded Chart
A ChartObject is a special type of Shape object. Therefore, it’s a member of the Shapes col-
lection. To create a new chart, use the AddChart method of the Shapes collection. The follow-
ing statement creates an empty embedded chart:

ActiveSheet.Shapes.AddChart

The AddChart method can use five arguments (all are optional):

 Type: The type of chart. If omitted, the default chart type is used. Constants for all the
chart types are provided (for example, xlArea, xlColumnClustered, and so on).

 Left: The left position of the chart, in points. If omitted, Excel centers the chart horizontally.

Chapter 18: Working with Charts 587

 Top: The top position of the chart, in points. If omitted, Excel centers the chart vertically.

 Width: The width of the chart, in points. If omitted, Excel uses 354.

 Height: The height of the chart, in points. If omitted, Excel uses 210.

In many cases, you may find it efficient to create an object variable when the chart is created.
The following procedure creates a line chart that you can reference in code by using the
MyChart object variable:

Sub CreateChart()
 Dim MyChart As Chart
 Set MyChart = ActiveSheet.Shapes.AddChart(xlLineMarkers).Chart
End Sub

A chart without data isn’t very useful, so you’ll want to use the SetSourceData method to add
data to a newly created chart. The procedure that follows demonstrates the SetSourceData
method. This procedure creates the chart shown in Figure 18-1.

Sub CreateChart()
 Dim MyChart As Chart
 Dim DataRange As Range
 Set DataRange = ActiveSheet.Range(“A1:C7”)
 Set MyChart = ActiveSheet.Shapes.AddChart.Chart
 MyChart.SetSourceData Source:=DataRange
End Sub

Figure 18-1: A few lines of VBA code created this chart.

Part V: Advanced Programming Techniques588

Creating a Chart on a Chart Sheet
The preceding section describes the basic procedures for creating an embedded chart. To create
a chart on a chart sheet, use the Add method of the Charts collection. The Add method of the
Charts collection uses several optional arguments, but these arguments specify the position of
the chart sheet — not chart-related information.

The example that follows creates a chart on a chart sheet and specifies the data range and chart
type:

Sub CreateChartSheet()
 Dim MyChart As Chart
 Dim DataRange As Range
 Set DataRange = ActiveSheet.Range(“A1:C7”)
 Set MyChart = Charts.Add
 MyChart.SetSourceData Source:=DataRange
 ActiveChart.ChartType = xlColumnClustered
End Sub

Figure 18-2 shows the result.

Creating a chart the old way
Using the AddChart method of the Shapes collection (as described in “Creating an Embedded
Chart”) is the “new” way of creating charts, introduced in Excel 2007. For compatibility pur-
poses, you can still use the Add method of the ChartObjects collection. This method, unlike
the AddChart method of the Shapes objects, doesn’t allow you to specify the chart type as an
argument, so you need to use the ChartType property if you want to use anything except the
default chart type. In addition, the Left, Top, Width, and Height arguments are required.

The procedure that follows uses the Add method of the ChartObjects collection to create an
embedded chart.

Sub CreateChart2()
 Dim MyChart As Chart
 Dim DataRange As Range
 Set DataRange = ActiveSheet.Range(“A1:C7”)
 Set MyChart = ActiveSheet.ChartObjects.Add(10, 10, 354, 210).Chart
 MyChart.SetSourceData Source:=DataRange
 MyChart.ChartType = xlColumnClustered
End Sub

Chapter 18: Working with Charts 589

Figure 18-2: Creating a chart on a chart sheet.

Using VBA to Activate a Chart
When a user clicks any area of an embedded chart, the chart is activated. Your VBA code can
activate an embedded chart with the Activate method. Here’s a VBA statement that’s the
equivalent of Ctrl+clicking an embedded chart:

ActiveSheet.ChartObjects(“Chart 1”).Activate

If the chart is on a chart sheet, use a statement like this:

Sheets(“Chart1”).Activate

Alternatively, you can activate a chart by selecting its containing Shape:

ActiveSheet.Shapes(“Chart 1”).Select

Part V: Advanced Programming Techniques590

When a chart is activated, you can refer to it in your code by using the ActiveChart property
(which returns a Chart object). For example, the following instruction displays the name of the
active chart. If there is no active chart, the statement generates an error:

MsgBox ActiveChart.Name

To modify a chart with VBA, it’s not necessary to activate it. The two procedures that follow have
exactly the same effect. That is, they change the embedded chart named Chart 1 to an area
chart. The first procedure activates the chart before performing the manipulations; the second
one doesn’t:

Sub ModifyChart1()
 ActiveSheet.ChartObjects(“Chart 1”).Activate
 ActiveChart.ChartType = xlArea
End Sub

Sub ModifyChart2()
 ActiveSheet.ChartObjects(“Chart 1”).Chart.ChartType = xlArea
End Sub

Moving a Chart
A chart embedded on a worksheet can be converted to a chart sheet. To do so manually, just
activate the embedded chart and choose Chart Tools➜Design➜Location➜Move Chart. In the
Move Chart dialog box, select the New Sheet option and specify a name.

You can also convert an embedded chart to a chart sheet by using VBA. Here’s an example that
converts the first ChartObject on a worksheet named Sheet1 to a chart sheet named
MyChart:

Sub MoveChart1()
 Sheets(“Sheet1”).ChartObjects(1).Chart. _
 Location xlLocationAsNewSheet, “MyChart”
End Sub

The following example does just the opposite of the preceding procedure: It converts the chart
on a chart sheet named MyChart to an embedded chart on the worksheet named Sheet1.

Sub MoveChart2()
 Charts(“MyChart”) _
 .Location xlLocationAsObject, “Sheet1”
End Sub

Chapter 18: Working with Charts 591

Using the Location method also activates the relocated chart.

Using VBA to Deactivate a Chart
You can use the Activate method to activate a chart, but how do you deactivate (that is, unselect)
a chart? According to the Help System, you can use the Deselect method to deactivate a chart:

ActiveChart.Deselect

However, this statement simply doesn’t work.

What’s your name?
Every ChartObject object has a name, and every Chart contained in a ChartObject has a name.
That certainly seems straightforward enough, but chart names can be confusing. Create a new chart
on Sheet1 and activate it. Then activate the VBA Immediate window and type a few commands:

? ActiveSheet.Shapes(1).Name
Chart 1
? ActiveSheet.ChartObjects(1).Name
Chart 1
? ActiveChart.Name
Sheet1 Chart 1
? Activesheet.ChartObjects(1).Chart.Name
Sheet1 Chart 1

If you change the name of the worksheet, the name of the Chart also changes. However, you
can’t change the name of a Chart that’s contained in a ChartObject. This statement generates
an inexplicable “out of memory” error:

Activesheet.ChartObjects(1).Chart.Name = “New Name”

What about changing the name of a ChartObject? The logical place to do so is in the Name
box (to the left of the formula bar). Although you can rename a shape by using the Name box,
you can’t rename a chart (even though a chart is actually a shape). To rename an embedded
chart, use the Chart Name control in the Chart Tools➜Layout➜Properties group. This control
displays the name of the active chart (which is actually the name of the ChartObject), and
you can use this control to change the name of the ChartObject. Oddly, Excel allows you to
use the name of an existing ChartObject. In other words, you could have a dozen embedded
charts on a worksheet, and every one of them can be named Chart 1.

Bottom line? Be aware of this quirk. If you find that your VBA charting macro isn’t working,
make sure that you don’t have two identically named charts.

Part V: Advanced Programming Techniques592

As far as I can tell, the only way to deactivate a chart by using VBA is to select something other
than the chart. For an embedded chart, you can use the RangeSelection property of the
ActiveWindow object to deactivate the chart and select the range that was selected before the
chart was activated:

ActiveWindow.RangeSelection.Select

To deactivate a chart on a chart sheet, just write code that selects a different sheet.

Determining Whether a Chart Is Activated
A common type of macro performs some manipulations on the active chart (the chart selected
by a user). For example, a macro might change the chart’s type, apply a style, add data labels, or
export the chart to a graphics file.

The question is, how can your VBA code determine whether the user has actually selected a
chart? By selecting a chart, I mean either activating a chart sheet or activating an embedded
chart by clicking it. Your first inclination might be to check the TypeName property of the
Selection, as in this expression:

TypeName(Selection) = “Chart”

In fact, this expression never evaluates to True. When a chart is activated, the actual selection
will be an object within the Chart object. For example, the selection might be a Series object,
a ChartTitle object, a Legend object, a PlotArea object, and so on.

The solution is to determine whether ActiveChart is Nothing. If so, then a chart isn’t
active. The following code checks to ensure that a chart is active. If not, the user sees a message,
and the procedure ends:

If ActiveChart Is Nothing Then
 MsgBox “Select a chart.”
 Exit Sub
Else
 ‘other code goes here
End If

You may find it convenient to use a VBA function procedure to determine whether a chart is acti-
vated. The ChartIsSelected function, which follows, returns True if a chart sheet is active or
if an embedded chart is activated, but returns False if a chart isn’t activated:

Private Function ChartIsSelected() As Boolean
 ChartIsSelected = Not ActiveChart Is Nothing
End Function

Chapter 18: Working with Charts 593

Deleting from the ChartObjects or Charts Collection
To delete a chart on a worksheet, you must know the name or index of the ChartObject or the
Shape object. This statement deletes the ChartObject named Chart 1 on the active worksheet:

ActiveSheet.ChartObjects(“Chart 1”).Delete

To delete all ChartObject objects on a worksheet, use the Delete method of the ChartObjects
collection:

ActiveSheet.ChartObjects.Delete

You can also delete embedded charts by accessing the Shapes collection. The following state-
ment deletes the shape named Chart 1 on the active worksheet:

ActiveSheet.Shapes(“Chart 1”).Delete

This code deletes all embedded charts (and all other shapes) on the active sheet:

Dim shp as Shape
For Each shp In ActiveSheet.Shapes
 shp.Delete
Next shp

To delete a single chart sheet, you must know the chart sheet’s name or index. The following
statement deletes the chart sheet named Chart1:

Charts(“Chart1”).Delete

To delete all chart sheets in the active workbook, use the following statement:

ActiveWorkbook.Charts.Delete

Deleting sheets causes Excel to display a warning like the one shown in Figure 18-3. The user
must reply to this prompt in order for the macro to continue. If you’re deleting a sheet with a
macro, you probably won’t want this warning prompt to appear. To eliminate the prompt, use the
following series of statements:

Application.DisplayAlerts = False
ActiveWorkbook.Charts.Delete
Application.DisplayAlerts = True

Part V: Advanced Programming Techniques594

Figure 18-3: Attempting to delete one or more chart sheets results in this message.

Looping through All Charts
In some cases, you may need to perform an operation on all charts. The following example
applies changes to every embedded chart on the active worksheet. The procedure uses a loop to
cycle through each object in the ChartObjects collection and then accesses the Chart object
in each and changes several properties.

Sub FormatAllCharts()
 Dim ChtObj As ChartObject
 For Each ChtObj In ActiveSheet.ChartObjects
 With ChtObj.Chart
 .ChartType = xlLineMarkers
 .ApplyLayout 3
 .ChartStyle = 12
 .ClearToMatchStyle
 .SetElement msoElementChartTitleAboveChart
 .SetElement msoElementLegendNone
 .SetElement msoElementPrimaryValueAxisTitleNone
 .SetElement msoElementPrimaryCategoryAxisTitleNone
 .Axes(xlValue).MinimumScale = 0
 .Axes(xlValue).MaximumScale = 1000
 End With
 Next ChtObj
End Sub

This example is available on the companion CD-ROM. The filename is format all
charts.xlsm.

Figure 18-4 shows four charts that use a variety of different formatting; Figure 18-5 shows the
same charts after running the FormatAllCharts macro.

Chapter 18: Working with Charts 595

Figure 18-4: These charts use different formatting.

Figure 18-5: A simple macro applied consistent formatting to the four charts.

Part V: Advanced Programming Techniques596

The following macro performs the same operation as the preceding FormatAllCharts proce-
dure but works on all the chart sheets in the active workbook:

Sub FormatAllCharts2()
 Dim cht as Chart
 For Each cht In ActiveWorkbook.Charts
 With cht
 .ChartType = xlLineMarkers
 .ApplyLayout 3
 .ChartStyle = 12
 .ClearToMatchStyle
 .SetElement msoElementChartTitleAboveChart
 .SetElement msoElementLegendNone
 .SetElement msoElementPrimaryValueAxisTitleNone
 .SetElement msoElementPrimaryCategoryAxisTitleNone
 .Axes(xlValue).MinimumScale = 0
 .Axes(xlValue).MaximumScale = 1000
 End With
 Next cht
End Sub

Sizing and Aligning ChartObjects
A ChartObject object has standard positional (Top and Left) and sizing (Width and
Height) properties that you can access with your VBA code. The Excel Ribbon has controls (in
the Chart Tools➜Format➜Size group) to set the Height and Width, but not the Top and Left.

The following example resizes all ChartObject objects on a sheet so that they match the
dimensions of the active chart. It also arranges the ChartObject objects into a user-specified
number of columns.

Sub SizeAndAlignCharts()
 Dim W As Long, H As Long
 Dim TopPosition As Long, LeftPosition As Long
 Dim ChtObj As ChartObject
 Dim i As Long, NumCols As Long

 If ActiveChart Is Nothing Then
 MsgBox “Select a chart to be used as the base for the sizing”

Chapter 18: Working with Charts 597

 Exit Sub
 End If

 ‘Get columns
 On Error Resume Next
 NumCols = InputBox(“How many columns of charts?”)
 If Err.Number <> 0 Then Exit Sub
 If NumCols < 1 Then Exit Sub
 On Error GoTo 0

 ‘Get size of active chart
 W = ActiveChart.Parent.Width
 H = ActiveChart.Parent.Height

 ‘Change starting positions, if necessary
 TopPosition = 100
 LeftPosition = 20
 For i = 1 To ActiveSheet.ChartObjects.Count
 With ActiveSheet.ChartObjects(i)
 .Width = W
 .Height = H
 .Left = LeftPosition + ((i - 1) Mod NumCols) * W
 .Top = TopPosition + Int((i - 1) / NumCols) * H
 End With
 Next i
End Sub

If no chart is active, the user is prompted to activate a chart that will be used as the basis for siz-
ing the other charts. I use an InputBox function to get the number of columns. The values for
the Left and Top properties are calculated within the loop.

Figure 18-6 shows some charts, neatly sized and arranged.

This workbook, named size and align charts.xlsm, is available on the compan-
ion CD-ROM.

Part V: Advanced Programming Techniques598

Figure 18-6: Using a VBA macro to size and align embedded charts.

Exporting a Chart
In some cases, you may need an Excel chart in the form of a graphics file. For example, you may
want to post the chart on a Web site. One option is to use a screen-capture program and copy
the pixels directly from the screen. Another choice is to write a simple VBA macro.

Chapter 18: Working with Charts 599

The procedure that follows uses the Export method of the Chart object to save the active
chart as a GIF file:

Sub SaveChartAsGIF ()
 Dim Fname as String
 If ActiveChart Is Nothing Then Exit Sub
 Fname = ThisWorkbook.Path & “\” & ActiveChart.Name & “.gif”
 ActiveChart.Export FileName:=Fname, FilterName:=”GIF”
End Sub

Other choices for the FilterName argument are “JPEG” and “PNG”. Usually, GIF and PNG files
look better. The Help system lists a third argument for the Export method: Interactive. If
this argument is True, you’re supposed to see a dialog box in which you can specify export
options. However, this argument has no effect.

Keep in mind that the Export method will fail if the user doesn’t have the specified graphics
export filter installed. These filters are installed in the Office (or Excel) setup program.

Exporting all graphics
One way to export all graphic images from a workbook is to save the file in HTML format. Doing
so creates a directory that contains GIF and PNG images of the charts, shapes, clipart, and even
copied range images (created with Home➜Clipboard➜Paste➜Picture (U)).

Here’s a VBA procedure that automates the process. It works with the active workbook:

Sub SaveAllGraphics()
 Dim FileName As String
 Dim TempName As String
 Dim DirName As String
 Dim gFile As String

 FileName = ActiveWorkbook.FullName
 TempName = ActiveWorkbook.Path & “\” & _
 ActiveWorkbook.Name & “graphics.htm”
 DirName = Left(TempName, Len(TempName) - 4) & “_files”

‘ Save active workbookbook as HTML, then reopen original
 ActiveWorkbook.Save
 ActiveWorkbook.SaveAs FileName:=TempName, FileFormat:=xlHtml
 Application.DisplayAlerts = False
 ActiveWorkbook.Close
 Workbooks.Open FileName

‘ Delete the HTML file
 Kill TempName

‘ Delete all but *.PNG files in the HTML folder

Part V: Advanced Programming Techniques600

 gFile = Dir(DirName & “*.*”)
 Do While gFile <> “”
 If Right(gFile, 3) <> “png” Then Kill DirName & “\” & gFile
 gFile = Dir
 Loop
‘ Show the exported graphics
 Shell “explorer.exe “ & DirName, vbNormalFocus
End Sub

The procedure starts by saving the active workbook. Then it saves the workbook as an HTML file,
closes the file, and re-opens the original workbook. Next, it deletes the HTML file because we’re
just interested in the folder that it creates (that’s where the images are). The code then loops
through the folder and deletes everything except the PNG files. Finally, it uses the Shell func-
tion to display the folder.

This example is available on the companion CD-ROM. The filename is export all
graphics.xlsm.

Changing the Data Used in a Chart
The examples so far in this chapter have used the SourceData property to specify the complete
data range for a chart. In many cases, you’ll want to adjust the data used by a particular chart
series. To do so, access the Values property of the Series object. The Series object also has
an XValues property that stores the category axis values.

The Values property corresponds to the third argument of the SERIES formula, and the
XValues property corresponds to the second argument of the SERIES formula. See the
sidebar, “Understanding a chart’s SERIES formula.”

Understanding a chart’s SERIES formula
The data used in each series in a chart is determined by its SERIES formula. When you select a
data series in a chart, the SERIES formula appears in the formula bar. This is not a real formula:
In other words, you can’t use it in a cell, and you can’t use worksheet functions within the SERIES
formula. You can, however, edit the arguments in the SERIES formula.

A SERIES formula has the following syntax:

=SERIES(series_name, category_labels, values, order, sizes)

Chapter 18: Working with Charts 601

The arguments that you can use in the SERIES formula are

● series_name: (Optional) A reference to the cell that contains the series name used in
the legend. If the chart has only one series, the name argument is used as the title. This
argument can also consist of text in quotation marks. If omitted, Excel creates a default
series name (for example, Series 1).

● category_labels: (Optional) A reference to the range that contains the labels for the
category axis. If omitted, Excel uses consecutive integers beginning with 1. For XY charts,
this argument specifies the X values. A noncontiguous range reference is also valid. The
ranges’ addresses are separated by a comma and enclosed in parentheses. The argument
could also consist of an array of comma-separated values (or text in quotation marks)
enclosed in curly brackets.

● values: (Required) A reference to the range that contains the values for the series. For
XY charts, this argument specifies the Y values. A noncontiguous range reference is also
valid. The ranges’ addresses are separated by a comma and enclosed in parentheses. The
argument could also consist of an array of comma-separated values enclosed in curly
brackets.

● order: (Required) An integer that specifies the plotting order of the series. This argument
is relevant only if the chart has more than one series. For example, in a stacked column
chart, this parameter determines the stacking order. Using a reference to a cell is not
allowed.

● sizes: (Only for bubble charts) A reference to the range that contains the values for the
size of the bubbles in a bubble chart. A noncontiguous range reference is also valid. The
ranges’ addresses are separated by a comma and enclosed in parentheses. The argument
could also consist of an array of values enclosed in curly brackets.

Range references in a SERIES formula are always absolute, and they always include the sheet
name. For example:

=SERIES(Sheet1!B1,,Sheet1!B2:B7,1)

A range reference can consist of a noncontiguous range. If so, each range is separated by a
comma, and the argument is enclosed in parentheses. In the following SERIES formula, the val-
ues range consists of B2:B3 and B5:B7:

=SERIES(,,(Sheet1!B2:B3,Sheet1!B5:B7),1)

You can substitute range names for the range references. If you do so (and the name is a work-
book-level name), Excel changes the reference in the SERIES formula to include the workbook.
For example:

=SERIES(Sheet1!B1,,budget.xlsx!CurrentData,1)

Changing chart data based on the active cell
Figure 18-7 shows a chart that’s based on the data in the row of the active cell. When the user
moves the cell pointer, the chart is updated automatically.

Part V: Advanced Programming Techniques602

Figure 18-7: This chart always displays the data from the row of the active cell.

This example uses an event handler for the Sheet1 object. The SelectionChange event
occurs whenever the user changes the selection by moving the cell pointer. The event-handler
procedure for this event (which is located in the code module for the Sheet1 object) is as
follows:

Private Sub Worksheet_SelectionChange(ByVal Target _
 As Excel.Range)
 If CheckBox1 Then Call UpdateChart
End Sub

In other words, every time the user moves the cell cursor, the Worksheet_SelectionChange
procedure is executed. If the Auto Update Chart check box (an ActiveX control on the sheet) is
checked, this procedure calls the UpdateChart procedure, which follows:

Sub UpdateChart()
 Dim ChtObj As ChartObject
 Dim UserRow As Long

Chapter 18: Working with Charts 603

 Set ChtObj = ActiveSheet.ChartObjects(1)
 UserRow = ActiveCell.Row
 If UserRow < 4 Or IsEmpty(Cells(UserRow, 1)) Then
 ChtObj.Visible = False
 Else
 ChtObj.Chart.SeriesCollection(1).Values = _
 Range(Cells(UserRow, 2), Cells(UserRow, 6))
 ChtObj.Chart.ChartTitle.Text = Cells(UserRow, 1).Text
 ChtObj.Visible = True
 End If
End Sub

The UserRow variable contains the row number of the active cell. The If statement checks that
the active cell is in a row that contains data. (The data starts in row 4.) If the cell cursor is in a
row that doesn’t have data, the ChartObject object is hidden, and the underlying text is visible
(“Cannot display chart”). Otherwise, the code sets the Values property for the Series object
to the range in columns 2–6 of the active row. It also sets the ChartTitle object to correspond
to the text in column A.

This example, named chart active cell.xlsm, is available on the companion
CD-ROM.

Using VBA to determine the ranges used in a chart
The previous example demonstrated how to use the Values property of a Series object to
specify the data used by a chart series. This section discusses using VBA macros to identify the
ranges used by a series in a chart. For example, you might want to increase the size of each
series by adding a new cell to the range.

Following is a description of three properties that are relevant to this task:

 Formula property: Returns or sets the SERIES formula for the Series. When you select
a series in a chart, its SERIES formula is displayed in the formula bar. The Formula prop-
erty returns this formula as a string.

 Values property: Returns or sets a collection of all the values in the series. This property
can be specified as a range on a worksheet or as an array of constant values, but not a
combination of both.

 XValues property: Returns or sets an array of X values for a chart series. The XValues
property can be set to a range on a worksheet or to an array of values, but it can’t be a
combination of both. The XValues property can also be empty.

If you create a VBA macro that needs to determine the data range used by a particular chart
series, you might think that the Values property of the Series object is just the ticket.
Similarly, the XValues property seems to be the way to get the range that contains the X values
(or category labels). In theory, that certainly seems correct. But, in practice, it doesn’t work.

Part V: Advanced Programming Techniques604

When you set the Values property for a Series object, you can specify a Range object or an
array. But when you read this property, an array is always returned. Unfortunately, the object
model provides no way to get a Range object used by a Series object.

One possible solution is to write code to parse the SERIES formula and extract the range
addresses. This task sounds simple, but it’s actually difficult because a SERIES formula can be
very complex. Following are a few examples of valid SERIES formulas:

=SERIES(Sheet1!B1,Sheet1!A2:A4,Sheet1!B2:B4,1)

=SERIES(,,Sheet1!B2:B4,1)

=SERIES(,Sheet1!A2:A4,Sheet1!B2:B4,1)

=SERIES(“Sales Summary”,,Sheet1!B2:B4,1)

=SERIES(,{“Jan”,”Feb”,”Mar”},Sheet1!B2:B4,1)

=SERIES(,(Sheet1!A2,Sheet1!A4),(Sheet1!B2,Sheet1!B4),1)

=SERIES(Sheet1!B1,Sheet1!A2:A4,Sheet1!B2:B4,1,Sheet1!C2:C4)

As you can see, a SERIES formula can have missing arguments, use arrays, and even use noncon-
tiguous range addresses. And, to confuse the issue even more, a bubble chart has an additional
argument (for example, the last SERIES formula in the preceding list). Attempting to parse the
arguments is certainly not a trivial programming task.

I spent a lot of time working on this problem, and I eventually arrived at a solution that involves
evaluating the SERIES formula by using a dummy function. This function accepts the same argu-
ments as a SERIES formula and returns a 2 x 5 element array that contains all the information in
the SERIES formula.

I simplified the solution by creating four custom VBA functions, each of which accepts one argu-
ment (a reference to a Series object) and returns a two-element array. These functions are the
following:

 SERIESNAME_FROM_SERIES: The first array element contains a string that describes
the data type of the first SERIES argument (Range, Empty, or String). The second
array element contains a range address, an empty string, or a string.

 XVALUES_FROM_SERIES: The first array element contains a string that describes the
data type of the second SERIES argument (Range, Array, Empty, or String). The sec-
ond array element contains a range address, an array, an empty string, or a string.

 VALUES_FROM_SERIES: The first array element contains a string that describes the data
type of the third SERIES argument (Range or Array). The second array element con-
tains a range address or an array.

 BUBBLESIZE_FROM_SERIES: The first array element contains a string that describes
the data type of the fifth SERIES argument (Range, Array, or Empty). The second array
element contains a range address, an array, or an empty string. This function is relevant
only for bubble charts.

Chapter 18: Working with Charts 605

Note that I did not create a function to get the fourth SERIES argument (plot order). You can
obtain this argument directly by using the PlotOrder property of the Series object.

The VBA code for these functions is too lengthy to be listed here, but the code is avail-
able on the companion CD-ROM in a file named get series ranges.xlsm. These
functions are documented in such a way that they can be easily adapted to other
situations.

The following example demonstrates the VALUES_FROM_SERIES function. It displays the
address of the values range for the first series in the active chart.

Sub ShowValueRange()
 Dim Ser As Series
 Dim x As Variant
 Set Ser = ActiveChart.SeriesCollection(1)
 x = VALUES_FROM_SERIES(Ser)
 If x(1) = “Range” Then
 MsgBox Range(x(2)).Address
 End If
End Sub

The variable x is defined as a variant and will hold the two-element array that’s returned by the
VALUES_FROM_SERIES function. The first element of the x array contains a string that
describes the data type. If the string is Range, the message box displays the address of the
range contained in the second element of the x array.

Figure 18-8 shows another example. The chart has three data series. Buttons on the sheet exe-
cute macros that expand and contract each of the data ranges.

The ContractAllSeries procedure follows. This procedure loops through the Series
Collection collection and uses the XVALUE_FROM_SERIES and the VALUES_FROM_SERIES
functions to retrieve the current ranges. It then uses the Resize method to decrease the size of
the ranges.

Sub ContractAllSeries()
 Dim s As Series
 Dim Result As Variant
 Dim DRange As Range
 For Each s In ActiveSheet.ChartObjects(1).Chart.SeriesCollection
 Result = XVALUES_FROM_SERIES(s)
 If Result(1) = “Range” Then
 Set DRange = Range(Result(2))
 If DRange.Rows.Count > 1 Then
 Set DRange = DRange.Resize(DRange.Rows.Count - 1)
 s.XValues = DRange
 End If
 End If

Part V: Advanced Programming Techniques606

 Result = VALUES_FROM_SERIES(s)
 If Result(1) = “Range” Then
 Set DRange = Range(Result(2))
 If DRange.Rows.Count > 1 Then
 Set DRange = DRange.Resize(DRange.Rows.Count - 1)
 s.Values = DRange
 End If
 End If
 Next s
End Sub

The ExpandAllSeries procedure is very similar. When executed, it expands each range by
one cell.

Figure 18-8: This workbook demonstrates how to expand and contract the chart series by using VBA macros.

Using VBA to Display Arbitrary Data Labels
on a Chart
One of the most frequent complaints about Excel’s charting is its inflexible data labeling feature.
For example, consider the XY chart in Figure 18-9. It would be useful to display the associated
name for each data point. However, you can search all day, and you’ll never find the Excel com-
mand that lets you do this automatically. Such a command doesn’t exist. Data labels are limited
to the data values only — unless you want to edit each data label manually and replace it with
text (or a formula) of your choice.

Chapter 18: Working with Charts 607

Figure 18-9: An XY chart with no data labels.

The DataLabelsFromRange procedure works with the first chart on the active sheet. It
prompts the user for a range and then loops through the Points collection and changes the
Text property to the values found in the range.

Sub DataLabelsFromRange()
 Dim DLRange As Range
 Dim Cht As Chart
 Dim i As Integer, Pts As Integer

‘ Specify chart
 Set Cht = ActiveSheet.ChartObjects(1).Chart

‘ Prompt for a range
 On Error Resume Next
 Set DLRange = Application.InputBox _
 (prompt:=”Range for data labels?”, Type:=8)
 If DLRange Is Nothing Then Exit Sub
 On Error GoTo 0

‘ Add data labels
 Cht.SeriesCollection(1).ApplyDataLabels _
 Type:=xlDataLabelsShowValue, _
 AutoText:=True, _
 LegendKey:=False

‘ Loop through the Points, and set the data labels
 Pts = Cht.SeriesCollection(1).Points.Count
 For i = 1 To Pts

Part V: Advanced Programming Techniques608

 Cht.SeriesCollection(1). _
 Points(i).DataLabel.Text = DLRange(i)
 Next i
End Sub

This example, named data labels.xlsm, is available on the companion CD-ROM.

Figure 18-10 shows the chart after running the DataLabelsFromRange procedure and specify-
ing A2:A9 as the data range.

Figure 18-10: This XY chart has data labels, thanks to a VBA procedure.

A data label in a chart can also consist of a link to a cell. To modify the DataLabelsFromRange
procedure so it creates cell links, just change the statement within the For-Next loop to:

 Cht.SeriesCollection(1).Points(i).DataLabel.Text = _
 “=” & “’” & DLRange.Parent.Name & “’!” & _
 DLRange(i).Address(ReferenceStyle:=xlR1C1)

The preceding procedure is rather crude and does very little error checking. In addition,
it only works with the first Series object. The Power Utility Pak add-in (which you can
obtain by using the coupon in the back of the book) includes a much more sophisti-
cated chart data–labeling utility.

Chapter 18: Working with Charts 609

Displaying a Chart in a UserForm
In Chapter 15, I describe a way to display a chart in a UserForm. The technique saves the chart as
a GIF file and then loads the GIF file into an Image control on the UserForm.

The example in this section uses that same technique but adds a new twist: The chart is created
on the fly and uses the data in the row of the active cell. Figure 18-11 shows an example.

Figure 18-11: The chart in this UserForm is created on the fly from the data in the active row.

The UserForm for this example is very simple. It contains an Image control and a CommandButton
(Close). The worksheet that contains the data has a button that executes the following procedure:

Sub ShowChart()
 Dim UserRow As Long
 UserRow = ActiveCell.Row
 If UserRow < 2 Or IsEmpty(Cells(UserRow, 1)) Then
 MsgBox “Move the cell pointer to a row that contains data.”
 Exit Sub
 End If
 CreateChart (UserRow)
 UserForm1.Show
End Sub

Part V: Advanced Programming Techniques610

Because the chart is based on the data in the row of the active cell, the procedure warns the user
if the cell pointer is in an invalid row. If the active cell is appropriate, ShowChart calls the
CreateChart procedure to create the chart and then displays the UserForm.

The CreateChart procedure accepts one argument, which represents the row of the active cell.
This procedure originated from a macro recording that I cleaned up to make more general.

Sub CreateChart(r)

 Dim TempChart As Chart

 Dim CatTitles As Range

 Dim SrcRange As Range, SourceData As Range

 Dim FName As String

 Set CatTitles = ActiveSheet.Range(“A2:F2”)

 Set SrcRange = ActiveSheet.Range(Cells(r, 1), Cells(r, 6))

 Set SourceData = Union(CatTitles, SrcRange)

‘ Add a chart

 Application.ScreenUpdating = False

 Set TempChart = ActiveSheet.Shapes.AddChart.Chart

 TempChart.SetSourceData Source:=SourceData

‘ Fix it up

 With TempChart

 .ChartType = xlColumnClustered

 .SetSourceData Source:=SourceData, PlotBy:=xlRows

 .HasLegend = False

 .PlotArea.Interior.ColorIndex = xlNone

 .Axes(xlValue).MajorGridlines.Delete

 .ApplyDataLabels Type:=xlDataLabelsShowValue, LegendKey:=False

 .Axes(xlValue).MaximumScale = 0.6

 .ChartArea.Format.Line.Visible = False

 End With

‘ Adjust the ChartObject’s size size

 With ActiveSheet.ChartObjects(1)

 .Width = 300

 .Height = 200

 End With

‘ Save chart as GIF

 FName = Application.DefaultFilePath & Application.PathSeparator & “temp.gif”

 TempChart.Export Filename:=FName, filterName:=”GIF”

 ActiveSheet.ChartObjects(1).Delete

 Application.ScreenUpdating = True

End Sub

When the CreateChart procedure ends, the worksheet contains a ChartObject with a chart
of the data in the row of the active cell. However, the ChartObject isn’t visible because
ScreenUpdating is turned off. The chart is exported and deleted, and ScreenUpdating is
turned back on.

Chapter 18: Working with Charts 611

The final instruction of the ShowChart procedure loads the UserForm. Following is the UserForm_
Initialize procedure. This procedure simply loads the GIF file into the Image control.

Private Sub UserForm_Initialize()
 Dim FName As String
 FName = Application.DefaultFilePath & _
 Application.PathSeparator & “temp.gif”
 UserForm1.Image1.Picture = LoadPicture(FName)
End Sub

This workbook, named chart in userform.xlsm, is available on the companion
CD-ROM.

Understanding Chart Events
Excel supports several events associated with charts. For example, when a chart is activated, it gen-
erates an Activate event. The Calculate event occurs after the chart receives new or changed
data. You can, of course, write VBA code that gets executed when a particular event occurs.

Refer to Chapter 19 for additional information about events.

Table 18-1 lists all the chart events.

Table 18-1: Events Recognized by the Chart Object

Event Action That Triggers the Event

Activate A chart sheet or embedded chart is activated.

BeforeDoubleClick An embedded chart is double-clicked. This event occurs before the default
double-click action.

BeforeRightClick An embedded chart is right-clicked. The event occurs before the default right-
click action.

Calculate New or changed data is plotted on a chart.

Deactivate A chart is deactivated.

MouseDown A mouse button is pressed while the pointer is over a chart.

MouseMove The position of the mouse pointer changes over a chart.

MouseUp A mouse button is released while the pointer is over a chart.

Resize A chart is resized.

Select A chart element is selected.

SeriesChange The value of a chart data point is changed.

Part V: Advanced Programming Techniques612

An example of using Chart events
To program an event handler for an event taking place on a chart sheet, your VBA code must
reside in the code module for the Chart object. To activate this code module, double-click the
Chart item in the Project window. Then, in the code module, select Chart from the Object drop-
down list on the left and select the event from the Procedure drop-down list on the right (see
Figure 18-12).

Figure 18-12: Selecting an event in the code module for a Chart object.

Because an embedded chart doesn’t have its own code module, the procedure that I
describe in this section works only for chart sheets. You can also handle events for
embedded charts, but you must do some initial setup work that involves creating a
class module. This procedure is described later in “Enabling events for an embedded
chart.”

The example that follows simply displays a message when the user activates a chart sheet, deac-
tivates a chart sheet, or selects any element on the chart. I created a workbook with a chart
sheet; then I wrote three event handler procedures named as follows:

 Chart_Activate: Executed when the chart sheet is activated.

 Chart_Deactivate: Executed when the chart sheet is deactivated.

 Chart_Select: Executed when an element on the chart sheet is selected.

Chapter 18: Working with Charts 613

This workbook, named events – chart sheet.xlsm, is available on the companion
CD-ROM.

The Chart_Activate procedure follows:

Private Sub Chart_Activate()
 Dim msg As String
 msg = “Hello “ & Application.UserName & vbCrLf & vbCrLf
 msg = msg & “You are now viewing the six-month sales “
 msg = msg & “summary for Products 1-3.” & vbCrLf & vbCrLf
 msg = msg & _
 “Click an item in the chart to find out what it is.”
 MsgBox msg, vbInformation, ActiveWorkbook.Name
End Sub

This procedure displays a message whenever the chart is activated. See Figure 18-13.

Figure 18-13: Activating the chart causes Chart_Activate to display this message.

Part V: Advanced Programming Techniques614

The Chart_Deactivate procedure that follows also displays a message, but only when the
chart sheet is deactivated:

Private Sub Chart_Deactivate()
 Dim msg As String
 msg = “Thanks for viewing the chart.”
 MsgBox msg, , ActiveWorkbook.Name
End Sub

The Chart_Select procedure that follows is executed whenever an item on the chart is selected:

Private Sub Chart_Select(ByVal ElementID As Long, _
 ByVal Arg1 As Long, ByVal Arg2 As Long)
 Dim Id As String
 Select Case ElementID
 Case xlAxis: Id = “Axis”
 Case xlAxisTitle: Id = “AxisTitle”
 Case xlChartArea: Id = “ChartArea”
 Case xlChartTitle: Id = “ChartTitle”
 Case xlCorners: Id = “Corners”
 Case xlDataLabel: Id = “DataLabel”
 Case xlDataTable: Id = “DataTable”
 Case xlDownBars: Id = “DownBars”
 Case xlDropLines: Id = “DropLines”
 Case xlErrorBars: Id = “ErrorBars”
 Case xlFloor: Id = “Floor”
 Case xlHiLoLines: Id = “HiLoLines”
 Case xlLegend: Id = “Legend”
 Case xlLegendEntry: Id = “LegendEntry”
 Case xlLegendKey: Id = “LegendKey”
 Case xlMajorGridlines: Id = “MajorGridlines”
 Case xlMinorGridlines: Id = “MinorGridlines”
 Case xlNothing: Id = “Nothing”
 Case xlPlotArea: Id = “PlotArea”
 Case xlRadarAxisLabels: Id = “RadarAxisLabels”
 Case xlSeries: Id = “Series”
 Case xlSeriesLines: Id = “SeriesLines”
 Case xlShape: Id = “Shape”
 Case xlTrendline: Id = “Trendline”
 Case xlUpBars: Id = “UpBars”
 Case xlWalls: Id = “Walls”
 Case xlXErrorBars: Id = “XErrorBars”
 Case xlYErrorBars: Id = “YErrorBars”
 Case Else:: Id = “Some unknown thing”
 End Select

 MsgBox “Selection type:” & Id & vbCrLf & Arg1 & vbCrLf & Arg2
End Sub

Chapter 18: Working with Charts 615

This procedure displays a message box that contains a description of the selected item, plus the
values for Art1 and Arg2. When the Select event occurs, the ElementID argument contains
an integer that corresponds to what was selected. The Arg1 and Arg2 arguments provide addi-
tional information about the selected item (see the Help system for details). The Select Case
structure converts the built-in constants to descriptive strings.

This isn’t a comprehensive listing of all items that could appear in a Chart object.
That’s why I include the Case Else statement.

Enabling events for an embedded chart
As I note in the preceding section, Chart events are automatically enabled for chart sheets but
not for charts embedded in a worksheet. To use events with an embedded chart, you need to
perform the following steps.

Create a class module
In the Visual Basic Editor (VBE) window, select your project in the Project window and choose
Insert➜Class Module. This will add a new (empty) class module to your project. Then use the
Properties window to give the class module a more descriptive name (such as clsChart).
Renaming the class module isn’t necessary, but it’s a good practice.

Declare a public Chart object
The next step is to declare a Public variable that will represent the chart. The variable should
be of type Chart, and it must be declared in the class module by using the WithEvents key-
word. If you omit the WithEvents keyword, the object will not respond to events. Following is
an example of such a declaration:

Public WithEvents clsChart As Chart

Connect the declared object with your chart
Before your event handler procedures will run, you must connect the declared object in the class
module with your embedded chart. You do this by declaring an object of type clsChart (or
whatever your class module is named). This should be a module-level object variable, declared in
a regular VBA module (not in the class module). Here’s an example:

Dim MyChart As New clsChart

Then you must write code to associate the clsChart object with a particular chart. The state-
ment below accomplishes this:

Set MyChart.clsChart = ActiveSheet.ChartObjects(1).Chart

Part V: Advanced Programming Techniques616

After the preceding statement is executed, the clsChart object in the class module points to
the first embedded chart on the active sheet. Consequently, the event-handler procedures in the
class module will execute when the events occur.

Write event handler procedures for the chart class
In this section, I describe how to write event-handler procedures in the class module. Recall that
the class module must contain a declaration such as the following:

Public WithEvents clsChart As Chart

After this new object has been declared with the WithEvents keyword, it appears in the Object
drop-down list box in the class module. When you select the new object in the Object box, the
valid events for that object are listed in the Procedure drop-down box on the right.

The following example is a simple event-handler procedure that is executed when the embedded
chart is activated. This procedure simply pops up a message box that displays the name of the
Chart object’s parent (which is a ChartObject object).

Private Sub clsChart_Activate()
 MsgBox clsChart.Parent.Name & “ was activated!”
End Sub

The companion CD-ROM contains a workbook that demonstrates the concepts that I
describe in this section. The file is events – embedded chart.xlsm.

Example: Using Chart events with an embedded chart
The example in this section provides a practical demonstration of the information presented in
the previous section. The example shown in Figure 18-14 consists of an embedded chart that
functions as a clickable image map. When chart events are enabled, clicking one of the chart col-
umns activates a worksheet that shows detailed data for the region.

The workbook is set up with four worksheets. The sheet named Main contains the embedded
chart. The other sheets are named North, South, and West. Formulas in B1:B4 sum the data in the
respective sheets, and this summary data is plotted in the chart. Clicking a column in the chart
triggers an event, and the event-handler procedure activates the appropriate sheet so that the
user can view the details for the desired region.

The workbook contains both a class module named EmbChartClass and a normal VBA module
named Module1. For demonstration purposes, the Main worksheet also contains a check box
control (from the Forms group). Clicking the check box executes the CheckBox1_Click proce-
dure, which turns event monitoring on and off:

Chapter 18: Working with Charts 617

Figure 18-14: This chart serves as a clickable image map.

In addition, each of the other worksheets contains a button that executes the ReturnToMain
macro that reactivates the Main sheet.

The complete listing of Module1 follows:

Dim SummaryChart As New EmbChartClass
Sub CheckBox1_Click()
 If Worksheets(“Main”).CheckBoxes(“Check Box 1”) = xlOn Then
 ‘Enable chart events
 Range(“A1”).Select
 Set SummaryChart.myChartClass = _
 Worksheets(1).ChartObjects(1).Chart
 Else
 ‘Disable chart events
 Set SummaryChart.myChartClass = Nothing
 Range(“A1”).Select
 End If
End Sub
Sub ReturnToMain()
‘ Called by worksheet button
 Sheets(“Main”).Activate
End Sub

The first instruction declares a new object variable SummaryChart to be of type EmbChart
Class — which, as you recall, is the name of the class module. When the user clicks the Enable
Chart Events button, the embedded chart is assigned to the SummaryChart object, which, in
effect, enables the events for the chart. The contents of the class module for EmbChartClass
follow:

Part V: Advanced Programming Techniques618

Public WithEvents myChartClass As Chart
Private Sub myChartClass_MouseDown(ByVal Button As Long, _
 ByVal Shift As Long, ByVal X As Long, ByVal Y As Long)

 Dim IDnum As Long
 Dim a As Long, b As Long

‘ The next statement returns values for
‘ IDnum, a, and b
 myChartClass.GetChartElement X, Y, IDnum, a, b
‘ Was a series clicked?
 If IDnum = xlSeries Then
 Select Case b
 Case 1
 Sheets(“North”).Activate
 Case 2
 Sheets(“South”).Activate
 Case 3
 Sheets(“West”).Activate
 End Select
 End If
 Range(“A1”).Select
End Sub

Clicking the chart generates a MouseDown event, which executes the myChartClass_
MouseDown procedure. This procedure uses the GetChartElement method to determine what
element of the chart was clicked. The GetChartElement method returns information about the
chart element at specified X and Y coordinates (information that is available via the arguments
for the myChartClass_MouseDown procedure).

This workbook, named chart image map.xlsm, is available on the companion
CD-ROM.

Discovering VBA Charting Tricks
This section contains a few charting tricks that I’ve discovered over the years. Some of these
techniques might be useful in your applications, and others are simply for fun. At the very least,
studying them could give you some new insights into the object model for charts.

Chapter 18: Working with Charts 619

Printing embedded charts on a full page
When an embedded chart is selected, you can print the chart by choosing File➜Print. The
embedded chart will be printed on a full page by itself (just as if it were on a chart sheet), yet it
will remain an embedded chart.

The following macro prints all embedded charts on the active sheet, and each chart is printed on
a full page:

Sub PrintEmbeddedCharts()
 Dim ChtObj As ChartObject
 For Each ChtObj In ActiveSheet.ChartObjects
 ChtObj.Chart.PrintOut
 Next ChtObj
End Sub

Hiding series by hiding columns
By default, Excel charts don’t display data contained in hidden rows or columns. The workbook
shown in Figure 18-15 demonstrates an easy way to allow the user to hide and unhide particular
chart series. The chart has seven data series, and it’s a confusing mess. A few simple macros
allow the user to use the ActiveX CheckBox to indicate which series they’d like to view. Figure
18-16 shows the chart with only three series displayed.

Each series is in a named range: Product_A, Product_B, and so on. Each check box has its
own Click event procedure. For example, the procedure that’s executed when the user clicks
the Product A check box is

Private Sub CheckBox1_Click()
 ActiveSheet.Range(“Product_A”).EntireColumn.Hidden = _
 Not ActiveSheet.OLEObjects(1).Object.Value
End Sub

This workbook, named hide and unhide series.xlsm, is available on the compan-
ion CD-ROM.

Part V: Advanced Programming Techniques620

Figure 18-15: Using CheckBox controls to specify which data series to display.

Figure 18-16: A confusing line chart is less confusing when some of the data columns are hidden.

Chapter 18: Working with Charts 621

Creating unlinked charts
Normally, an Excel chart uses data stored in a range. Change the data in the range, and the chart
is updated automatically. In some cases, you might want to unlink the chart from its data ranges
and produce a dead chart (a chart that never changes). For example, if you plot data generated
by various what-if scenarios, you might want to save a chart that represents some baseline so
that you can compare it with other scenarios.

The three ways to create such a chart are

 Copy the chart as a picture. Activate the chart and choose Home➜Clipboard➜Copy➜

Copy As Picture (accept the defaults in the Copy Picture dialog box). Then click a cell and
choose Home➜Clipboard➜Paste. The result will be a picture of the copied chart.

 Convert the range references to arrays. Click a chart series and then click the formula
bar. Press F9 to convert the ranges to an array, and press Enter. Repeat this for each
series in the chart.

 Use VBA to assign an array rather than a range to the XValues or Values properties
of the Series object. This technique is described next.

The following procedure creates a chart (see Figure 18-17) by using arrays. The data isn’t stored
in the worksheet. As you can see, the SERIES formula contains arrays and not range references.

Sub CreateUnlinkedChart()
 Dim MyChart As Chart
 Set MyChart = ActiveSheet.Shapes.AddChart.Chart
 With MyChart
 .SeriesCollection.NewSeries
 .SeriesCollection(1).Name = “Sales”
 .SeriesCollection(1).XValues = Array(“Jan”, “Feb”, “Mar”)
 .SeriesCollection(1).Values = Array(125, 165, 189)
 .ChartType = xlColumnClustered
 .SetElement msoElementLegendNone
 End With
End Sub

Because Excel imposes a limit to the length of a chart’s SERIES formula, this technique works
only for relatively small data sets.

Part V: Advanced Programming Techniques622

Figure 18-17: This chart uses data from arrays (not stored in a worksheet).

The following procedure creates a picture of the active chart. (The original chart isn’t deleted.) It
works only with embedded charts.

Sub ConvertChartToPicture()
 Dim Cht As Chart
 If ActiveChart Is Nothing Then Exit Sub
 If TypeName(ActiveSheet) = “Chart” Then Exit Sub
 Set Cht = ActiveChart
 Cht.CopyPicture Appearance:=xlPrinter, _
 Size:=xlScreen, Format:=xlPicture
 ActiveWindow.RangeSelection.Select
 ActiveSheet.Paste
End Sub

When a chart is converted to a picture, you can create some interesting displays by using the
Picture Tools➜Format➜Picture Styles commands (see Figure 18-18 for an example).

The two examples in this section are available on the companion CD-ROM. The filename
is unlinked charts.xlsm.

Displaying text with the MouseOver event
A common charting question deals with modifying chart tips. A chart tip is the small message
that appears next to the mouse pointer when you move the mouse over an activated chart. The
chart tip displays the chart element name and (for series) the value of the data point. The Chart
object model does not expose these chart tips, so there is no way to modify them.

Chapter 18: Working with Charts 623

Figure 18-18: After converting a chart to a picture, you can manipulate it by using a variety of commands.

To turn chart tips on or off, choose File➜Options to display the Excel Options dialog
box. Click the Advanced tab and locate the Display section. The options are labeled
Show Chart Element Names on Hover and Show Data Point Values on Hover.

This section describes an alternative to chart tips. Figure 18-19 shows a column chart that uses
the MouseOver event. When the mouse pointer is positioned over a column, the text box (a
Shape object) in the upper-left displays information about the data point. The information is
stored in a range and can consist of anything you like.

The event procedure that follows is located in the code module for the Chart sheet that contains
the chart.

Private Sub Chart_MouseMove(ByVal Button As Long, ByVal Shift As Long, _

 ByVal X As Long, ByVal Y As Long)

 Dim ElementId As Long

 Dim arg1 As Long, arg2 As Long

 On Error Resume Next

 ActiveChart.GetChartElement X, Y, ElementId, arg1, arg2

 If ElementId = xlSeries Then

 ActiveChart.Shapes(1).Visible = msoCTrue

 ActiveChart.Shapes(1).TextFrame.Characters.Text = _

 Sheets(“Sheet1”).Range(“Comments”).Offset(arg2, arg1)

 Else

 ActiveChart.Shapes(1).Visible = msoFalse

 End If

End Sub

Part V: Advanced Programming Techniques624

Figure 18-19: A text box displays information about the data point under the mouse pointer.

This procedure monitors all mouse movements on the Chart sheet. The mouse coordinates are
contained in the X and Y variables, which are passed to the procedure. The Button and Shift
arguments aren’t used in this procedure.

As in the previous example, the key component in this procedure is the GetChartElement
method. If ElementId is xlSeries, the mouse pointer is over a series. The TextBox is made
visible and displays the text in a particular cell. This text contains descriptive information about
the data point (see Figure 18-20). If the mouse pointer isn’t over a series, the text box is hidden.

The example workbook also contains a Chart_Activate event procedure that turns off the
normal ChartTip display, and a Chart_Deactivate procedure that turns the settings back on.
The Chart_Activate procedure is:

Private Sub Chart_Activate()
 Application.ShowChartTipNames = False
 Application.ShowChartTipValues = False
End Sub

Chapter 18: Working with Charts 625

Figure 18-20: Range B7:C9 contains data point information that’s displayed in the text box on the chart.

The companion CD-ROM contains this example set up for an embedded chart
(mouseover event - embedded.xlsm) and for a chart sheet (mouseover event -
chart sheet.xlsm).

Animating Charts
Most people don’t realize it, but Excel is capable of performing simple animations. For example,
you can animate shapes and charts. Consider the XY chart shown in Figure 18-21.

The X values (column A) depend on the value in cell A1. The value in each row is the previous
row’s value plus the value in A1. Column B contains formulas that calculate the SIN of the corre-
sponding value in column A. The following simple procedure produces an interesting animation.
It uses a loop to continually change the value in cell A1, which causes the values in the X and Y
ranges to change. The effect is an animated chart.

Sub SimpleAnimation()
 Dim i As Long
 Range(“A1”) = 0
 For i = 1 To 150
 DoEvents
 Range(“A1”) = Range(“A1”) + 0.035
 DoEvents
 Next i
 Range(“A1”) = 0
End Sub

Part V: Advanced Programming Techniques626

Figure 18-21: A simple VBA procedure will turn this graph into an interesting animation.

The key to chart animation is to use one or more DoEvents statements. This statement passes
control to the operating system, which (apparently) causes the chart to be updated when control
is passed back to Excel. Without the DoEvents statements, the chart’s changes would not be
displayed inside of the loop.

The companion CD-ROM contains a workbook that includes this animated chart, plus
several other animation examples. The filename is animated charts.xlsm.

Scrolling a chart
Figure 18-22 shows a chart with 5,218 data points in each series. The workbook contains six names:

 StartDay: A name for cell F1.

 NumDays: A name for cell F2.

 Increment: A name for cell F3 (used for automatic scrolling).

 Date: A named formula:

=OFFSET(Sheet1!A1,StartDay,0,NumDays,1)

 ProdA: A named formula:

=OFFSET(Sheet1!B1,StartDay,0,NumDays,1)

Chapter 18: Working with Charts 627

 ProdB: A named formula:

=OFFSET(Sheet1!C1,StartDay,0,NumDays,1)

Figure 18-22: The values in column F determine which data to display in the chart.

Each of the SERIES formulas in the chart uses names for the category values and the data. The
SERIES formula for the Product A series is as follows (I deleted the sheet name and workbook
name for clarity):

=SERIES(B1,Date,ProdA,1)

The SERIES formula for the Product B series is:

=SERIES(C1,Date,ProdB,2)

Using these names enables the user to specify a value for StartDay and NumDays, and the
chart will display a subset of the data.

The companion CD-ROM contains a workbook that includes this animated chart, plus
several other animation examples. The filename is scrolling chart.xlsm.

Part V: Advanced Programming Techniques628

A relatively simple macro makes the chart scroll. The button in the worksheet executes the fol-
lowing macro that scrolls (or stops scrolling) the chart:

Public AnimationInProgress As Boolean

Sub AnimateChart()
 Dim StartVal As Long, r As Long
 If AnimationInProgress Then
 AnimationInProgress = False
 End
 End If
 AnimationInProgress = True
 StartVal = Range(“StartDay”)
 For r = StartVal To 5219 - Range(“NumDays”) _
 Step Range(“Increment”)
 Range(“StartDay”) = r
 DoEvents
 Next r
 AnimationInProgress = False
End Sub

The AnimateChart procedure uses a public variable (AnimationInProgress) to keep track
of the animation status. The animation results from a loop that changes the value in the
StartDay cell. Because the two chart series use this value, the chart is continually updated with
a new starting value. The Scroll Increment setting determines how quickly the chart scrolls.

To stop the animation, I use an End statement rather than an Exit Sub statement. For some
reason, Exit Sub doesn’t work reliably and may even crash Excel.

Creating a hypocycloid chart
Even if you hated your high school trigonometry class, you’ll probably like the example in this
section — which relies heavily on trigonometric functions. The workbook shown in Figure 18-23
contains an XY chart that displays a nearly infinite number of dazzling hypocycloid curves. A
hypocycloid curve is the path formed by a point on a circle that rolls inside of another circle. This,
as you may recall from your childhood, is the same technique used in Hasbro’s popular
Spirograph toy.

This workbook is available on the companion CD-ROM. The filename is hypocycloid -
animate.xlsm.

The chart is an XY chart, with everything hidden except the data series. The X and Y data are
generated by using formulas stored in columns A and B. The scroll bar controls at the top let you
adjust the three parameters that determine the look of the chart. In addition, clicking the Random
button generates random values for the three parameters.

Chapter 18: Working with Charts 629

Figure 18-23: This workbook generates hypocycloid curves.

The chart itself is interesting enough, but it gets really interesting when it’s animated. The anima-
tion occurs by changing the starting value for the series within a loop.

Creating a “clock” chart
Figure 18-24 shows an XY chart formatted to look like a clock. It not only looks like a clock, but it
also functions as a clock. I can’t think of a single reason why anyone would need to display a
clock like this on a worksheet, but creating the workbook was challenging, and you might find it
instructive.

This workbook, named vba clock chart.xlsm, is available on the companion
CD-ROM.

Besides the clock chart, the workbook contains a text box that displays the time as a normal
string, as shown in Figure 18-25. Normally the text box is hidden, but you can display it by dese-
lecting the Analog Clock check box.

Part V: Advanced Programming Techniques630

Figure 18-24: This clock is fully functional and is actually an XY chart in disguise.

Figure 18-25: Displaying a digital clock in a worksheet is much easier but not as much fun to create.

As you explore this workbook from the CD-ROM, here are a few things to keep in mind:

 The ChartObject is named ClockChart, and it covers up a range named
DigitalClock, which is used to display the time digitally.

 The two buttons on the worksheet are from the Forms toolbar, and each has a macro
assigned (StartClock and StopClock).

 The CheckBox control (named cbClockType) on the worksheet is from the Forms
toolbar — not from the Control Toolbox toolbar. Clicking the object executes a procedure
named cbClockType_Click, which simply toggles the Visible property of the
ChartObject. When it’s invisible, the digital clock is revealed.

 The chart is an XY chart with four Series objects. These series represent the hour hand,
the minute hand, the second hand, and the 12 numbers.

Chapter 18: Working with Charts 631

 The UpdateClock procedure is executed when the Start Clock button is clicked. It also
uses the OnTime method of the Application object to set up a new OnTime event
that will occur in one second. In other words, the UpdateClock procedure is called
every second.

 Unlike most charts, this one doesn’t use any worksheet ranges for its data. Rather, the
values are calculated in VBA and transferred directly to the Values and XValues prop-
erties of the chart’s Series object.

Although this clock is an interesting demo, it isn’t feasible to display a continually
updating clock in a worksheet. The VBA macro must be running at all times in the back-
ground, which may interfere with other macros and reduce the overall performance.

Creating an Interactive Chart without VBA
The example shown in Figure 18-26 is a useful application that allows the user to choose two U.S.
cities (from a list of 284 cities) and view a chart that compares the cities by month in any of the
following categories: average precipitation, average temperature, percent sunshine, and average
wind speed.

Figure 18-26: This application uses a variety of techniques to plot monthly climate data for two selected
U.S. cities.

Part V: Advanced Programming Techniques632

The most interesting aspect of this application is that it uses no VBA macros. The interactivity is a
result of using Excel’s built-in features. The cities are chosen from a drop-down list, using Excel’s
Data Validation feature, and the data option is selected using four Option Button controls, which
are linked to a cell. The pieces are all connected using a few formulas.

This example demonstrates that it is indeed possible to create a user-friendly, interactive applica-
tion without the assistance of macros.

This workbook, named climate data.xlsx, is available on the companion CD-ROM.

The following sections describe the steps I took to set up this application.

Getting the data to create an interactive chart
I did a Web search and spent about five minutes locating the data I needed at the National
Climatic Data Center. I copied the data from my browser window, pasted it to an Excel work-
sheet, and did a bit of clean-up work. The result was four 13-column tables of data, which I named
PrecipitationData, TemperatureData, SunshineData, and WindData. To keep the
interface as clean as possible, I put the data on a separate sheet (named Data).

Creating the Option Button controls for an interactive chart
I needed a way to allow the user to select the data to plot and decided to use OptionButton
controls from the Forms toolbar. Because option buttons work as a group, the four Option
Button controls are all linked to the same cell: cell O3. Cell O3, therefore, contains a value from 1
to 4, depending on which option button is selected.

I needed a way to obtain the name of the data table based on the numeric value in cell O3. The
solution was to write a formula (in cell O4) that uses Excel’s CHOOSE function:

=CHOOSE(O3,”TemperatureData”,”PrecipitationData”,”SunshineData”,”WindData”)

Therefore, cell O4 displays the name of one of the four named data tables. I then did some cell
formatting behind the OptionButton controls to make them more visible.

Creating the city lists for the interactive chart
The next step is setting up the application: creating drop-down lists to enable the user to choose
the cities to be compared in the chart. Excel’s Data Validation feature makes creating a drop-
down list in a cell very easy. First, I did some cell merging to create a wider field. I merged cells
J11:M11 for the first city list and gave them the name City1. I merged cells J13:M13 for the second
city list and gave them the name City2.

Chapter 18: Working with Charts 633

To make working with the list of cities easier, I created a named range, CityList, which refers
to the first column in the PrecipitationData table.

Following are the steps that I used to create the drop-down lists:

 1. Select J11:M11.

 (Remember, these are merged cells.)

 2. Choose Data➜Data Validation to display Excel’s Data Validation dialog box.

 3. Select the Settings tab in the Data Validation dialog box.

 4. In the Allow field, choose List.

 5. In the Source field, enter =CityList.

 6. Click OK.

 7. Copy J11:M11 to J13:M13.

 This duplicates the Data Validation settings for the second city.

Figure 18-27 shows the result.

Figure 18-27: Use the Data Validation drop-down list to select a city.

Creating the interactive chart data range
The key to this application is that the chart uses data in a specific range. The data in this range is
retrieved from the appropriate data table by using formulas that utilize the VLOOKUP function
(see Figure 18-28).

Part V: Advanced Programming Techniques634

Figure 18-28: The chart uses the data retrieved by formulas in A23:M24.

The formula in cell A23, which looks up data based on the contents of City1, is

=VLOOKUP(City1,INDIRECT(DataTable),COLUMN(),FALSE)

The formula in cell A24 is the same except that it looks up data based on the contents of City2:

=VLOOKUP(City2,INDIRECT(DataTable),COLUMN(),FALSE)

After entering these formulas, I simply copied them across to the next 12 columns.

You may be wondering about the use of the COLUMN function for the third argument
of the VLOOKUP function. This function returns the column number of the cell that con-
tains the formula. This is a convenient way to avoid hard-coding the column to be
retrieved and allows the same formula to be used in each column.

Row 25 contains formulas that calculate the difference between the two cities for each month. I
used conditional formatting to apply a different color background for the largest difference and
the smallest difference.

The label above the month names is generated by a formula that refers to the DataTable cell
and constructs a descriptive title: The formula is:

=”Average “ & LEFT(DataTable,LEN(DataTable)-4)

Creating the interactive chart
After completing the previous tasks, the final step — creating the actual chart — is a breeze. The
line chart has two data series and uses the data in A22:M24. The chart title is linked to cell A21.
The data in A22:M24 changes, of course, whenever an OptionButton control is selected or a
new city is selected from either of the Data Validation lists.

Chapter 18: Working with Charts 635

Working with Sparkline Charts
I conclude this chapter with a brief discussion of Sparkline charts, a new feature in Excel 2010. A
Sparkline is a small chart that’s displayed in a cell. A Sparkline lets the viewer quickly spot time-
based trends or variations in data. Because they’re so compact, Sparklines are often used in a
group.

Figure 18-29 shows examples of the three types of Sparklines supported by Excel.

Figure 18-29: Sparkline examples.

I was pleased to see that Microsoft added this feature to Excel’s object model, which means that
you can work with Sparklines using VBA. At the top of the object hierarchy is the Sparkline
Groups collection, which is a collection of all SparklineGroup objects. A SparklineGroup
object contains Sparkline objects. Contrary to what you might expect, the parent of the
SparklineGroups collection is a Range object, not a Worksheet object. Therefore, the fol-
lowing statement generates an error:

MsgBox ActiveSheet.SparklineGroups.Count

Part V: Advanced Programming Techniques636

Rather, you need to use the Cells property (which returns a range object):

MsgBox Cells.SparklineGroups.Count

The following example lists the address of each Sparkline group on the active worksheet:

Sub ListSparklineGroups()
 Dim sg As SparklineGroup
 Dim i As Long
 For i = 1 To Cells.SparklineGroups.Count
 Set sg = Cells.SparklineGroups(i)
 MsgBox sg.Location.Address
 Next i
End Sub

For some reason, you can’t use the For Each construct to loop through the objects in the
SparklineGroups collection. You need to refer to the objects by their index number.

Following is another example of working with Sparklines in VBA. The SparklineReport proce-
dure lists information about each Sparkline on the active sheet.

Sub SparklineReport()
 Dim sg As SparklineGroup
 Dim sl As Sparkline
 Dim SGType As String
 Dim SLSheet As Worksheet
 Dim i As Long, j As Long, r As Long

 If Cells.SparklineGroups.Count = 0 Then
 MsgBox “No sparklines were found on the active sheet.”
 Exit Sub
 End If

 Set SLSheet = ActiveSheet
‘ Insert new worksheet for the report
 Worksheets.Add

‘ Headings
 With Range(“A1”)
 .Value = “Sparkline Report: “ & SLSheet.Name & “ in “ _
 & SLSheet.Parent.Name

Chapter 18: Working with Charts 637

 .Font.Bold = True
 .Font.Size = 16
 End With
 With Range(“A3:F3”)
 .Value = Array(“Group #”, “Sparkline Grp Range”, _
 “# in Group”, “Type”, “Sparkline #”, “Source Range”)
 .Font.Bold = True
 End With
 r = 4

 ‘Loop through each sparkline group
 For i = 1 To SLSheet.Cells.SparklineGroups.Count
 Set sg = SLSheet.Cells.SparklineGroups(i)
 Select Case sg.Type
 Case 1: SGType = “Line”
 Case 2: SGType = “Column”
 Case 3: SGType = “Win/Loss”
 End Select
 ‘ Loop through each sparkline in the group
 For j = 1 To sg.Count
 Set sl = sg.Item(j)
 Cells(r, 1) = i ‘Group #
 Cells(r, 2) = sg.Location.Address
 Cells(r, 3) = sg.Count
 Cells(r, 4) = SGType
 Cells(r, 5) = j ‘Sparkline # within Group
 Cells(r, 6) = sl.SourceData
 r = r + 1
 Next j
 r = r + 1
 Next i
End Sub

Figure 18-30 shows the report generated for the worksheet in Figure 18-29.

This workbook, named sparkline report.xlsm, is available on the companion
CD-ROM.

Part V: Advanced Programming Techniques638

Figure 18-30: The SparklineReport procedure.

639

19
Understanding Excel’s
Events
In This Chapter

● Recognizing the types of events that Excel can monitor

● Figuring out what you need to know to work with events

● Exploring examples of Workbook events, Worksheet events, Chart events, and
UserForm events

● Using Application events to monitor all open workbooks

● Seeing examples of processing time-based events and keystroke events

What You Should Know about Events
In several earlier chapters in this book, I present examples of VBA event-handler procedures,
which are specially named procedures that are executed when a specific event occurs. An exam-
ple is the CommandButton1_Click procedure that is executed when the user clicks an object
named CommandButton1 stored on a UserForm or on a worksheet. Clicking the button is an
event that triggers the execution of the event-handler VBA code.

Excel is programmed to monitor many different events that occur. These events can be classified
as the following:

 Workbook events: Events that occur for a particular workbook. Examples of such events
include Open (the workbook is opened or created), BeforeSave (the workbook is
about to be saved), and NewSheet (a new sheet is added).

 Worksheet events: Events that occur for a particular worksheet. Examples include
Change (a cell on the sheet is changed), SelectionChange (the user moves the cell
indicator), and Calculate (the worksheet is recalculated).

Part V: Advanced Programming Techniques640

 Chart events: Events that occur for a particular chart. These events include Select (an
object in the chart is selected) and SeriesChange (a value of a data point in a series is
changed). To monitor events for an embedded chart, you use a class module, as I demon-
strate in Chapter 18.

 Application events: Events that occur for the application (Excel). Examples include
NewWorkbook (a new workbook is created), WorkbookBeforeClose (any workbook
is about to be closed), and SheetChange (a cell in any open workbook is altered). To
monitor Application-level events, you need to use a class module.

 UserForm events: Events that occur for a particular UserForm or an object contained on
the UserForm. For example, a UserForm has an Initialize event (occurs before the
UserForm is displayed), and a CommandButton on a UserForm has a Click event
(occurs when the button is clicked).

 Events not associated with objects: The final category consists of two useful
Application-level events that I call On events: OnTime and OnKey. These work in a
different manner than other events.

This chapter is organized according to the preceding list. Within each section, I provide examples
to demonstrate some of the events.

Understanding event sequences
Some actions trigger multiple events. For example, when you insert a new worksheet into a
workbook, this action triggers three Application-level events:

 WorkbookNewSheet: Occurs when a new worksheet is added.

 SheetDeactivate: Occurs when the active worksheet is deactivated

 SheetActivate: Occurs when the newly added worksheet is activated.

Event sequencing is a bit more complicated than you might think. The preceding events
are Application-level events. When adding a new worksheet, additional events occur
at the Workbook level and at the Worksheet level.

At this point, just keep in mind that events fire in a particular sequence, and knowing what the
sequence is can sometimes be critical when writing event-handler procedures. Later in this chap-
ter, I describe how to determine the order of the events that occur for a particular action (see
“Monitoring Application-level events”).

Where to put event-handler procedures
VBA newcomers often wonder why their event-handler procedures aren’t being executed when
the corresponding event occurs. The answer is almost always because these procedures are
located in the wrong place.

Chapter 19: Understanding Excel’s Events 641

In the Visual Basic Editor (VBE) window, each project is listed in the Projects window. The project
components are arranged in a collapsible list, as shown in Figure 19-1.

Figure 19-1: The components for each VBA project are listed in the Project window.

Each of the following components has its own code module:

 Sheet objects (for example, Sheet1, Sheet2, and so on): Use this module for event-
handler code related to the particular worksheet.

 Chart objects (that is, chart sheets): Use this module for event-handler code related to
the chart.

 ThisWorkbook object: Use this module for event-handler code related to the workbook.

 General VBA modules: You never put event-handler procedures in a general (that is, non-
object) module.

 UserForm objects: Use this module for event-handler code related to the UserForm or
controls on the UserForm.

 Class modules: Use class modules for special-purpose event handlers, including
application-level events and events for embedded charts.

Even though the event-handler procedure must be located in the correct module, the procedure
can call other standard procedures stored in other modules. For example, the following event-
handler procedure, located in the module for the ThisWorkbook object, calls a procedure
named WorkbookSetup, which you can store in a regular VBA module:

Private Sub Workbook_Open()
 Call WorkbookSetup
End Sub

Part V: Advanced Programming Techniques642

Disabling events
By default, all events are enabled. To disable all events, execute the following VBA instruction:

Application.EnableEvents = False

To enable events, use this one:

Application.EnableEvents = True

Disabling events does not apply to events triggered by UserForm controls — for exam-
ple, the Click event generated by clicking a CommandButton control on a UserForm.

Why would you need to disable events? One common reason is to prevent an infinite loop of cas-
cading events.

For example, suppose that cell A1 of your worksheet must always contain a value less than or
equal to 12. You can write some code that is executed whenever data is entered into a cell to vali-
date the cell’s contents. In this case, you’re monitoring the Change event for a Worksheet with

Events in older versions of Excel
Versions of Excel prior to Office 97 also supported events, but the programming techniques
required to take advantage of those were quite different from what I describe in this chapter.

For example, if you had a procedure named Auto_Open stored in a regular VBA module, this
procedure would be executed when the workbook was opened. Beginning with Excel 97, the
Auto_Open procedure was supplemented by the Workbook_Open event-handler procedure,
which was stored in the code module for the ThisWorkbook object and was executed prior to
Auto_Open.

Before Excel 97, you often needed to explicitly set up events. For example, if you needed to exe-
cute a procedure whenever data was entered into a cell, you would need to execute a statement
such as the following:

Sheets(“Sheet1”).OnEntry = “ValidateEntry”

This statement instructs Excel to execute the procedure named ValidateEntry whenever
data is entered into a cell. With Excel 97 and later, you simply create a procedure named
Worksheet_Change and store it in the code module for the Sheet1 object.

For compatibility reasons, Excel 97 and later versions still support the older event mechanism
(although they are no longer documented in the Help system). I mention old events just in case
you ever encounter an old workbook that seems to have some odd statements.

Chapter 19: Understanding Excel’s Events 643

a procedure named Worksheet_Change. Your procedure checks the user’s entry, and, if the
entry isn’t less than or equal to 12, it displays a message and then clears that entry. The problem
is that clearing the entry with your VBA code generates a new Change event, so your event-
handler procedure is executed again. This is not what you want to happen, so you need to dis-
able events before you clear the cell, and then enable events again so that you can monitor the
user’s next entry.

Another way to prevent an infinite loop of cascading events is to declare a Static Boolean vari-
able at the beginning of your event-handler procedure, such as this:

Static AbortProc As Boolean

Whenever the procedure needs to make its own changes, set the AbortProc variable to True
(otherwise, make sure that it’s set to False). Insert the following code at the top of the
procedure:

If AbortProc Then
 AbortProc = False
 Exit Sub
End if

The event procedure is re-entered, but the True state of AbortProc causes the procedure to
end. In addition, AbortProc is reset to False.

For a practical example of validating data, see “Monitoring a range to validate data
entry,” later in this chapter.

Disabling events in Excel applies to all workbooks. For example, if you disable events in
your procedure and then open another workbook that has, say, a Workbook_Open pro-
cedure, that procedure will not execute.

Entering event-handler code
Every event-handler procedure has a predetermined name, and you can’t change those names.
Following are some examples of event-handler procedure names:

 Worksheet_SelectionChange

 Workbook_Open

 Chart_Activate

 Class_Initialize

Part V: Advanced Programming Techniques644

You can declare the procedure by typing it manually, but a much better approach is to let the
VBE do it for you.

Figure 19-2 shows the code module for the ThisWorkbook object. To insert a procedure decla-
ration, select Workbook from the objects list on the left. Then select the event from the proce-
dures list on the right. When you do so, you get a procedure “shell” that contains the procedure
declaration line and an End Sub statement.

Figure 19-2: The best way to create an event procedure is to let the VBE do it for you.

For example, if you select Workbook from the objects list and Open from the procedures list, the
VBE inserts the following (empty) procedure:

Private Sub Workbook_Open()

End Sub

Your VBA code, of course, goes between these two statements.

Event-handler procedures that use arguments
Some event-handler procedures use an argument list. For example, you may need to create an
event-handler procedure to monitor the SheetActivate event for a workbook. If you use the
technique described in the previous section, the VBE creates the following procedure:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)

End Sub

Chapter 19: Understanding Excel’s Events 645

This procedure uses one argument (Sh), which represents the sheet that was activated. In this
case, Sh is declared as an Object data type rather than a Worksheet data type because the
activated sheet can also be a chart sheet.

Your code can use the data passed as an argument. The following procedure is executed when-
ever a sheet is activated. It displays the type and name of the activated sheet by using VBA’s
TypeName function and accessing the Name property of the object passed in the argument:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 MsgBox TypeName(Sh) & vbCrLf & Sh.Name
End Sub

Figure 19-3 shows the message that appears when Sheet1 is activated.

Figure 19-3: This message box was triggered by a SheetActivate event.

Several event-handler procedures use a Boolean argument named Cancel. For example, the
declaration for a workbook’s BeforePrint event is as follows:

Private Sub Workbook_BeforePrint(Cancel As Boolean)

The value of Cancel passed to the procedure is False. However, your code can set Cancel to
True, which will cancel the printing. The following example demonstrates this:

Private Sub Workbook_BeforePrint(Cancel As Boolean)
 Dim Msg As String
 Dim Ans As Integer
 Msg = “Have you loaded the 5164 label stock?”

Part V: Advanced Programming Techniques646

 Ans = MsgBox(Msg, vbYesNo, “About to print...”)
 If Ans = vbNo Then Cancel = True
End Sub

The Workbook_BeforePrint procedure is executed before the workbook is printed. This rou-
tine displays the message box shown in Figure 19-4. If the user clicks the No button, Cancel is
set to True, and nothing is printed.

Figure 19-4: You can cancel the print operation by changing the Cancel argument.

The BeforePrint event also occurs when the user previews a worksheet.

Unfortunately, Excel doesn’t provide a sheet-level BeforePrint event. Therefore, your code
can’t determine which sheet is about to be printed. Often, you can assume that the
ActiveSheet is the sheet that will be printed. However, there is no way to detect if the user
requests that the entire workbook be printed.

Getting Acquainted with Workbook-Level Events
Workbook-level events occur within a particular workbook. Table 19-1 lists the commonly used
workbook events, along with a brief description of each. Consult the Help system for a complete
list of Workbook-level events. Workbook event-handler procedures are stored in the code mod-
ule for the ThisWorkbook object.

Table 19-1: Commonly Used Workbook Events

Event Action That Triggers the Event

Activate A workbook is activated.

AddinInstall A workbook is installed as an add-in.

AddinUninstall A workbook is uninstalled as an add-in.

After Save A workbook has been saved.

BeforeClose A workbook is about to be closed.

BeforePrint A workbook (or anything in it) is about to be printed or previewed.

BeforeSave A workbook is about to be saved.

Chapter 19: Understanding Excel’s Events 647

Event Action That Triggers the Event

Deactivate A workbook is deactivated.

NewChart A chart has been created.

NewSheet A new sheet is created in a workbook.

Open A workbook is opened.

SheetActivate Any sheet is activated.

SheetBeforeDoubleClick Any worksheet is double-clicked. This event occurs before the default
double-click action.

SheetBeforeRightClick Any worksheet is right-clicked. This event occurs before the default
right-click action.

SheetCalculate Any worksheet is calculated (or recalculated).

SheetChange Any worksheet is changed by the user or by an external link.

SheetDeactivate Any sheet is deactivated.

SheetFollowHyperlink A hyperlink on a sheet is clicked.

SheetPivotTableUpdate A pivot table is changed or refreshed.

SheetSelectionChange The selection on any worksheet is changed.

WindowActivate Any workbook window is activated.

WindowDeactivate Any workbook window is deactivated.

WindowResize Any workbook window is resized.

If you need to monitor events for any workbook, you need to work with Application-
level events (see “Monitoring with Application Events,” later in this chapter). The remain-
der of this section presents examples of using Workbook-level events. All the example
procedures that follow must be located in the code module for the ThisWorkbook
object. If you put them into any other type of code module, they won’t work.

The Open event
One of the most common events that is monitored is the Open event for a workbook. This event
is triggered when the workbook (or add-in) is opened and executes the procedure named
Workbook_Open. A Workbook_Open procedure is often used for tasks such as these:

 Displaying welcome messages.

 Opening other workbooks.

 Setting up shortcut menus.

 Activating a particular sheet or cell.

 Ensuring that certain conditions are met. For example, a workbook may require that a
particular add-in is installed.

Part V: Advanced Programming Techniques648

 Setting up certain automatic features. For example, you can define key combinations
(see “The OnKey event” section, later in this chapter).

 Setting a worksheet’s ScrollArea property (which isn’t stored with the workbook).

 Setting UserInterfaceOnly protection for worksheets so that your code can operate
on protected sheets. This setting is an argument for the Protect method and isn’t
stored with the workbook.

Creating event-handler procedures doesn’t guarantee that they will be executed. If the
user holds down the Shift key when opening a workbook, the workbook’s Workbook_
Open procedure won’t execute. And, of course, the procedure won’t execute if the
workbook is opened with macros disabled.

Following is an example of a Workbook_Open procedure. It uses VBA’s Weekday function to
determine the day of the week. If it’s Friday, a message box appears, reminding the user to per-
form a weekly file backup. If it’s not Friday, nothing happens.

Private Sub Workbook_Open()
 If Weekday(Now) = vbFriday Then
 Msg = “Today is Friday. Make sure that you “
 Msg = Msg & “do your weekly backup!”
 MsgBox Msg, vbInformation
 End If
End Sub

The Activate event
The following procedure is executed whenever the workbook is activated. This procedure simply
maximizes the active window. If the workbook window is already maximized, the procedure has
no effect.

Private Sub Workbook_Activate()
 ActiveWindow.WindowState = xlMaximized
End Sub

The SheetActivate event
The following procedure is executed whenever the user activates any sheet in the workbook. If
the sheet is a worksheet, the code selects cell A1. If the sheet isn’t a worksheet, nothing happens.
This procedure uses VBA’s TypeName function to ensure that the activated sheet is a worksheet
(as opposed to a chart sheet).

Chapter 19: Understanding Excel’s Events 649

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 If TypeName(Sh) = “Worksheet” Then _
 Range(“A1”).Select
End Sub

The following procedure demonstrates an alternative method that doesn’t require checking the
sheet type. In this procedure, the error is just ignored.

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 On Error Resume Next
 Range(“A1”).Select
End Sub

The NewSheet event
The following procedure is executed whenever a new sheet is added to the workbook. The sheet
is passed to the procedure as an argument. Because a new sheet can be a worksheet or a chart
sheet, this procedure determines the sheet type. If it’s a worksheet, the code adjusts the width of
all columns and inserts a date and time stamp in cell A1 on the new sheet.

Private Sub Workbook_NewSheet(ByVal Sh As Object)
 If TypeName(Sh) = “Worksheet” Then
 Sh.Cells.ColumnWidth = 35
 Sh.Range(“A1”) = “Sheet added “ & Now()
 End If
End Sub

The BeforeSave event
The BeforeSave event occurs before the workbook is actually saved. As you know, choosing the
File➜Save command sometimes brings up the Save As dialog box. This dialog box appears if
the workbook has never been saved or if it was opened in read-only mode.

When the Workbook_BeforeSave procedure is executed, it receives an argument
(SaveAsUI) that indicates whether the Save As dialog box will be displayed. The following
example demonstrates this:

Private Sub Workbook_BeforeSave _
 (ByVal SaveAsUI As Boolean, Cancel As Boolean)
 If SaveAsUI Then
 MsgBox “Make sure you save this file on drive J.”
 End If
End Sub

Part V: Advanced Programming Techniques650

When the user attempts to save the workbook, the Workbook_BeforeSave procedure is exe-
cuted. If the save operation will bring up Excel’s Save As dialog box, the SaveAsUI variable is
True. The Workbook_BeforeSave procedure checks this variable and displays a message only
if the Save As dialog box will be displayed. If the procedure sets the Cancel argument to True,
the file won’t be saved (or the Save As dialog box won’t be shown).

The Deactivate event
The following example demonstrates the Deactivate event. This procedure is executed when-
ever the workbook is deactivated, and essentially never lets the user deactivate the workbook.
One way to trigger the Deactivate event is to activate a different workbook window. When
the Deactivate event occurs, the code reactivates the workbook and displays a message.

Private Sub Workbook_Deactivate()
 Me.Activate
 MsgBox “Sorry, you may not leave this workbook”
End Sub

I don’t recommend using procedures, such as this one, that attempt to “take over”
Excel. It can be very frustrating and confusing for the user. Rather, I would recommend
training the user how to use your application correctly.

This example also illustrates the importance of understanding event sequences. If you try out this
procedure, you’ll see that it works well if the user attempts to activate another workbook.
However, it’s important to understand that the workbook Deactivate event is also triggered
by the following actions:

 Closing the workbook

 Opening a new workbook

 Minimizing the workbook

In other words, this procedure may not perform as it was originally intended. When programming
event procedures, you need to make sure that you understand all the actions that can trigger the
events.

The BeforePrint event
The BeforePrint event occurs when the user requests a print or a print preview but before the
printing or previewing actually occurs. The event uses a Cancel argument, so your code can
cancel the printing or previewing by setting the Cancel variable to True. Unfortunately, you
can’t determine whether the BeforePrint event was triggered by a print request or by a pre-
view request.

Chapter 19: Understanding Excel’s Events 651

Updating a header or footer
Excel’s page header and footer options are very flexible, but these options don’t include a common
request: the ability to print the contents of a specific cell in the header or footer. The Workbook_
BeforePrint event provides a way to display the current contents of a cell in the header or
footer when the workbook is printed. The following code updates each sheet’s left footer whenever
the workbook is printed or previewed. Specifically, it inserts the contents of cell A1 on Sheet1:

Private Sub Workbook_BeforePrint(Cancel As Boolean)
 Dim sht As Object
 For Each sht In ThisWorkbook.Sheets
 sht.PageSetup.LeftFooter = _
 Worksheets(“Sheet1”).Range(“A1”)
 Next sht
End Sub

This procedure loops through each sheet in the workbook and sets the LeftFooter property of
the PageSetup object to the value in cell A1 on Sheet1.

Hiding columns before printing
The example that follows uses a Workbook_BeforePrint procedure to hide columns B:D in
Sheet1 before printing or previewing.

Private Sub Workbook_BeforePrint(Cancel As Boolean)
 ‘Hide columns B:D on Sheet1 before printing
 Worksheets(“Sheet1”).Range(“B:D”).EntireColumn.Hidden = True
 End Sub

Ideally, you would want to unhide the columns after printing has occurred. It would be nice if Excel
provided an AfterPrint event, but that event doesn’t exist. However, there is a way to unhide
the columns automatically. The modified procedure that follows schedules an OnTime event,
which calls a procedure named UnhideColumns five seconds after printing or previewing.

Private Sub Workbook_BeforePrint(Cancel As Boolean)
 ‘Hide columns B:D on Sheet1 before printing
 Worksheets(“Sheet1”).Range(“B:D”).EntireColumn.Hidden = True
 Application.OnTime Now()+ TimeValue(“0:00:05”), “UnhideColumns”
End Sub

The UnhideColumns procedure goes in a standard VBA module.

Sub UnhideColumns()
 Worksheets(“Sheet1”).Range(“B:D”).EntireColumn.Hidden = False
End Sub

Part V: Advanced Programming Techniques652

This example, named hide columns before printing.xlsm, is available on the
companion CD-ROM.

For more information about OnTime events, see “The OnTime event,” later in this chapter.

The BeforeClose event
The BeforeClose event occurs before a workbook is closed. This event is often used in con-
junction with a Workbook_Open event handler. For example, you might use the Workbook_
Open procedure to add shortcut menu items for your workbook and then use the Workbook_
BeforeClose procedure to delete the shortcut menu items when the workbook is closed. That
way, the custom menu is available only when the workbook is open.

Unfortunately, the Workbook_BeforeClose event isn’t implemented very well. For example, if
you attempt to close a workbook that hasn’t been saved, Excel displays a prompt asking whether
you want to save the workbook before closing, as shown in Figure 19-5. The problem is, the
Workbook_BeforeClose event has already occurred by the time the user sees this message. If
the user cancels, your event-handler procedure has already executed.

Figure 19-5: When this message appears, Workbook_BeforeClose has already done its thing.

Consider this scenario: You need to display custom shortcut menus when a particular workbook
is open. Therefore, your workbook uses a Workbook_Open procedure to create the menu items
when the workbook is opened, and it uses a Workbook_BeforeClose procedure to remove
the menu items when the workbook is closed. These two event-handler procedures follow. Both
of these call other procedures, which aren’t shown here.

Private Sub Workbook_Open()
 Call CreateShortcutMenuItems
End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Call DeleteShortcutMenuItems
End Sub

Chapter 19: Understanding Excel’s Events 653

As I note earlier, Excel’s Do you want to save . . . prompt displays after the
Workbook_BeforeClose event handler runs. So, if the user clicks Cancel, the workbook
remains open, but the custom menu items have already been deleted.

One solution to this problem is to bypass Excel’s prompt and write your own code in the
Workbook_BeforeClose procedure to ask the user to save the workbook. The following code
demonstrates:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Dim Msg As String
 If Me.Saved = False Then
 Msg = “Do you want to save the changes you made to “
 Msg = Msg & Me.Name & “?”
 Ans = MsgBox(Msg, vbQuestion + vbYesNoCancel)
 Select Case Ans
 Case vbYes
 Me.Save
 Case vbCancel
 Cancel = True
 Exit Sub
 End Select
 End If
 Call DeleteShortcutMenuItems
 Me.Saved = True
End Sub

This procedure checks the Saved property of the Workbook object to determine whether the
workbook has been saved. If so, no problem — the DeleteShortcutMenuItems procedure is
executed, and the workbook is closed. But, if the workbook hasn’t been saved, the procedure dis-
plays a message box that duplicates the one that Excel would normally show. The effect of click-
ing each of the three buttons is

 Yes: The workbook is saved, the shortcut menu items are deleted, and the workbook is
closed.

 No: The code sets the Saved property of the Workbook object to True (but doesn’t
actually save the file), deletes the menu items, and closes the file.

 Cancel: The BeforeClose event is canceled, and the procedure ends without deleting
the shortcut menu items.

A workbook with this example is available on the companion CD-ROM. The file is
named workbook_beforeclose workaround.xlsm.

Part V: Advanced Programming Techniques654

Examining Worksheet Events
The events for a Worksheet object are some of the most useful, because most of what happens
in Excel occurs on a worksheet. Monitoring these events can make your applications perform
feats that would otherwise be impossible.

Table 19-2 lists the most commonly used worksheet events, with a brief description of each.

Table 19-2: Commonly Used Worksheet Events

Event Action That Triggers the Event

Activate The worksheet is activated.

BeforeDoubleClick The worksheet is double-clicked.

BeforeRightClick The worksheet is right-clicked.

Calculate The worksheet is calculated (or recalculated).

Change Cells on the worksheet are changed by the user or by an external link.

Deactivate The worksheet is deactivated.

FollowHyperlink A hyperlink on the sheet is clicked.

PivotTableUpdate A pivot table on the sheet is updated.

SelectionChange The selection on the worksheet is changed or refreshed.

Remember that the code for a worksheet event must be stored in the code module for the spe-
cific worksheet.

To quickly activate the code module for a worksheet, right-click the sheet tab and then
choose View Code.

The Change event
The Change event is triggered when any cell in a worksheet is changed by the user or by a VBA
procedure. The Change event is not triggered when a calculation generates a different value for
a formula or when an object is added to the sheet.

When the Worksheet_Change procedure is executed, it receives a Range object as its
Target argument. This Range object represents the changed cell or range that triggered the
event. The following procedure is executed whenever the worksheet is changed. It displays a
message box that shows the address of the Target range:

Private Sub Worksheet_Change(ByVal Target As Excel.Range)
 MsgBox “Range “ & Target.Address & “ was changed.”
End Sub

Chapter 19: Understanding Excel’s Events 655

To get a better feel for the types of actions that generate a Change event for a worksheet, enter
the preceding procedure in the code module for a Worksheet object. After entering this proce-
dure, activate Excel and make some changes to the worksheet by using various techniques.
Every time the Change event occurs, you’ll see a message box that displays the address of the
range that was changed.

When I ran this procedure, I discovered some interesting quirks. Some actions that should trigger
the event don’t, and other actions that shouldn’t trigger the event do!

 Changing the formatting of a cell doesn’t trigger the Change event (as expected). But
copying and pasting formatting does trigger the Change event. Choosing the
Home➜Editing➜Clear➜Clear Formats command also triggers the event.

 Merging cells doesn’t trigger the Change event, even if the contents of some of the
merged cells are deleted in the process.

 Adding, editing, or deleting a cell comment doesn’t trigger the Change event.

 Pressing Delete generates an event even if the cell is empty to start with.

 Cells that are changed by using Excel commands may or may not trigger the Change
event. For example, sorting a range doesn’t trigger the event. But using the spell checker
does.

 If your VBA procedure changes a cell, it does trigger the Change event.

As you can see from the preceding list, it’s not a good idea to rely on the Change event to detect
cell changes for critical applications.

Monitoring a specific range for changes
The Change event occurs when any cell on the worksheet is changed. But, in most cases, all you
care about are changes made to a specific cell or range. When the Worksheet_Change event
handler procedure is called, it receives a Range object as its argument. This Range object repre-
sents the cell or cells that were changed.

Assume that your worksheet has a range named InputRange, and you’d like to monitor
changes made only within this range. There is no Change event for a Range object, but you can
perform a quick check within the Worksheet_Change procedure:

Private Sub Worksheet_Change(ByVal Target As Excel.Range)
 Dim MRange As Range
 Set MRange = Range(“InputRange”)
 If Not Intersect(Target, MRange) Is Nothing Then _
 MsgBox “A changed cell is in the input range.”
End Sub

Part V: Advanced Programming Techniques656

This example uses a Range object variable named MRange, which represents the worksheet
range that you’re interested in monitoring for changes. The procedure uses VBA’s Intersect
function to determine whether the Target range (passed to the procedure in its argument)
intersects with MRange. The Intersect function returns an object that consists of all the cells
that are contained in both of its arguments. If the Intersect function returns Nothing, the
ranges have no cells in common. The Not operator is used so the expression returns True if the
ranges do have at least one cell in common. Therefore, if the changed range has any cells in com-
mon with the range named InputRange, a message box is displayed. Otherwise, the procedure
ends, and nothing happens.

Monitoring a range to make formulas bold
The following example monitors a worksheet and also makes formula entries bold and nonfor-
mula entries not bold.

Private Sub Worksheet_Change(ByVal Target As Excel.Range)
 Dim cell As Range
 For Each cell In Target
 cell.Font.Bold = cell.HasFormula
 Next cell
End Sub

Because the object passed to the Worksheet_Change procedure can consist of a multicell
range, the procedure loops through each cell in the Target range. If the cell has a formula, the
cell is made bold. Otherwise, the Bold property is set to False.

The procedure works, but it has a problem. What if the user deletes a row or column? In such a
case, the Target range consists of a huge number of cells. The For Each loop would take a
very long time to examine them all — and it wouldn’t find any formulas.

The modified procedure listed next solves this problem by changing the Target range to be the
intersection of the Target range and the worksheet’s used range. The check to ensure that
Target is Not Nothing handles the case in which an empty row or column outside of the used
range is deleted.

Private Sub Worksheet_Change(ByVal Target As Excel.Range)
 Dim cell As Range
 Set Target = Intersect(Target, Target.Parent.UsedRange)
 If Not Target Is Nothing Then
 For Each cell In Target
 cell.Font.Bold = cell.HasFormula
 Next cell
 End If
End Sub

Chapter 19: Understanding Excel’s Events 657

This example, named make formulas bold.xlsm, is available on the companion
CD-ROM.

A potentially serious side-effect of using a Worksheet_Change procedure is that doing
so may effectively turn off Excel’s Undo feature. Excel’s Undo stack is destroyed when-
ever an event procedure makes a change to the worksheet.

Monitoring a range to validate data entry
Excel’s data validation feature is a useful tool, but it suffers from a potentially serious problem.
When you paste data to a cell that uses data validation, the pasted value not only fails to get vali-
dated, but it also deletes the validation rules associated with the cell! This fact makes the data
validation feature practically worthless for critical applications. In this section, I demonstrate how
you can use the Change event for a worksheet to create your own data validation procedure.

The companion CD-ROM contains two versions of this example. One (named validate
entry1.xlsm) uses the EnableEvents property to prevent cascading Change events;
the other (named validate entry2.xlsm) uses a Static variable. See “Disabling
events,” earlier in this chapter.

The Worksheet_Change procedure that follows is executed when a user changes a cell. The
validation is restricted to the range named InputRange. Values entered into this range must be
integers between 1 and 12.

Private Sub Worksheet_Change(ByVal Target As Range)
 Dim VRange As Range, cell As Range
 Dim Msg As String
 Dim ValidateCode As Variant
 Set VRange = Range(“InputRange”)
 If Intersect(VRange, Target) Is Nothing Then Exit Sub
 For Each cell In Intersect(VRange, Target)
 ValidateCode = EntryIsValid(cell)
 If TypeName(ValidateCode) = “String” Then
 Msg = “Cell “ & cell.Address(False, False) & “:”
 Msg = Msg & vbCrLf & vbCrLf & ValidateCode
 MsgBox Msg, vbCritical, “Invalid Entry”
 Application.EnableEvents = False
 cell.ClearContents
 cell.Activate
 Application.EnableEvents = True
 End If
 Next cell
End Sub

Part V: Advanced Programming Techniques658

The Worksheet_Change procedure creates a Range object (named VRange) that represents
the worksheet range that is validated. Then it loops through each cell in the Target argument,
which represents the cell or cells that were changed. The code determines whether each cell is
contained in the range to be validated. If so, it passes the cell as an argument to a custom func-
tion (EntryIsValid), which returns True if the cell is a valid entry.

If the entry isn’t valid, the EntryIsValid function returns a string that describes the problem,
and the user is informed via a message box (see Figure 19-6). When the message box is dis-
missed, the invalid entry is cleared from the cell, and the cell is activated. Notice that events are
disabled before the cell is cleared. If events weren’t disabled, clearing the cell would produce a
Change event that causes an endless loop.

Figure 19-6: This message box describes the problem when the user makes an invalid entry.

The EntryIsValid function procedure is shown here:

Private Function EntryIsValid(cell) As Variant
‘ Returns True if cell is an integer between 1 and 12
‘ Otherwise it returns a string that describes the problem
‘ Numeric?
 If Not WorksheetFunction.IsNumber (cell) Then
 EntryIsValid = “Non-numeric entry.”
 Exit Function
 End If
‘ Integer?
 If CInt(cell) <> cell Then
 EntryIsValid = “Integer required.”
 Exit Function
 End If
‘ Between 1 and 12?
 If cell < 1 Or cell > 12 Then
 EntryIsValid = “Valid values are between 1 and 12.”
 Exit Function

Chapter 19: Understanding Excel’s Events 659

 End If
‘ It passed all the tests
 EntryIsValid = True
End Function

The preceding technique works, but it can be rather tedious to set up. Wouldn’t it be nice if you
could take advantage of Excel’s data validation feature, yet ensure that the data validation rules
don’t get deleted if the user pastes data into the validation range? The next example solves the
problem.

Private Sub Worksheet_Change(ByVal Target As Range)
 Dim VT As Long
 ‘Do all cells in the validation range
 ‘still have validation?
 On Error Resume Next
 VT = Range(“InputRange”).Validation.Type
 If Err.Number <> 0 Then
 Application.Undo
 MsgBox “Your last operation was canceled.” & _
 “It would have deleted data validation rules.”, vbCritical
 End If
End Sub

This event procedure checks the validation type of the range (named InputRange) that is sup-
posed to contain the data validation rules. If the VT variable contains an error, that means that
one or more cells in the InputRange no longer contain data validation. In other words, the
worksheet change probably resulted from data being copied into the range that contains data
validation. If that’s the case, the code executes the Undo method of the Application object
and reverses the user’s action. Then it displays the message box shown in Figure 19-7.

A nice side-benefit to using this procedure is that the Undo stack isn’t destroyed.

This example, named validate entry3.xlsm, is available on the companion
CD-ROM.

Part V: Advanced Programming Techniques660

Figure 19-7: The Worksheet_Change procedure ensures that data validation doesn’t get deleted.

The SelectionChange event
The following procedure demonstrates the SelectionChange event. It’s executed whenever
the user makes a new selection on the worksheet.

Private Sub Worksheet_SelectionChange(ByVal Target _
 As Excel.Range)
 Cells.Interior.ColorIndex = xlNone
 With ActiveCell
 .EntireRow.Interior.Color = RGB(219, 229, 241)
 .EntireColumn.Interior.Color = RGB(219, 229, 241)
 End With
End Sub

This procedure shades the row and column of the active cell, which makes identifying the active
cell very easy. The first statement removes the background color for all cells in the worksheet.
Next, the entire row and column of the active cell is shaded light blue. Figure 19-8 shows the
shading in effect.

You won’t want to use the procedure if your worksheet contains any background shading
because the shading will be wiped out. The exceptions are tables with a style applied and back-
ground colors resulting from conditional formatting. In both of these instances, the background
color is maintained. Keep in mind, however, that executing the Worksheet_SelectionChange
macro destroys the Undo stack, so using this technique essentially disables Excel’s Undo feature.

This example, named shade active row and column.xlsm, is available on the
companion CD-ROM.

Chapter 19: Understanding Excel’s Events 661

Figure 19-8: Moving the cell cursor causes the active cell’s row and column to be shaded.

The BeforeDoubleClick event
You can set up a VBA procedure to be executed when the user double-clicks a cell. In the follow-
ing example (which is stored in the Code window for a Sheet object), double-clicking a cell tog-
gles the cell’s style. If the cell style is “Normal”, it applies the “Good” style. If the style is
“Good”, it applies the “Normal” style.

Private Sub Worksheet_BeforeDoubleClick _
 (ByVal Target As Excel.Range, Cancel As Boolean)
 If Target.Style = “Good” Then
 Target.Style = “Normal”
 Else
 Target.Style = “Good”
 End If
 Cancel = True
End Sub

If Cancel is set to True, the default double-click action doesn’t occur. In other words, double-
clicking the cell won’t put Excel into cell edit mode.

Part V: Advanced Programming Techniques662

The BeforeRightClick event
When the user right-clicks in a worksheet, Excel displays a shortcut menu. If, for some reason,
you’d like to prevent the shortcut menu from appearing in a particular sheet, you can trap the
RightClick event. The following procedure sets the Cancel argument to True, which cancels
the RightClick event and thereby cancels the shortcut menu. Instead, a message box is
displayed.

Private Sub Worksheet_BeforeRightClick _
 (ByVal Target As Excel.Range, Cancel As Boolean)
 Cancel = True
 MsgBox “The shortcut menu is not available.”
End Sub

Keep in mind that the user can still access the shortcut menu by using Shift+F10. However, only a
tiny percentage of Excel users are aware of that keystroke combination.

To find out how to intercept the Shift+F10 key combination, see “The OnKey event,”
later in this chapter. Chapter 23 describes other methods for disabling shortcut menus.

Following is another example that uses the BeforeRightClick event. This procedure checks
to see whether the cell that was right-clicked contains a numeric value. If so, the code displays
the Number tab of the Format Cells dialog box and sets the Cancel argument to True (avoid-
ing the normal shortcut menu display). If the cell doesn’t contain a numeric value, nothing special
happens — the shortcut menu is displayed as usual.

Private Sub Worksheet_BeforeRightClick _
 (ByVal Target As Excel.Range, Cancel As Boolean)
 If IsNumeric(Target) And Not IsEmpty(Target) Then
 Application.CommandBars.ExecuteMso (“NumberFormatsDialog”)
 Cancel = True
 End If
End Sub

Notice that the code makes an additional check to determine if the cell is not empty. This check is
because VBA considers empty cells to be numeric.

Checking Out Chart Events
This section describes some of the events associated with charts. By default, events are enabled
only for charts that reside on a chart sheet. To work with events for an embedded chart, you
need to create a class module.

Chapter 19: Understanding Excel’s Events 663

Using the Object Browser to locate events
The Object Browser is a useful tool that can help you learn about objects and their properties
and methods. It can also help you find out which objects support a particular event. For exam-
ple, say you’d like to find out which objects support the MouseMove event. Activate the VBE
and press F2 to display the Object Browser window. Make sure that <All Libraries> is
selected; then type MouseMove and click the binoculars icon (see the accompanying figure).

The Object Browser displays a list of matching items. Events are indicated with a small yellow
lightning bolt. From this list, you can see which objects support the MouseMove event. Most of
the objects located are controls in the MSForms library, home of the UserForm control. But you
can also see that Excel’s Chart object supports the MouseMove event.

continued

Part V: Advanced Programming Techniques664

Refer to Chapter 18 for examples that deal with Chart events. Chapter 18 also
describes how to create a class module to enable events for embedded charts.

Table 19-3 contains a list of the chart events as well as a brief description of each.

Table 19-3: Events Recognized by a Chart Sheet

Event Action That Triggers the Event

Activate The chart sheet or embedded chart is activated.

BeforeDoubleClick The chart sheet or an embedded chart is double-clicked. This event occurs
before the default double-click action.

BeforeRightClick The chart sheet or an embedded chart is right-clicked. The event occurs before
the default right-click action.

Calculate New or changed data is plotted on a chart.

Deactivate The chart is deactivated.

MouseDown A mouse button is pressed while the pointer is over a chart.

MouseMove The position of the mouse pointer changes over a chart.

MouseUp A mouse button is released while the pointer is over a chart.

Resize The chart is resized.

Select A chart element is selected.

SeriesChange The value of a chart data point is changed.

Monitoring with Application Events
In earlier sections, I discuss Workbook events and Worksheet events. Those events are moni-
tored for a particular workbook. If you want to monitor events for all open workbooks or all
worksheets, you use Application-level events.

continued

Notice how the list is divided into three columns: Library, Class, and Member. The match for the
item that you’re searching for might appear in any of these columns. This brings up a crucial
point: The name of an event or term belonging to one library or class could be the same as that
for another belonging to a different library or class — although they probably don’t share the
same functionality. So be sure to click each item in the Object Browser list and check the status
bar at the bottom of the list for the syntax. You may find, for example, that one class or library
treats an event differently.

Chapter 19: Understanding Excel’s Events 665

Creating event-handler procedures to handle Application events always requires a
class module and some setup work.

Table 19-4 lists the commonly used Application events with a brief description of each. Excel
2010 added a few new events that deal with protected view windows and pivot tables. Consult
the Help system for details.

Table 19-4: Commonly Used Events Recognized by the Application Object

Event Action That Triggers the Event

AfterCalculate A calculation has been completed and no outstanding queries exist.

NewWorkbook A new workbook is created.

SheetActivate Any sheet is activated.

SheetBeforeDoubleClick Any worksheet is double-clicked. This event occurs before the default
double-click action.

SheetBeforeRightClick Any worksheet is right-clicked. This event occurs before the default
right-click action.

SheetCalculate Any worksheet is calculated (or recalculated).

SheetChange Cells in any worksheet are changed by the user or by an external link.

SheetDeactivate Any sheet is deactivated.

SheetFollowHyperlink A hyperlink is clicked.

SheetPivotTableUpdate Any pivot table is updated.

SheetSelectionChange The selection changes on any worksheet except a chart sheet.

WindowActivate Any workbook window is activated.

WindowDeactivate Any workbook window is deactivated.

WindowResize Any workbook window is resized.

WorkbookActivate Any workbook is activated.

WorkbookAddinInstall A workbook is installed as an add-in.

WorkbookAddinUninstall Any add-in workbook is uninstalled.

WorkbookBeforeClose Any open workbook is closed.

WorkbookBeforePrint Any open workbook is printed.

WorkbookBeforeSave Any open workbook is saved.

WorkbookDeactivate Any open workbook is deactivated.

WorkbookNewSheet A new sheet is created in any open workbook.

WorkbookOpen A workbook is opened.

Part V: Advanced Programming Techniques666

Enabling Application-level events
To use Application-level events, you need to do the following:

 1. Create a new class module.

 2. Set a name for this class module in the Properties window under Name.

 By default, VBA gives each new class module a default name like Class1, Class2, and so
on. You may want to give your class module a more meaningful name, such as clsApp.

 3. In the class module, declare a public Application object by using the WithEvents
keyword.

 For example:

Public WithEvents XL As Application

 4. Create a variable that you’ll use to refer to the declared Application object in the
class module.

 It should be a module-level object variable declared in a regular VBA module (not in the
class module). For example:

Dim X As New clsApp

 5. Connect the declared object with the Application object.

 This step is often done in a Workbook_Open procedure. For example:

Set X.XL = Application

 6. Write event-handler procedures for the XL object in the class module.

This procedure is virtually identical to that required to use events with an embedded
chart. See Chapter 18.

Determining when a workbook is opened
The example in this section keeps track of every workbook that is opened by storing information
in a comma-separated variable (CSV) text file. You can import this file into Excel.

I start by inserting a new class module and naming it clsApp. The code in the class module is

Public WithEvents AppEvents As Application

Private Sub AppEvents_WorkbookOpen (ByVal Wb As Excel.Workbook)
 Call UpdateLogFile(Wb)
End Sub

Chapter 19: Understanding Excel’s Events 667

This code declares AppEvents as an Application object with events. The AppEvents_
WorkbookOpen procedure will be called whenever a workbook is opened. This event-handler
procedure calls UpdateLogFile and passes the Wb variable, which represents the workbook
that was opened. I then added a VBA module and inserted the following code:

Dim AppObject As New clsApp

Sub Init()
‘ Called by Workbook_Open
 Set AppObject.AppEvents = Application
End Sub

Sub UpdateLogFile(Wb)
 Dim txt As String
 Dim Fname As String
 txt = Wb.FullName
 txt = txt & “,” & Date & “,” & Time
 txt = txt & “,” & Application.UserName
 Fname = Application.DefaultFilePath & “\logfile.csv”
 Open Fname For Append As #1
 Print #1, txt
 Close #1
 MsgBox txt
End Sub

Notice at the top that the AppObject variable is declared as type clsApp (the name of the
class module). The call to Init is in the Workbook_Open procedure, which is in the code mod-
ule for ThisWorkbook. This procedure is as follows:

Private Sub Workbook_Open()
 Call Init
End Sub

The UpdateLogFile procedure opens a text file — or creates it if it doesn’t exist. It then writes
key information about the workbook that was opened: the filename and full path, the date, the
time, and the username.

The Workbook_Open procedure calls the Init procedure. Therefore, when the workbook
opens, the Init procedure creates the object variable. The final statement uses a message box
to display the information that was written to the CSV file. You can delete this statement if you
prefer not to see that message.

This example, named log workbook open.xlsm, is available on the companion
CD-ROM.

Part V: Advanced Programming Techniques668

Monitoring Application-level events
To get a feel for the event-generation process, you may find it helpful to see a list of events that
get generated as you go about your work.

I created an application that displays (in a UserForm) a description of various Application-
level events as they occur (see Figure 19-9). You might find this helpful in learning about the
types and sequence of events that occur.

This example is available on the companion CD-ROM. The file is named application
event tracker.xlsm.

The workbook contains a class module with 21 procedures defined, one for each of the commonly
used Application-level events. Here’s an example of one of them:

Private Sub XL_NewWorkbook(ByVal Wb As Excel.Workbook)
 LogEvent “NewWorkbook: “ & Wb.Name
End Sub

Each of these procedures calls the LogEvent procedure and passes an argument that consists
of the event name and the object. The LogEvent procedure follows:

Figure 19-9: This workbook uses a class module to monitor all Application-level events.

Sub LogEvent(txt)
 EventNum = EventNum + 1
 With UserForm1
 With .lblEvents
 .AutoSize = False
 .Caption = .Caption & vbCrLf & txt

Chapter 19: Understanding Excel’s Events 669

 .Width = UserForm1.FrameEvents.Width - 20
 .AutoSize = True
 End With
 .FrameEvents.ScrollHeight = .lblEvents.Height + 20
 .FrameEvents.ScrollTop = EventNum * 20
 End With
End Sub

The LogEvent procedure updates the UserForm by modifying the Caption property of the
Label control named lblEvents. The procedure also adjusts the ScrollHeight and
ScrollTop properties of the Frame named FrameEvents, which contains the Label. Adjusting
these properties causes the most recently added text to be visible while older text scrolls out of
view. You can also adjust the vertical size of this UserForm. It uses the technique described in
Chapter 15.

Using UserForm Events
A UserForm supports quite a few events, and each control placed on a UserForm has its own set
of events. Table 19-5 lists the UserForm events that you can use.

Table 19-5: Events Recognized by a UserForm

Event Action That Triggers the Event

Activate The UserForm is activated.

AddControl A control is added at runtime.

BeforeDragOver A drag-and-drop operation is in progress while the pointer is over the form.

BeforeDropOrPaste The user is about to drop or paste data: that is, when the user has released the
mouse button.

Click A mouse is clicked while the pointer is over the form.

DblClick A mouse is double-clicked while the pointer is over the form.

Deactivate The UserForm is deactivated.

Error A control detects an error and can’t return the error information to a calling
program.

Initialize The UserForm is about to be shown.

KeyDown A key is pressed.

KeyPress The user presses any ANSI key.

KeyUp A key is released.

Layout A UserForm changes size.

MouseDown A mouse button is pressed.

continued

Part V: Advanced Programming Techniques670

Table 19-5: Events Recognized by a UserForm (continued)

Event Action That Triggers the Event

MouseMove The mouse is moved.

MouseUp A mouse button is released.

QueryClose Occurs before a UserForm closes.

RemoveControl A control is removed from the UserForm at runtime.

Resize The UserForm is resized.

Scroll The UserForm is scrolled.

Terminate The UserForm is terminated.

Zoom The UserForm is zoomed.

Many of the examples in Chapters 13 through 15 demonstrate event handling for
UserForms and UserForm controls.

Accessing Events Not Associated with an Object
The events that I discuss earlier in this chapter are all associated with an object (Application,
Workbook, Sheet, and so on). In this section, I discuss two additional rogue events: OnTime
and OnKey. These events aren’t associated with an object. Rather, they’re accessed by using
methods of the Application object.

Unlike the other events discussed in this chapter, you program these On events in a
general VBA module.

The OnTime event
The OnTime event occurs at a specified time of day. The following example demonstrates how
to program Excel so that it beeps and then displays a message at 3 p.m.:

Sub SetAlarm()
 Application.OnTime TimeValue(“15:00:00”), “DisplayAlarm”
End Sub

Sub DisplayAlarm()
 Beep
 MsgBox “Wake up. It’s time for your afternoon break!”
End Sub

Chapter 19: Understanding Excel’s Events 671

In this example, the SetAlarm procedure uses the OnTime method of the Application
object to set up the OnTime event. This method takes two arguments: the time (3 p.m., in the
example) and the procedure to execute when the time occurs (DisplayAlarm in the example).
After SetAlarm is executed, the DisplayAlarm procedure will be called at 3 p.m., bringing up
the message in Figure 19-10.

Figure 19-10: This message box was programmed to display at a particular time of day.

If you want to schedule an event relative to the current time — for example, 20 minutes from
now — you can write an instruction like this:

Application.OnTime Now + TimeValue(“00:20:00”), “DisplayAlarm”

You can also use the OnTime method to schedule a procedure on a particular day. The following
statement runs the DisplayAlarm procedure at 12:01 a.m. on April 1, 2010:

Application.OnTime DateSerial(2010, 4, 1) + _
 TimeValue(“00:00:01”), “DisplayAlarm”

The OnTime method has two additional arguments. If you plan to use this method, you
should refer to the online help for complete details.

The two procedures that follow demonstrate how to program a repeated event. In this case, cell
A1 is updated with the current time every five seconds. Executing the UpdateClock procedures
writes the time to cell A1 and also programs another event five seconds later. This event reruns
the UpdateClock procedure. To stop the events, execute the StopClock procedure (which
cancels the event). Note that NextTick is a module-level variable that stores the time for the
next event.

This example, named ontime event demo.xlsm, is available on the companion
CD-ROM.

Dim NextTick As Date
Sub UpdateClock()
‘ Updates cell A1 with the current time
 ThisWorkbook.Sheets(1).Range(“A1”) = Time

Part V: Advanced Programming Techniques672

‘ Set up the next event five seconds from now
 NextTick = Now + TimeValue(“00:00:05”)
 Application.OnTime NextTick, “UpdateClock”
End Sub

Sub StopClock()
‘ Cancels the OnTime event (stops the clock)
 On Error Resume Next
 Application.OnTime NextTick, “UpdateClock”, , False
End Sub

The OnTime event persists even after the workbook is closed. In other words, if you
close the workbook without running the StopClock procedure, the workbook will
reopen itself in five seconds (assuming that Excel is still running). To prevent this, use a
Workbook_BeforeClose event procedure that contains the following statement:

 Call StopClock

To see an example of a repeating OnTime event, see the analog clock example in
Chapter 18.

The OnKey event
While you’re working, Excel constantly monitors what you type. Because of this monitoring, you
can set up a keystroke or a key combination that, when pressed, executes a particular procedure.
The only time these keystrokes won’t be recognized is when you’re entering a formula or working
with a dialog box.

It’s important to understand that creating a procedure to respond to an OnKey event
isn’t limited to a single workbook. The re-mapped keystroke is valid in all open work-
books, not just the one in which you created the event procedure.

Also, if you set up an OnKey event, make sure that you provide a way to cancel the event.
A common way to do this is to use the Workbook_BeforeClose event procedure.

An OnKey event example
The following example uses the OnKey method to set up an OnKey event. This event reassigns
the PgDn and PgUp keys. After the Setup_OnKey procedure is executed, pressing PgDn exe-
cutes the PgDn_Sub procedure, and pressing PgUp executes the PgUp_Sub procedure. The net
effect is that pressing PgDn moves the cursor down one row, and pressing PgUp moves the cur-
sor up one row. Key combinations that use PgUp and PgDn aren’t affected. So, for example,
Ctrl+PgDn will continue to activate the next worksheet in a workbook.

Chapter 19: Understanding Excel’s Events 673

Sub Setup_OnKey()
 Application.OnKey “{PgDn}”, “PgDn_Sub”
 Application.OnKey “{PgUp}”, “PgUp_Sub”
End Sub

Sub PgDn_Sub()
 On Error Resume Next
 ActiveCell.Offset(1, 0).Activate
End Sub

Sub PgUp_Sub()
 On Error Resume Next
 ActiveCell.Offset(-1, 0).Activate
End Sub

This example, named onkey event demo.xlsm, is available on the companion
CD-ROM.

In the preceding examples, I use On Error Resume Next to ignore any errors that are gener-
ated. For example, if the active cell is in the first row, trying to move up one row causes an error.
Also, if the active sheet is a chart sheet, an error will occur because there is no such thing as an
active cell in a chart sheet.

By executing the following procedure, you cancel the OnKey events and return these keys to
their normal functionality:

Sub Cancel_OnKey()
 Application.OnKey “{PgDn}”
 Application.OnKey “{PgUp}”
End Sub

Contrary to what you might expect, using an empty string as the second argument for the OnKey
method does not cancel the OnKey event. Rather, it causes Excel to simply ignore the keystroke
and do nothing at all. For example, the following instruction tells Excel to ignore Alt+F4 (the per-
cent sign represents the Alt key):

 Application.OnKey “%{F4}”, “”

Although you can use the OnKey method to assign a shortcut key for executing a
macro, it’s better to use the Macro Options dialog box for this task. For more details,
see Chapter 9.

Part V: Advanced Programming Techniques674

Key Codes
In the previous section, notice that the PgDn keystroke appears in braces. Table 19-6 shows the
key codes that you can use in your OnKey procedures.

Table 19-6: Key Codes for the OnKey Event

Key Code

Backspace {BACKSPACE} or {BS}

Break {BREAK}

Caps Lock {CAPSLOCK}

Delete or Del {DELETE} or {DEL}

Down Arrow {DOWN}

End {END}

Enter ~ (tilde)

Enter (on the numeric keypad) {ENTER}

Escape {ESCAPE} or {ESC}

Home {HOME}

Ins {INSERT}

Left Arrow {LEFT}

NumLock {NUMLOCK}

Page Down {PGDN}

Page Up {PGUP}

Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

Up Arrow {UP}

F1 through F15 {F1} through {F15}

You can also specify keys combined with Shift, Ctrl, and Alt. To specify a key combined with
another key or keys, use the following symbols:

 Shift: Plus sign (+)

 Ctrl: Caret (^)

 Alt: Percent sign (%)

For example, to assign a procedure to the Ctrl+Shift+A key, use this code:

Application.OnKey “^+A”, “SubName”

Chapter 19: Understanding Excel’s Events 675

To assign a procedure to Alt+F11 (which is normally used to switch to the VB Editor window), use
this code:

Application.OnKey “^{F11}”, “SubName”

Disabling shortcut menus
Earlier in this chapter, I discuss a Worksheet_BeforeRightClick procedure that disables the
right-click shortcut menu. The following procedure is placed in the ThisWorkbook code module:

Private Sub Worksheet_BeforeRightClick _
 (ByVal Target As Excel.Range, Cancel As Boolean)
 Cancel = True
 MsgBox “The shortcut menu is not available.”
End Sub

I also noted that the user could still display the shortcut menu by pressing Shift+F10. To intercept
the Shift+F10 key combination, add these procedures to a standard VBA module:

Sub SetupNoShiftF10()
 Application.OnKey “+{F10}”, “NoShiftF10”
End Sub

Sub TurnOffNoShiftF10()
 Application.OnKey “+{F10}”
End Sub

Sub NoShiftF10()
 MsgBox “Nice try, but that doesn’t work either.”
End Sub

After the SetupNoShiftF10 procedure is executed, pressing Shift+F10 displays the message
box shown in Figure 19-11. Remember that the Worksheet_BeforeRightClick procedure is
valid only in its own workbook. The Shift+F10 key event, on the other hand, applies to all open
workbooks.

Some keyboards have a dedicated key that displays a shortcut menu. On my keyboard,
that key is on the right side of the keyboard between the Windows key and the Ctrl
key. I was surprised to discover that intercepting the Shit+F10 key combination also
disables the dedicated shortcut menu key.

Part V: Advanced Programming Techniques676

Figure 19-11: Pressing Shift+F10 displays this message.

The companion CD-ROM contains a workbook that includes all these procedures. The
file, named no shortcut menus.xlsm, includes workbook event-handler procedures:
Workbook_Open executes the SetupNoShiftF10 procedure, and Workbook_
BeforeClose calls the TurnOffNoShiftF10 procedure.

677

20
Interacting with Other
Applications
In This Chapter

● Starting or activating another application from Excel

● Displaying Windows Control Panel dialog boxes

● Using Automation to control another application

● Using SendKeys as a last resort

Starting an Application from Excel
Launching another application from Excel is often useful. For example, you might want to execute
another Microsoft Office application or even a DOS batch file from Excel. Or, as an application
developer, you may want to make it easy for a user to access the Windows Control Panel to adjust
system settings.

Using the VBA Shell function
The VBA Shell function makes launching other programs relatively easy. Following is an example
of VBA code that launches the Windows Calculator application.

Sub StartCalc()
 Dim Program As String
 Dim TaskID As Double
 On Error Resume Next
 Program = “calc.exe”
 TaskID = Shell(Program, 1)

Part V: Advanced Programming Techniques678

 If Err <> 0 Then
 MsgBox “Cannot start “ & Program, vbCritical, “Error”
 End If
End Sub

You’ll probably recognize the application that this procedure launches in Figure 20-1.

Figure 20-1: Running the Windows Calculator program from Excel.

The Shell function returns a task identification number for the application specified in the first
argument. You can use this number later to activate the task. The second argument for the
Shell function determines how the application is displayed. (1 is the code for a normal-size
window, with the focus.) Refer to the Help system for other values for this argument.

If the Shell function isn’t successful, it generates an error. Therefore, this procedure uses an On
Error statement to display a message if the executable file can’t be found or if some other error
occurs.

It’s important to understand that your VBA code doesn’t pause while the application that was
started with the Shell function is running. In other words, the Shell function runs the applica-
tion asynchronously. If the procedure has more instructions after the Shell function is executed,
these instructions are executed concurrently with the newly loaded program. If any instruction
requires user intervention (for example, displaying a message box), Excel’s title bar flashes while
the other application is active.

In some cases, you may want to launch an application with the Shell function, but you need
your VBA code to pause until the application is closed. For example, the launched application
might generate a file that is used later in your code. Although you can’t pause the execution of
your code, you can create a loop that does nothing except monitor the application’s status. The
example that follows displays a message box when the application launched by the Shell func-
tion has ended:

Chapter 20: Interacting with Other Applications 679

Declare PtrSafe Function OpenProcess Lib “kernel32” _
 (ByVal dwDesiredAccess As Long, _
 ByVal bInheritHandle As Long, _
 ByVal dwProcessId As Long) As Long
Declare PtrSafe Function GetExitCodeProcess Lib “kernel32” _
 (ByVal hProcess As Long, _
 lpExitCode As Long) As Long
Sub StartCalc2()
 Dim TaskID As Long
 Dim hProc As Long
 Dim lExitCode As Long
 Dim ACCESS_TYPE As Integer, STILL_ACTIVE As Integer
 Dim Program As String
 ACCESS_TYPE = &H400
 STILL_ACTIVE = &H103
 Program = “Calc.exe”
 On Error Resume Next
‘ Shell the task
 TaskID = Shell(Program, 1)
‘ Get the process handle
 hProc = OpenProcess(ACCESS_TYPE, False, TaskID)

 If Err <> 0 Then
 MsgBox “Cannot start “ & Program, vbCritical, “Error”
 Exit Sub
 End If

 Do ‘Loop continuously
‘ Check on the process
 GetExitCodeProcess hProc, lExitCode
‘ Allow event processing
 DoEvents
 Loop While lExitCode = STILL_ACTIVE

‘ Task is finished, so show message
 MsgBox Program & “ was closed”
End Sub

While the launched program is running, this procedure continually calls the GetExitCode
Process function from within a Do-Loop structure, testing for its returned value (lExitCode).
When the program is finished, lExitCode returns a different value, the loop ends, and the VBA
code resumes executing.

Both of the preceding examples are available on the companion CD-ROM. The filename
is start calculator.xlsm.

Part V: Advanced Programming Techniques680

Using the Windows ShellExecute API function
ShellExecute is a Windows Application Programming Interface (API) function that is useful
for starting other applications. Importantly, this function can start an application only if an associ-
ated filename is known (assuming that the file type is registered with Windows). For example,
you can use ShellExecute to display a Web document by starting the default Web browser.
Or you can use an e-mail address to start the default e-mail client.

The API declaration follows (this code works only with Excel 2010):

Private Declare PtrSafe Function ShellExecute Lib “shell32.dll” _
 Alias “ShellExecuteA” (ByVal hWnd As Long, _
 ByVal lpOperation As String, ByVal lpFile As String, _
 ByVal lpParameters As String, ByVal lpDirectory As String, _
 ByVal nShowCmd As Long) As Long

The following procedure demonstrates how to call the ShellExecute function. In this example,
it opens a graphics file by using the graphics program that’s set up to handle JPG files. If the
result returned by the function is less than 32, then an error occurred.

Sub ShowGraphic()
 Dim FileName As String
 Dim Result As Long
 FileName = ThisWorkbook.Path & “\flower.jpg”
 Result = ShellExecute(0&, vbNullString, FileName, _
 vbNullString, vbNullString, vbNormalFocus)
 If Result < 32 Then MsgBox “Error”
End Sub

The next procedure opens a text file, using the default text file program:

Sub OpenTextFile()
 Dim FileName As String
 Dim Result As Long
 FileName = ThisWorkbook.Path & “\textfile.txt”

Displaying a folder window
The Shell function is also handy if you need to display a particular directory using Windows
Explorer. For example, the statement that follows displays the folder of the active workbook
(but only if the workbook has been saved):

If ActiveWorkbook.Path <> “” Then _
 Shell “explorer.exe “ & ActiveWorkbook.Path, vbNormalFocus

Chapter 20: Interacting with Other Applications 681

 Result = ShellExecute(0&, vbNullString, FileName, _
 vbNullString, vbNullString, vbNormalFocus)
 If Result < 32 Then MsgBox “Error”
End Sub

The following example is similar, but it opens a Web URL by using the default browser:

Sub OpenURL()
 Dim URL As String
 Dim Result As Long
 URL = “http://spreadsheetpage.com”
 Result = ShellExecute(0&, vbNullString, URL, _
 vbNullString, vbNullString, vbNormalFocus)
 If Result < 32 Then MsgBox “Error”
End Sub

You can also use this technique with an e-mail address. The following example opens the default
e-mail client (if one exists) and then addresses an e-mail to the recipient:

Sub StartEmail()
 Dim Addr As String
 Dim Result As Long
 Addr = “mailto:bgates@microsoft.com”
 Result = ShellExecute(0&, vbNullString, Addr, _
 vbNullString, vbNullString, vbNormalFocus)
 If Result < 32 Then MsgBox “Error”
End Sub

These examples are available on the companion CD-ROM in a file named shellexe-
cute examples.xlsm. This file uses API declarations that are compatible with all ver-
sions of Excel.

Activating an Application with Excel
In the previous section, I discuss various ways to start an application. You may find that if an appli-
cation is already running, using the Shell function may start another instance of it. In most cases,
however, you want to activate the instance that’s running — not start another instance of it.

Using AppActivate
The following StartCalculator procedure uses the AppActivate statement to activate an
application if it’s already running (in this case, the Windows Calculator). The argument for

Part V: Advanced Programming Techniques682

AppActivate is the caption of the application’s title bar. If the AppActivate statement gen-
erates an error, it indicates that the Calculator is not running. Therefore, the routine starts the
application.

Sub StartCalculator()
 Dim AppFile As String
 Dim CalcTaskID As Double

 AppFile = “Calc.exe”
 On Error Resume Next
 AppActivate “Calculator”
 If Err <> 0 Then
 Err = 0
 CalcTaskID = Shell(AppFile, 1)
 If Err <> 0 Then MsgBox “Can’t start Calculator”
 End If
End Sub

This example is available on the companion CD-ROM. The filename is start
calculator.xlsm.

Activating a Microsoft Office application
If the application that you want to start is one of several Microsoft applications, you can use the
ActivateMicrosoftApp method of the Application object. For example, the following
procedure starts Word:

Sub StartWord()
 Application.ActivateMicrosoftApp xlMicrosoftWord
End Sub

If Word is already running when the preceding procedure is executed, it is activated. The other
constants available for this method are:

 xlMicrosoftPowerPoint

 xlMicrosoftMail (activates Outlook)

 xlMicrosoftAccess

 xlMicrosoftFoxPro

 xlMicrosoftProject

 xlMicrosoftSchedulePlus (an obsolete Microsoft Office time-management
program)

Chapter 20: Interacting with Other Applications 683

Running Control Panel Dialog Boxes
Windows provides quite a few system dialog boxes and wizards, most of which are accessible
from the Windows Control Panel. You might need to display one or more of these from your
Excel application. For example, you might want to display the Windows Date and Time dialog
box, shown in Figure 20-2.

Figure 20-2: Use VBA to display a Control Panel dialog box.

The key to running other system dialog boxes is to execute the rundll32.exe application by
using the VBA Shell function.

The following procedure displays the Date and Time dialog box:

Sub ShowDateTimeDlg()
 Dim Arg As String
 Dim TaskID As Double
 Arg = “rundll32.exe shell32.dll,Control_RunDLL timedate.cpl”
 On Error Resume Next
 TaskID = Shell(Arg)
 If Err <> 0 Then
 MsgBox (“Cannot start the application.”)
 End If
End Sub

Part V: Advanced Programming Techniques684

Following is the general format for the rundll32.exe application:

rundll32.exe shell32.dll,Control_RunDLL filename.cpl, n,t

 filename.cpl: The name of one of the Control Panel *.CPL files.

 n: The zero-based number of the applet within the *.CPL file.

 t: The number of the tab (for multi-tabbed applets).

A workbook that displays12 additional Control Panel applets, depicted in Figure 20-3, is
available on the companion CD-ROM. The filename is control panel dialogs.xlsm.

Figure 20-3: The workbook that displays this dialog box demonstrates how to run system dialog boxes
from Excel.

Using Automation in Excel
You can write an Excel macro to control other applications, such as Microsoft Word. More accu-
rately, the Excel macro will control Word’s automation server. In such circumstances, Excel is the
client application, and Word is the server application. Or you can write a VBA application in Word
to control Excel. The process of one application’s controlling another is sometimes known as
Object Linking and Embedding (OLE), or simply automation.

The concept behind automation is quite appealing. A developer who needs to generate a chart,
for example, can just reach into another application’s grab bag of objects, fetch a Chart object,
and then manipulate its properties and use its methods. Automation, in a sense, blurs the bound-
aries between applications. An end user may be working with an Access object and not even
realize it.

Some applications, such as Excel, can function as either a client application or a server
application. Other applications can function only as client applications or only as
server applications.

Chapter 20: Interacting with Other Applications 685

In this section, I demonstrate how to use VBA to access and manipulate the objects exposed by
other applications. The examples use Microsoft Word, but the concepts apply to any application
that exposes its objects for automation — which accounts for an increasing number of applications.

Working with foreign objects using automation
As you may know, you can use Excel’s Insert➜Text➜Object command to embed an object, such
as a Word document, in a worksheet. In addition, you can create an object and manipulate it with
VBA. (This action is the heart of Automation.) When you do so, you usually have full access to
the object. For developers, this technique is generally more beneficial than embedding the object
in a worksheet. When an object is embedded, the user must know how to use the automation
object’s application. But when you use VBA to work with the object, you can program the object
so that the user can manipulate it by an action as simple as a button click.

Early versus late binding
Before you can work with an external object, you must create an instance of the object. You can
do so in either of two ways: early binding or late binding. Binding refers to matching the function
calls written by the programmer to the actual code that implements the function.

Early binding
To use early binding, create a reference to the object library by choosing the Tools➜References
command in the Visual Basic Editor (VBE), which brings up the dialog box shown in Figure 20-4.
Then put a check mark next to the object library you need to reference.

After the reference to the object library is established, you can use the Object Browser, shown in
Figure 20-5, to view the object names, methods, and properties. To access the Object Browser,
press F2 in the VBE.

When you use early binding, you must establish a reference to a version-specific object library.
For example, you can specify Microsoft Word 10.0 Object Library (for Word 2002), Microsoft
Word 11.0 Object Library (for Word 2003), Microsoft Word 12.0 Object Library (for Word 2007),
or Microsoft Word 14.0 Object Library (for Word 2010). Then you use a statement like the follow-
ing to create the object:

Dim WordApp As New Word.Application

Using early binding to create the object by setting a reference to the object library usually is
more efficient and also often yields better performance. Early binding is an option, however, only
if the object that you’re controlling has a separate type library or object library file. You also need
to ensure that the user of the application actually has a copy of the specific library installed.

Another advantage of early binding is that you can use constants that are defined in the object
library. For example, Word (like Excel) contains many predefined constants that you can use in
your VBA code. If you use early binding, you can use the constants in your code. If you use late
binding, you’ll need to use the actual value rather than the constant.

Part V: Advanced Programming Techniques686

Figure 20-4: Adding a reference to an object library file.

Figure 20-5: Use the Object Browser to learn about the objects in a referenced library.

Chapter 20: Interacting with Other Applications 687

Still another benefit of using early binding is that you can take advantage of the VBE Object
Browser and Auto List Members option to make it easier to access properties and methods; this
feature doesn’t work when you use late binding because the type of the object is known only at
runtime.

Late binding
At runtime, you use either the CreateObject function to create the object or the GetObject
function to obtain a saved instance of the object. Such an object is declared as a generic Object
type, and its object reference is resolved at runtime.

You can use late binding even when you don’t know which version of the application is installed
on the user’s system. For example, the following code, which works with Word 97 and later, cre-
ates a Word object:

Dim WordApp As Object
Set WordApp = CreateObject(“Word.Application”)

If multiple versions of Word are installed, you can create an object for a specific version. The fol-
lowing statement, for example, uses Word 2003:

Set WordApp = CreateObject(“Word.Application.11”)

The Registry key for Word’s Automation object and the reference to the Application object in
VBA just happen to be the same: Word.Application. They do not, however, refer to the same
thing. When you declare an object As Word.Application or As New Word.Application,
the term refers to the Application object in the Word library. But when you invoke the func-
tion CreateObject(“Word.Application”), the term refers to the moniker by which the
latest version of Word is known in the Windows System Registry. This isn’t the case for all auto-
mation objects, although it is true for the main Office 2010 components. If the user replaces
Word 2003 with Word 2010, CreateObject(“Word.Application”) will continue to work
properly, referring to the new application. if Word 2010 is removed, however, CreateObject
(“Word.Application.14”), which uses the alternate version-specific name for Word 2010,
will fail to work.

The CreateObject function used on an automation object such as Word.Application or
Excel.Application always creates a new instance of that automation object. That is, it starts
up a new and separate copy of the automation part of the program. Even if an instance of the
automation object is already running, a new instance is started, and then an object of the speci-
fied type is created.

To use the current instance or to start the application and have it load a file, use the GetObject
function.

Part V: Advanced Programming Techniques688

If you need to automate an Office application, it is recommended that you use early
binding and reference the earliest version of the product that you expect could be
installed on your client’s system. For example, if you need to be able to automate Word
2003, Word 2007, and Word 2010, you should use the type library for Word 2003 to
maintain compatibility with all three versions. This approach, of course, will mean that
you can’t use features found only in the later version of Word.

GetObject versus CreateObject
VBA’s GetObject and CreateObject functions both return a reference to an object, but they work
in different ways.

The CreateObject function creates an interface to a new instance of an application. Use this func-
tion when the application isn’t running. If an instance of the application is already running, a new
instance is started. For example, the following statement starts Excel, and the object returned in
XLApp is a reference to the Excel.Application object that it created.

Set XLApp = CreateObject(“Excel.Application”)

The GetObject function is either used with an application that’s already running or to start an appli-
cation with a file already loaded. The following statement, for example, starts Excel with the file
Myfile.xls already loaded. The object returned in XLBook is a reference to the Workbook object
(the Myfile.xlsx file):

Set XLBook = GetObject(“C:\Myfile.xlsx”)

A simple example of late binding
The following example demonstrates how to create a Word object by using late binding. This
procedure creates the object, displays the version number, closes the Word application, and then
destroys the object (thus freeing the memory that it used):

Sub GetWordVersion()
 Dim WordApp As Object
 Set WordApp = CreateObject(“Word.Application”)
 MsgBox WordApp.Version
 WordApp.Quit
 Set WordApp = Nothing
End Sub

The Word object that’s created in this procedure is invisible. If you’d like to see the object’s
window while it’s being manipulated, set its Visible property to True, as follows:

WordApp.Visible = True

Chapter 20: Interacting with Other Applications 689

This example can also be programmed using early binding. Before doing so, choose Tools➜

References to set a reference to the Word object library. Then you can use the following code:

Sub GetWordVersion()
 Dim WordApp As New Word.Application
 MsgBox WordApp.Version
 WordApp.Quit
 Set WordApp = Nothing
End Sub

Controlling Word from Excel
The example in this section demonstrates Automation by using Word. The MakeMemos proce-
dure creates three customized memos in Word and then saves each document to a file. The
information used to create the memos is stored in a worksheet, as shown in Figure 20-6.

Figure 20-6: Word automatically generates three memos based on this Excel data.

The MakeMemos procedure starts by creating an object called WordApp. The routine cycles
through the three rows of data in Sheet1 and uses Word’s properties and methods to create
each memo and save it to disk. A range named Message (in cell E6) contains the text used in the
memo. All the action occurs behind the scenes: That is, Word isn’t visible.

Sub MakeMemos()
‘ Creates memos in word using Automation
 Dim WordApp As Object
 Dim Data As Range, message As String
 Dim Records As Integer, i As Integer
 Dim Region As String, SalesAmt As String, SalesNum As String
 Dim SaveAsName As String
‘ Start Word and create an object (late binding)

Part V: Advanced Programming Techniques690

 Set WordApp = CreateObject(“Word.Application”)

‘ Information from worksheet
 Set Data = Sheets(“Sheet1”).Range(“A1”)
 Message = Sheets(“Sheet1”).Range(“Message”)

‘ Cycle through all records in Sheet1
 Records = Application.CountA(Sheets(“Sheet1”).Range(“A:A”))
 For i = 1 To Records
‘ Update status bar progress message
 Application.StatusBar = “Processing Record “ & i
‘ Assign current data to variables
 Region = Data.Cells(i, 1).Value
 SalesNum = Data.Cells(i, 2).Value
 SalesAmt = Format(Data.Cells(i, 3).Value, “#,000”)

‘ Determine the filename
 SaveAsName = Application.DefaultFilePath & _
 “\” & Region & “.docx”
‘ Send commands to Word
 With WordApp
 .Documents.Add
 With .Selection
 .Font.Size = 14
 .Font.Bold = True
 .ParagraphFormat.Alignment = 1
 .TypeText Text:=”M E M O R A N D U M”
 .TypeParagraph
 .TypeParagraph
 .Font.Size = 12
 .ParagraphFormat.Alignment = 0
 .Font.Bold = False
 .TypeText Text:=”Date:” & vbTab & _
 Format(Date, “mmmm d, yyyy”)
 .TypeParagraph
 .TypeText Text:=”To:” & vbTab & Region & _
 “ Manager”
 .TypeParagraph
 .TypeText Text:=”From:” & vbTab & _
 Application.UserName
 .TypeParagraph
 .TypeParagraph
 .TypeText Message
 .TypeParagraph
 .TypeParagraph
 .TypeText Text:=”Units Sold:” & vbTab & _
 SalesNum
 .TypeParagraph
 .TypeText Text:=”Amount:” & vbTab & _
 Format(SalesAmt, “$#,##0”)

Chapter 20: Interacting with Other Applications 691

 End With
 .ActiveDocument.SaveAs FileName:=SaveAsName
 End With
 Next i
‘ Kill the object
 WordApp.Quit
 Set WordApp = Nothing
‘ Reset status bar
 Application.StatusBar = “”
 MsgBox Records & “ memos were created and saved in “ & _
 Application.DefaultFilePath
End Sub

Figure 20-7 shows one of the documents created by the MakeMemos procedure.

This workbook, named make memos.xlsm, is available on the companion CD-ROM.

Creating this macro involved several steps. I started by recording a macro in Word. I recorded my
actions while creating a new document, adding and formatting some text, and saving the file.
That Word macro provided the information that I needed about the appropriate properties and
methods. I then copied the macro to an Excel module. Notice that I used With-End With. I
added a dot before each instruction between With and End With. For example, the original
Word macro contained (among others) the following instruction:

Documents.Add

I modified the macro as follows:

With WordApp
 .Documents.Add
‘ more instructions here
End With

The macro that I recorded in Word used a few of Word’s built-in constants. Because this example
uses late binding, I had to substitute actual values for those constants. I was able to learn the val-
ues by using the Immediate window in Word’s VBE.

Part V: Advanced Programming Techniques692

Figure 20-7: An Excel procedure created this Word document.

Controlling Excel from another application
You can, of course, also control Excel from another application (such as another programming
language or a Word VBA procedure). For example, you may want to perform some calculations
in Excel and return the result to a Word document.

You can create any of the following Excel objects with the adjacent functions:

 Application object: CreateObject(“Excel.Application”)

 Workbook object: CreateObject(“Excel.Sheet”)

 Chart object: CreateObject(“Excel.Chart”)

Chapter 20: Interacting with Other Applications 693

The code that follows is a procedure that is located in a VBA module in a Word 2010 document.
This procedure creates an Excel Worksheet object (whose moniker is “Excel.Sheet”) from
an existing workbook and pastes it into the Word file.

Sub MakeLoanTable()
 Dim XLSheet As Object
 Dim LoanAmt
 Dim Wbook As String
‘ Prompt for values
 LoanAmt = InputBox(“Loan Amount?”)
 If LoanAmt = “” Then Exit Sub

‘ Clear the document
 ThisDocument.Content.Delete

‘ Create Sheet object
 Wbook = ThisDocument.Path & “\mortgagecalcs.xlsx”
 Set XLSheet = GetObject(Wbook, “Excel.Sheet”).ActiveSheet

‘ Put values in sheet
 XLSheet.Range(“LoanAmount”) = LoanAmt
 XLSheet.Calculate
‘ Insert page heading
 Selection.Style = “Title”
 Selection.TypeText “Loan Amount: “ & _
 Format(LoanAmt, “$#,##0”)
 Selection.TypeParagraph
 Selection.TypeParagraph
‘ Copy data from sheet & paste to document
 XLSheet.Range(“DataTable”).Copy
 Selection.Paste

 Selection.TypeParagraph
 Selection.TypeParagraph

‘ Copy chart and paste to document
 XLSheet.ChartObjects(1).Copy
 Selection.PasteSpecial _
 Link:=False, _
 DataType:=wdPasteMetafilePicture, _
 Placement:=wdInLine

‘ Kill the object
 Set XLSheet = Nothing
End Sub

Part V: Advanced Programming Techniques694

This example is available on the companion CD-ROM. The Word document is named
automate excel.docm, and the Excel workbook is named mortgagecalcs.xlsx.
When you open the Word file, execute the MakeLoanTable macro by choosing
Insert➜Mortgage➜Get Mortgage Amount.

The Excel worksheet used by this Word procedure is shown in Figure 20-8. The MakeLoan
Table procedure prompts the user for a loan amount and inserts the value into cell C7 (named
LoanAmount).

Figure 20-8: a VBA procedure in Word uses this worksheet.

Recalculating the worksheet updates a data table in range F2:I12 (named DataTable) and also
updates the chart. The DataTable range and the chart are then copied from the Excel object
and pasted into the Word document. The result is shown in Figure 20-9.

Chapter 20: Interacting with Other Applications 695

Figure 20-9: The Word VBA procedure uses Excel to create this document.

Sending Personalized E-Mail via Outlook
The example in this section demonstrates automation with Microsoft Outlook.

Figure 20-10 shows a worksheet that contains data used in the e-mail messages: name, e-mail
address, and bonus amount. The SendMail procedure loops through the rows in the worksheet,
retrieves the data, and creates an individualized message (stored in the Msg variable).

Part V: Advanced Programming Techniques696

Figure 20-10: This information is used in the Outlook e-mail messages.

Sub SendEmail()

 ‘Uses early binding

 ‘Requires a reference to the Outlook Object Library

 Dim OutlookApp As Outlook.Application

 Dim MItem As Outlook.MailItem

 Dim cell As Range

 Dim Subj As String

 Dim EmailAddr As String

 Dim Recipient As String

 Dim Bonus As String

 Dim Msg As String

 ‘Create Outlook object

 Set OutlookApp = New Outlook.Application

 ‘Loop through the rows

 For Each cell In Columns(“B”).Cells.SpecialCells(xlCellTypeConstants)

 If cell.Value Like “*@*” Then

 ‘Get the data

 Subj = “Your Annual Bonus”

 Recipient = cell.Offset(0, -1).Value

 EmailAddr = cell.Value

 Bonus = Format(cell.Offset(0, 1).Value, “$0,000.”)

 ‘Compose message

 Msg = “Dear “ & Recipient & vbCrLf & vbCrLf

 Msg = Msg & “I am pleased to inform you that your annual bonus is “

 Msg = Msg & Bonus & vbCrLf & vbCrLf

 Msg = Msg & “William Rose” & vbCrLf

 Msg = Msg & “President”

 ‘Create Mail Item and send it

 Set MItem = OutlookApp.CreateItem(olMailItem)

 With MItem

 .To = EmailAddr

 .Subject = Subj

 .Body = Msg

 .Send

Chapter 20: Interacting with Other Applications 697

 End With

 End If

 Next

End Sub

Figure 20-11 shows one of the e-mail messages displayed in Outlook.

Figure 20-11: An Outlook e-mail message created by Excel.

This example uses early binding, so it requires a reference to the Outlook Object Library. Notice
that two objects are involved: an Outlook object and a MailItem object. The Outlook object
is created with this statement:

Set OutlookApp = New Outlook.Application

The MailItem object is created with this statement:

Set MItem = OutlookApp.CreateItem(olMailItem)

Part V: Advanced Programming Techniques698

The code sets the To, Subject, and Body properties and then uses the Send method to send
each message.

To save the messages in your Draft folder (rather than send them), use the Save
method instead of the Send method. This change is particularly useful while you’re
testing and debugging the code.

Unless you’ve changed your security settings, you’ll probably see the dialog box shown in Figure
20-12 for each message that’s sent. To eliminate this dialog box, activate Outlook, choose
Office➜Outlook Options➜Trust Center, and click the Trust Center Settings button. In the Trust
Center dialog box, click the Programmatic Access tab and choose the option labeled Never Warn
Me about Suspicious Activity (Not Recommended). But do this at your own risk.

Figure 20-12: Using Excel to send e-mail via Outlook normally causes a warning message from Outlook.

This example, named personalized email - outlook.xlsm, is available on the
companion CD-ROM. You must have Microsoft Outlook installed. The CD also contains a
slightly modified version that uses late binding: personalized email - outlook
(late binding).xlsm.

Subsequent sections in this chapter describe other ways of sending e-mail through
Excel. See “Sending E-Mail Attachments from Excel” and “Using SendKeys.”

Sending E-Mail Attachments from Excel
As you probably know, Excel has the ability to send a workbook via e-mail as an attachment.
And, of course, you can use VBA to automate these types of tasks. The following procedure uses
the SendMail method to send the active workbook (as an attachment) to joeblow@
zx-prrtgfw.com, using the default e-mail client (if any). The e-mail message has the subject
My Workbook.

Sub SendWorkbook()
 ActiveWorkbook.SendMail “joeblow@zx-prrtgfw.com”, “My Workbook”
End Sub

Chapter 20: Interacting with Other Applications 699

The SendMail method uses the default e-mail client.

If you’d like to e-mail only a single sheet from a workbook, you need to copy the sheet to a new
(temporary) workbook, send that workbook as an attachment, and then close the temporary file.
Here’s an example that sends Sheet1 from the active workbook, attached to an e-mail with the
subject, My Workbook. Note that the copied sheet becomes the active workbook.

Sub Sendasheet()
 ActiveWorkbook.Worksheets(“sheet1”).Copy
 ActiveWorkbook.SendMail “joeblow@zx-prrtgfw.com”, “My Workbook”
 ActiveWorkbook.Close False
End Sub

In the preceding example, the file will have the default workbook name (for example, Book2.
xlsx). If you’d like to give the single-sheet workbook attachment a more meaningful name, you
need to save the temporary workbook and then delete it after it’s sent. The following procedure
saves Sheet1 to a file named my file.xlsx. After sending this temporary workbook as an
e-mail attachment, the code uses VBA’s Kill statement to delete the file.

Sub SendOneSheet()
 Dim Filename As String
 Filename = “my file.xlsx”
 ActiveWorkbook.Worksheets(“sheet1”).Copy
 ActiveWorkbook.SaveAs Filename
 ActiveWorkbook.SendMail “joeblow@zx-prrtgfw.com”, “My Workbook”
 ActiveWorkbook.Close False
 Kill Filename
End Sub

Unfortunately, Excel doesn’t provide a way to automate saving a workbook as a PDF
file and sending it as an attachment. You can, however, automate part of the process.
The following SendSheetAsPDF procedure saves the active sheet as a PDF file and
then displays the compose message window from your default e-mail client (with the
PDF file attached) so that you can fill in the recipient’s name and click Send:

Sub SendSheetAsPDF()
 CommandBars.ExecuteMso (“FileEmailAsPdfEmailAttachment”)
End Sub

Part V: Advanced Programming Techniques700

When Excel is lacking powers, it’s time to call on Outlook. The procedure that follows saves the
active workbook as a PDF file and automates Outlook to create an e-mail message with the PDF
file as an attachment.

Sub SendAsPDF()
‘ Uses early binding
‘ Requires a reference to the Outlook Object Library
 Dim OutlookApp As Outlook.Application
 Dim MItem As Object
 Dim Recipient As String, Subj As String
 Dim Msg As String, Fname As String

‘ Message details
 Recipient = “myboss@xrediyh.com”
 Subj = “Sales figures”
 Msg = “Hey boss, here’s the PDF file you wanted.”
 Msg = Msg & vbNewLine & vbNewLine & “-Frank”
 Fname = Application.DefaultFilePath & “\” & _
 ActiveWorkbook.Name & “.pdf”

‘ Create the attachment
 ActiveSheet.ExportAsFixedFormat _
 Type:=xlTypePDF, _
 Filename:=Fname

‘ Create Outlook object
 Set OutlookApp = New Outlook.Application

‘ Create Mail Item and send it
 Set MItem = OutlookApp.CreateItem(olMailItem)
 With MItem
 .To = Recipient
 .Subject = Subj
 .Body = Msg
 .Attachments.Add Fname
 .Save ‘to Drafts folder
 ‘.Send
 End With
 Set OutlookApp = Nothing
‘ Delete the file
 Kill Fname
End Sub

This example, named send pdf via outlook.xlsm, is available on the companion
CD-ROM.

Chapter 20: Interacting with Other Applications 701

Using SendKeys
Not all applications support Automation. In some cases, you can still control some aspects of the
application even if it doesn’t support Automation. You can use Excel’s SendKeys method to
send keystrokes to an application, simulating actions that a live human might perform.

Although using the SendKeys method may seem like a good solution, you’ll find that it can be
very tricky and not completely reliable. In fact, it may not work at all. A potential problem is that
it relies on a specific user interface. If a later version of the program that you’re sending key-
strokes to has a different user interface, your application might no longer work. Consequently,
you should use SendKeys only as a last resort.

Following is a very simple example. This procedure runs the Windows Calculator program and
displays its Scientific mode: That is, it executes the View➜Scientific command.

Sub TestKeys()
 Shell “calc.Exe”, vbNormalFocus
 Application.SendKeys “%vs”
End Sub

In this example, the code sends out Alt+V (the percent sign represents the Alt key) followed by S.
SendKeys is documented in the Help system, which describes how to send nonstandard key-
strokes, such as Alt and Ctrl key combinations.

As I was finalizing this chapter, I tried the TestKeys procedure on a system with
Windows 7 installed. Although the Windows 7 calculator uses the same menu accelera-
tor key, the procedure did not work. After a bit of research, I learned that Windows 7
supports SendKeys only if User Account Control (a security feature) is turned off.
That’s a good example of why you should use SendKeys only as a last resort.

Part V: Advanced Programming Techniques702

703

21
Creating and Using Add-Ins
In This Chapter

● Getting the scoop on add-ins

● Exploring Excel’s Add-In Manager

● Create an add-in

● Comparing XLSA add-in files to XLSM files

● Viewing VBA code that manipulates add-ins

● Detecting whether an add-in is installed properly

What Is an Add-In?
One of Excel’s most useful features for developers is the ability to create add-ins. Creating add-
ins adds a professional touch to your work, and add-ins offer several key advantages over stan-
dard workbook files.

Generally speaking, a spreadsheet add-in is something added to a spreadsheet to give it addi-
tional functionality. For example, Excel ships with several add-ins. One of the most popular is the
Analysis ToolPak, which adds statistical and analysis capabilities that are not built into Excel.

Some add-ins also provide new worksheet functions that you can use in formulas. With a well-
designed add-in, the new features blend in well with the original interface, so they appear to be
part of the program.

Comparing an add-in with a standard workbook
Any knowledgeable Excel user can create an add-in from an Excel workbook file; no additional
software or programming tools are required. You can convert any workbook file to an add-in, but
not every workbook is appropriate for an add-in. An Excel add-in is basically a normal XLSM
workbook with the following differences:

Part V: Advanced Programming Techniques704

 The IsAddin property of the ThisWorkbook object is True. By default, this property
is False.

 The workbook window is hidden in such a way that it can’t be unhidden by choosing the
View➜Window➜Unhide command. This means that you can’t display worksheets or
chart sheets contained in an add-in unless you write code to copy the sheet to a standard
workbook.

 An add-in isn’t a member of the Workbooks collection. Rather, it’s a member of the
AddIns collection. However, you can access an add-in via the Workbooks collection
(see “XLAM file VBA collection membership,” later in this chapter).

 You can install and uninstall add-ins by using the Add-Ins dialog box. To display this dia-
log box, choose File➜Options➜Add-Ins. Then, in the Excel Options dialog box, choose
Excel Add-Ins from the Manage drop-down list and click Go. After an add-in is installed, it
remains installed across Excel sessions.

 The Macro dialog box (invoked by choosing Developer➜Code➜Macros or
View➜Macros➜Macros) doesn’t display the names of the macros contained in an add-in.

 You can use a custom worksheet function stored within an add-in in formulas without
having to precede its name with the source workbook’s filename.

In the past, Excel allowed you to use any extension for an add-in. Beginning with Excel
2007, you can still use any extension for an add-in, but if it’s not XLA or XLAM, you see
the warning shown in Figure 21-1. This prompt occurs even if it’s an installed add-in that
opens automatically when Excel starts.

Figure 21-1: Excel warns you if an add-in uses a non-standard file extension.

Why create add-ins?
You might decide to convert your Excel application into an add-in for any of the following reasons:

 To restrict access to your code and worksheets: When you distribute an application as
an add-in and you protect its VBA project with a password, users can’t view or modify
the sheets or the VBA code in the workbook. Therefore, if you use proprietary techniques
in your application, you can prevent anyone from copying the code — or at least make it
more difficult to do so.

Chapter 21: Creating and Using Add-Ins 705

 To avoid confusion: If a user loads your application as an add-in, the file isn’t visible and
is, therefore, less likely to confuse novice users or get in the way. Unlike a hidden work-
book, an add-in can’t be unhidden.

 To simplify access to worksheet functions: Custom worksheet functions stored within an
add-in don’t require the workbook name qualifier. For example, if you store a custom
function named MOVAVG in a workbook named Newfuncs.xlsm, you must use a syn-
tax like the following to use this function in a formula that’s in a different workbook:

=Newfuncs.xlsm!MOVAVG(A1:A50)

 But if this function is stored in an add-in file that’s open, you can use a much simpler syn-
tax because you don’t need to include the file reference:

=MOVAVG(A1:A50)

 To provide easier access for users: After you identify the location of your add-in, it
appears in the Add-Ins dialog box with a friendly name and a description of what it does.

 To gain better control over loading: Add-ins can be opened automatically when Excel
starts, regardless of the directory in which they are stored.

 To avoid displaying prompts when unloading: When an add-in is closed, the user never
sees the Do you want to save change? prompt.

The ability to use add-ins is determined by the user’s security settings in the
Add-Ins tab of the Trust Center dialog box. To display this dialog box, choose
Developer➜Code➜Macro Security. Or, if the Developer tab isn’t displayed, choose
Office➜Excel Options➜Trust Center and then click the Trust Center Settings button.

About COM add-ins
Excel also supports COM (Component Object Model) add-ins. These files have a .dll or .exe
file extension. A COM add-in can be written so it works with all Office applications that support
add-ins. An additional advantage is that the code is compiled, so the original source isn’t view-
able. Unlike XLAM add-ins, a COM add-in can’t contain Excel sheets or charts. COM add-ins are
developed in Visual Basic .NET. Discussion of creating COM add-in procedures is well beyond
the scope of this book.

Part V: Advanced Programming Techniques706

Understanding Excel’s Add-In Manager
The most efficient way to load and unload add-ins is with Excel’s Add-Ins dialog box, which you
access by choosing File➜Options➜Add-Ins. Then, in the Excel Options dialog box, choose Excel
Add-Ins from the Manage drop-down box and click Go.

The Alt+TI shortcut key sequence used in earlier versions of Excel is a quicker way to
display the Add-Ins dialog box. In addition, Excel 2010 includes the Add-Ins command
on the Developer tab.

Figure 21-2 shows the Add-Ins dialog box. The list contains the names of all add-ins that Excel
knows about, and check marks identify add-ins that are installed. You can open and close add-ins
from this dialog box by clearing or marking the check boxes.

Figure 21-2: The Add-Ins dialog box.

You can also open most add-in files by choosing the File➜Open command. Because an
add-in is never the active workbook, however, you can’t close an add-in by choosing
File➜Close. You can remove the add-in only by exiting and restarting Excel or by exe-
cuting VBA code to close the add-in. For example:

Workbooks(“myaddin.xlam”).Close

Opening an add-in with the File➜Open command opens the file, but the add-in isn’t
officially installed.

When you open an add-in, you might notice something different about Excel. In almost every
case, the user interface changes in some way: Excel displays either a new command in the
Ribbon or new menu items on a shortcut menu. For example, when the Analysis ToolPak add-in

Chapter 21: Creating and Using Add-Ins 707

is installed, it gives you a new command: Data➜Analysis➜Data Analysis. When you install Excel’s
Euro Currency Tools add-in, you get a new group in the Formulas tab: Solutions.

If the add-in contains only custom worksheet functions, the new functions appear in the Insert
Function dialog box and also in the Function Library group in the Ribbon.

If you open an add-in created in a version prior to Excel 2007, any user interface modi-
fications made by the add-in won’t appear as they were intended to appear. Rather,
you must access the user interface items (menus and toolbars) by choosing Add-
Ins➜Menu Commands or Add-Ins➜Custom Toolbars.

Creating an Add-in
You can convert any workbook to an add-in, but not all workbooks are appropriate candidates
for add-ins. First, an add-in must contain macros. (Otherwise, it’s useless.)

Generally, a workbook that benefits most from being converted to an add-in is one that contains
general-purpose macro procedures. A workbook that consists only of worksheets would be inac-
cessible as an add-in because worksheets within add-ins are hidden from the user. You can, how-
ever, write code that copies all or part of a sheet from your add-in to a visible workbook.

Creating an add-in from a workbook is simple. The following steps describe the general proce-
dure for creating an add-in from a normal workbook file:

 1. Develop your application and make sure that everything works properly.

 2. Include a way to execute the macro or macros in the add-in (see Chapters 22 and 23 for
more information about modifying Excel’s user interface).

 3. Activate the Visual Basic Editor (VBE) and select the workbook in the Project window.

 4. Choose Tools➜xxx Properties (where xxx represents the name of the project), click the
Protection tab, and select the Lock Project for Viewing check box and then enter a pass-
word (twice). Click OK.

 This step is necessary only if you want to prevent others from viewing or modifying your
macros or UserForms.

 5. Reactivate Excel and choose Developer➜Modify➜Document Panel to display the
Document Properties panel.

 6. Enter a brief descriptive title in the Title field and a longer description in the Comments
field.

 This step isn’t required, but it makes the add-in easier to use by displaying descriptive
text in the Add-Ins dialog box.

 7. Choose File➜Save As to display the Save As dialog box.

Part V: Advanced Programming Techniques708

 8. In the Save As dialog box, select Excel Add-In (*.xlam) from the Save as Type drop-down
list.

 9. Click Save.

 A copy of the workbook is saved (with an .xlam extension), and the original workbook
remains open.

 10. Close the original workbook and then install the add-in version.

 11. Test the add-in to make sure it works correctly.

 If your add-in doesn’t work, make changes to your code. And don’t forget to save your
changes.

A workbook being converted to an add-in must have at least one worksheet. For example,
if your workbook contains only chart sheets or Excel 5/95 dialog sheets, the Excel Add-In
(*.xlam) option doesn’t appear in the Save As dialog box. Also, this option appears only
when a worksheet is active when you choose the Office➜Save As command.

An Add-In Example
In this section, I discuss the steps involved in creating a useful add-in. The example uses a utility I
created that exports charts to separate graphic files. The utility adds a new group to the Chart
Tools➜Design contextual tab. Figure 21-3 shows the main dialog box for this utility. This is a fairly
complicated utility, and you might want to take some time to see how it works.

Figure 21-3: The Export Charts workbook will make a useful add-in.

The XLSM version of the Export Charts utility (named export charts.xlsm) is avail-
able on the companion CD-ROM. You can use this file to create the described add-in.

Chapter 21: Creating and Using Add-Ins 709

In this example, you’ll be working with a workbook that has already been developed and
debugged. The workbook consists of the following items:

 A worksheet named Sheet1: This sheet is not used, but it must be present because
every add-in must have at least one worksheet.

 A UserForm named UserForm1: This dialog box serves as the primary user interface.
The code module for this UserForm contains several event-handler procedures.

 A UserForm named UserForm2: This dialog box is displayed when the user clicks the
Rename button to change the filename of a chart to be exported.

 A UserForm named UserForm3: This dialog box is displayed when the workbook is
opened. It briefly describes how to access the Export Charts utility. It also contains a
Don’t Show This Message Again check box.

 A VBA module named Module1: This module contains several procedures, including a
procedure that displays the UserForm1 UserForm.

 ThisWorkbook code module: This module contains a Workbook_Open procedure that
reads the saved settings and displays a start-up message.

 XML code to customize the Ribbon: This customization was done outside of Excel. See
Chapter 22 for more information about customizing the Ribbon by using RibbonX.

Adding descriptive information for the example add-in
To enter a title and description for your add-in, choose Developer➜Modify➜Document Panel,
which displays the Document Properties panel below the Ribbon.

Enter a title for the add-in in the Title field. This text appears in the list in the Add-Ins dialog box.
In the Comments field, enter a description of the add-in. This information appears at the bottom
of the Add-Ins dialog box when the add-in is selected.

Adding a title and description for the add-in is optional but highly recommended.

A few words about passwords
Microsoft has never promoted Excel as a product that creates applications in which the source
code is secure. The password feature provided in Excel is sufficient to prevent casual users from
accessing parts of your application that you’d like to keep hidden. Excel 2002 and later versions
include stronger security than previous versions, but your passwords can be cracked. If you must
be absolutely sure that no one ever sees your code or formulas, Excel isn’t your best choice as a
development platform.

Part V: Advanced Programming Techniques710

Creating an add-in
To create an add-in, do the following:

 1. Activate the VBE and select the future add-in workbook in the Project window.

 2. Choose Debug➜Compile.

 This step forces a compilation of the VBA code and also identifies any syntax errors so
that you can correct them. When you save a workbook as an add-in, Excel creates the
add-in even if it contains syntax errors.

 3. Choose Tools➜xxx Properties (where xxx represents the name of the project) to display
the Project Properties dialog box, click the General tab, and enter a new name for the
project.

 By default, all VB projects are named VBProject. In this example, the project name is
changed to ExpCharts. This step is optional but recommended.

 4. Save the workbook one last time using its *.XLSM name.

 Strictly speaking, this step isn’t really necessary, but it gives you an XLSM backup (with
no password) of your XLAM add-in file.

 5. With the Project Properties dialog box still displayed, click the Protection tab, select the
Lock Project for Viewing check box, and enter a password (twice).

 The code will remain viewable, and the password protection will take effect the next time
the file is opened.

 6. Click OK.

 If you don’t need to protect the project, you can skip Steps 5 and 6.

 7. In Excel, choose File➜Save As.

 Excel displays its Save As dialog box.

 8. In the Save as Type drop-down list, select Excel Add-In (*.xlam).

 9. Click Save.

 A new add-in file is created, and the original XLSM version remains open.

Add-ins can be located in any directory.

Installing an add-in
To avoid confusion, close the XLSM workbook before installing the add-in created from that
workbook.

Chapter 21: Creating and Using Add-Ins 711

To install an add-in, do the following:

 1. Choose File➜Options, and click the Add-Ins tab.

 2. Choose Excel Add-Ins from the Manage drop-down list and click Go (or press Alt+TI).

 Excel displays the Add-Ins dialog box.

 3. Click the Browse button and locate and double-click the add-in that you just created.

 After you find your new add-in, the Add-Ins dialog box displays the add-in in its list. As
shown in Figure 21-4, the Add-Ins dialog box also displays the descriptive information
that you provided in the Document Properties panel.

 4. Click OK to close the dialog box and open the add-in.

About Excel’s Add-In Manager
You install and uninstall add-ins by using Excel’s Add-Ins dialog box. To display this dialog box,
choose File➜Excel Options➜Add-Ins. Then, in the Excel Options dialog box, choose Excel Add-
Ins from the Manage drop-down list and click Go. Or use Developer➜Add-Ins➜Add-Ins to dis-
play the Add-Ins dialog box. This dialog box lists the names of all the available add-ins. those
that are checked are open.

In VBA terms, the Add-In dialog box lists the Title property of each AddIn object in the
AddIns collection. Each add-in that appears with a check mark has its Installed property set
to True.

You can install an add-in by marking its check box, and you can clear an installed add-in by
removing the check mark from its box. To add an add-in to the list, use the Browse button to
locate its file. By default, the Add-In dialog box lists files of the following types:

● XLAM: An Excel 2007 or Excel 2010 add-in created from an XLSM file
● XLA: A pre–Excel 2007 add-in created from an XLS file
● XLL: A stand-alone compiled DLL file

If you click the Automation button, you can browse for COM add-ins. Note that the Automation
Servers dialog box will probably list many files, and the file list isn’t limited to COM add-ins that
work with Excel.

You can enroll an add-in file into the AddIns collection with the Add method of VBA’s AddIns
collection, but you can’t remove one by using VBA. You can also open an add-in from within
VBA code by setting the AddIn object’s Installed property to True. Setting it to False
closes the add-in.

The Add-In Manager stores the installed status of the add-ins in the Windows Registry when you
exit Excel. Therefore, all add-ins that are installed when you close Excel are automatically
opened the next time you start Excel.

Part V: Advanced Programming Techniques712

Figure 21-4: The Add-Ins dialog box with the new add-in selected.

When the Export Charts add-in is opened, the Chart Tools➜Design contextual tab displays a new
group, Export Charts, with two controls. One control displays the Export Charts dialog box, the
other displays the Help file. Note that the Chart Tools➜Design contextual tab is visible only when
a chart (or chart sheet) is selected.

Testing the add-in
After installing the add-in, it’s a good idea to perform some additional testing. For this example,
open a new workbook and create some charts to try out the various features in the Export Charts
utility. Do everything you can think of to try to make it fail. Better yet, seek the assistance of
someone unfamiliar with the application to give it a crash test.

If you discover any errors, you can correct the code in the add-in (the original file is not
required). After making changes, save the file by choosing File➜Save in the VBE.

Distributing an add-in
You can distribute this add-in to other Excel users simply by giving them a copy of the XLAM file
(they don’t need the XLSM version) along with instructions on how to install it. If you locked the
file with a password, your macro code cannot be viewed or modified by others unless they know
the password.

Chapter 21: Creating and Using Add-Ins 713

Modifying an add-in
If you need to modify an add-in, first open it and then unlock the VB project if you applied a
password. To unlock it, activate the VBE and then double-click its project’s name in the Project
window. You’ll be prompted for the password. Make your changes and then save the file from the
VBE (choose File➜Save).

If you create an add-in that stores its information in a worksheet, you must set its IsAddIn
property to False before you can view that workbook in Excel. You do this in the Properties
window shown in Figure 21-5 when the ThisWorkbook object is selected. After you make your
changes, set the IsAddIn property back to True before you save the file. If you leave the
IsAddIn property set to False, Excel won’t let you save the file with the XLAM extension.

Creating an add-in: A checklist
Before you release your add-in to the world, take a few minutes to run through this checklist:

● Did you test your add-in with all supported platforms and Excel versions?
● Did you give your VB project a new name? By default, every project is named

VBProject. It’s a good idea to give your project a more meaningful name.
● Does your add-in make any assumptions about the user’s directory structure or directory

names?
● When you use the Add-Ins dialog box to load your add-in, are its name and description

correct and appropriate?
● If your add-in uses VBA functions that aren’t designed to be used in a worksheet, have you

declared the functions as Private? If not, these functions will appear in the Insert
Function dialog box.

● Did you remember to remove all Debug.Print statements from your code?
● Did you force a recompile of your add-in to ensure that it contains no syntax errors?
● Did you account for any international issues?
● Is your add-in file optimized for speed? See “Optimizing the Performance of Add-Ins” later

in this chapter.

Part V: Advanced Programming Techniques714

Figure 21-5: Making an add-in not an add-in.

Comparing XLAM and XLSM Files
This section begins by comparing an XLAM add-in file with its XLSM source file. Later in this
chapter, I discuss methods that you can use to optimize the performance of your add-in. I
describe a technique that might reduce its file size, which makes it load more quickly and use less
disk space and memory.

For starters, an add-in based on an XLSM source file is exactly the same size as the original. The
VBA code in XLAM files isn’t optimized in any way, so faster performance isn’t among the bene-
fits of using an add-in.

XLAM file VBA collection membership
An add-in is a member of the AddIns collection but isn’t an official member of the Workbooks
collection. However, you can refer to an add-in by using the Workbooks method of the
Application object and supplying the add-in’s filename as its index. The following instruction
creates an object variable that represents an add-in named myaddin.xlam:

Dim TestAddin As Workbook
Set TestAddin = Workbooks(“myaddin.xlam”)

Chapter 21: Creating and Using Add-Ins 715

Add-ins cannot be referenced by an index number in the Workbooks collection. If you use the
following code to loop through the Workbooks collection, the myaddin.xlam workbook isn’t
displayed:

Dim w as Workbook
For Each w in Application.Workbooks
 MsgBox w.Name
Next w

The following For-Next loop, on the other hand, displays myaddin.xlam — assuming that
Excel “knows” about it — in the Add-Ins dialog box:

Dim a as Addin
For Each a in Application.AddIns
 MsgBox a.Name
Next a

Visibility of XLSM and XLAM files
Ordinary workbooks are displayed in one or more windows. For example, the following state-
ment displays the number of windows for the active workbook:

MsgBox ActiveWorkbook.Windows.Count

You can manipulate the visibility of each window for a workbook by choosing the
View➜Window➜Hide command or by changing the Visible property using VBA. The following
code hides all windows for the active workbook:

Dim Win As Window
For Each Win In ActiveWorkbook.Windows
 Win.Visible = False
Next Win

Add-in files are never visible, and they don’t officially have windows, even though they have
unseen worksheets. Consequently, add-ins don’t appear in the windows list when you choose the
View➜Window➜Switch Windows command. If myaddin.xlam is open, the following statement
returns 0:

MsgBox Workbooks(“myaddin.xlam”).Windows.Count

Part V: Advanced Programming Techniques716

Worksheets and chart sheets in XLSM and XLAM files
Add-in files, like normal workbook files, can have any number of worksheets or chart sheets. But,
as I note earlier in this chapter, an XLSM file must have at least one worksheet in order for it to be
converted to an add-in. In many cases, this worksheet will be empty.

When an add-in is open, your VBA code can access its sheets as if it were an ordinary workbook.
Because add-in files aren’t part of the Workbooks collection, however, you must always refer-
ence an add-in by its name and not by an index number. The following example displays the
value in cell A1 of the first worksheet in myaddin.xla, which is assumed to be open:

MsgBox Workbooks(“myaddin.xlam”).Worksheets(1).Range(“A1”).Value

If your add-in contains a worksheet that you’d like the user to see, you can either copy the sheet
to an open workbook or create a new workbook from the sheet.

The following code, for example, copies the first worksheet from an add-in and places it in the
active workbook (as the last sheet):

Sub CopySheetFromAddin()
 Dim AddinSheet As Worksheet
 Dim NumSheets As Long
 Set AddinSheet = Workbooks(“myaddin.xlam”).Sheets(1)
 NumSheets = ActiveWorkbook.Sheets.Count
 AddinSheet.Copy After:=ActiveWorkbook.Sheets(NumSheets)
End Sub

Note that this procedure works even if the VBA project for the add-in is protected with a
password.

Creating a new workbook from a sheet within an add-in is even simpler:

Sub CreateNewWorkbook()
 Workbooks(“myaddin.xlam”).Sheets(1).Copy
End Sub

The preceding examples assume that the code is in a file other than the add-in file. VBA
code within an add-in should always use ThisWorkbook to qualify references to sheets
or ranges within the add-in. For example, the following statement is assumed to be in a
VBA module in an add-in file. This statement displays the value in cell A1 on Sheet 1:

MsgBox ThisWorkbook.Sheets(“Sheet1”).Range(“A1”).Value

Chapter 21: Creating and Using Add-Ins 717

Accessing VBA procedures in an add-in
Accessing the VBA procedures in an add-in is a bit different from accessing procedures in a nor-
mal XLSM workbook. First of all, when you choose the View➜Macros➜Macros command, the
Macro dialog box doesn’t display the names of macros that are in open add-ins. It’s almost as if
Excel is trying to prevent you from accessing them.

If you know the name of the procedure in the add-in, you can enter it directly into the
Macro dialog box and click Run to execute it. The Sub procedure must be in a general
VBA module and not in a code module for an object.

Because procedures contained in an add-in aren’t listed in the Macro dialog box, you must pro-
vide other means to access them. Your choices include direct methods (such as shortcut keys,
Ribbon commands, and shortcut menu items) as well as indirect methods (such as event han-
dlers). One such candidate, for example, may be the OnTime method, which executes a proce-
dure at a specific time of day.

You can use the Run method of the Application object to execute a procedure in an add-in.
For example,

Application.Run “myaddin.xlam!DisplayNames”

Another option is to use the Tools➜References command in the VBE to enable a reference to the
add-in. Then you can refer directly to one of its procedures in your VBA code without the file-
name qualifier. In fact, you don’t need to use the Run method; you can call the procedure directly
as long as it’s not declared as Private. The following statement executes a procedure named
DisplayNames in an add-in that has been added as a reference:

Call DisplayNames

Even when a reference to the add-in has been established, its macro names don’t
appear in the Macro dialog box.

Function procedures defined in an add-in work just like those defined in an XLSM workbook.
They’re easy to access because Excel displays their names in the Insert Function dialog box under
the User Defined category (by default). The only exception is if the Function procedure was
declared with the Private keyword; then the function doesn’t appear there. That’s why it’s a
good idea to declare custom functions as Private if they will be used only by other VBA proce-
dures and aren’t designed to be used in worksheet formulas.

Part V: Advanced Programming Techniques718

An example of an add-in that does not declare its functions as Private is Microsoft’s
Lookup Wizard add-in (included with earlier versions of Excel, and downloadable from
Microsoft’s Web site). After installing this add-in, click the Insert Function button. You’ll
find more than three-dozen nonworksheet functions listed in the User Defined category
of the Insert Function dialog box (see Figure 21-6). These functions are not intended to
be used in a worksheet formula, but it appears that the programmer forgot to declare
them as Private.

Figure 21-6: These functions should not be listed here and should have been declared as Private.

You can use worksheet functions contained in add-ins without the workbook name qualifier. For
example, if you have a custom function named MOVAVG stored in the file newfuncs.xlsm,
you’d use the following instruction to address the function from a worksheet that’s in a different
workbook:

=newfuncs.xlsm!MOVAVG(A1:A50)

But if this function is stored in an add-in file that’s open, you can omit the file reference and write
the following instead:

=MOVAVG(A1:A50)

Chapter 21: Creating and Using Add-Ins 719

Sleuthing a protected add-in
The Macro dialog box doesn’t display the names of procedures contained in add-ins. But what if
you’d like to run such a procedure? You can run a procedure if you don’t know it’s name, but you
can find out by using the Object Browser.

To illustrate, install the Euro Currency Tools add-in. This add-in is distributed with Excel and is
protected, so you can’t view the code. When installed, this add-in creates a new group, called
Solutions, on the Formulas tab of the Ribbon. The Euro Conversion button, when clicked, displays
the Euro Conversion dialog box. This dialog box lets you convert a range that contains currencies.

To determine the name of the procedure that displays this dialog box, follow these steps:

 1. Activate the VBE and then select the EUROTOOL.XLAM project in the Project window.

 2. Press F2 to activate the Object Browser.

 3. In the Libraries drop-down list, select EuroTool, which displays all the classes in the
EUROTOOL.XLAM add-in, as depicted in the following figure.

continued

Part V: Advanced Programming Techniques720

continued

 4. Select various items in the Classes list to see what class they are and the members that
they contain.

You see that this add-in has 3 UserForms, 6 VBA modules, and 19 worksheets. Excel allows you
to copy sheets from protected add-ins, so If you’d like to take a look at one of the worksheets,
use the Immediate window and copy the worksheet to a new workbook using a statement like
this:

Workbooks(“eurotool.xlam”).Sheets(1).Copy

Or, to examine all the worksheets, execute this statement, which converts the add-in to a stan-
dard workbook:

Workbooks(“eurotool.xlam”).IsAddin = False

The following figure shows a portion of the worksheet copied from EUROTOOL.XLAM. This sheet
(and the others) contain information used to localize the add-in for different languages.

That’s interesting, but it doesn’t help identify the procedure name we’re seeking.

This add-in has many procedures; I tried executing several likely candidates, but none of them
displayed the dialog box. Then I looked at the members listed in the ThisWorkbook code mod-
ule and noticed a procedure called EuroConversionWizard. I tried to execute it, but I got an
error. Then I tried another command:

Application.Run “eurotool.xlam!ThisWorkbook.EuroConversionWizard”

Success! Executing this statement displays the Euro Conversion dialog box.

Armed with this information, you can write VBA code to display the Euro Conversion dialog
box — assuming, of course, that you can think of a reason to do so.

Chapter 21: Creating and Using Add-Ins 721

Manipulating Add-Ins with VBA
In this section, I present information that can help you write VBA procedures that manipulate
add-ins.

The AddIns collection consists of all add-ins that Excel knows about. These add-ins can either
be installed or not. The Add-Ins dialog box lists all members of the AddIns collection. Those
entries accompanied by a check mark are installed.

Excel 2010 includes an additional collection: AddIns2. This collection is the same as the
AddIns collection, but it also includes add-ins that were opened using the File➜Open
command. In the past, accessing these add-ins required an XLM macro.

Adding an item to the AddIns collection
The add-in files that make up the AddIns collection can be stored anywhere. Excel maintains a
partial list of these files and their locations in the Windows Registry. For Excel 2010, this list is
stored at

HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Excel\Add-in Manager

You can use the Windows Registry Editor (regedit.exe) to view this Registry key. Note that
the standard add-ins that are shipped with Excel do not appear in this Registry key. In addition,
add-in files stored in the following directory also appear in the list but aren’t listed in the
Registry:

C:\Program Files\Microsoft Office\Office14\Library

You can add a new AddIn object to the AddIns collection either manually or programmatically
by using VBA. To add a new add-in to the collection manually, display the Add-Ins dialog box,
click the Browse button, and locate the add-in.

To add a new member to the AddIns collection with VBA, use the collection’s Add method.
Here’s an example:

Application.AddIns.Add “c:\files\newaddin.xlam”

After the preceding instruction is executed, the AddIns collection has a new member, and the
Add-Ins dialog box shows a new item in its list. If the add-in already exists in the collection, noth-
ing happens, and an error isn’t generated.

Part V: Advanced Programming Techniques722

If the add-in is on removable media (for example, a CD-ROM), you can also copy the file to
Excel’s library directory with the Add method. The following example copies myaddin.xlam
from drive E and adds it to the AddIns collection. The second argument (True, in this case)
specifies whether the add-in should be copied. If the add-in resides on a hard drive, the second
argument can be ignored.

Application.AddIns.Add “e:\myaddin.xla”, True

Adding a new file to the AddIns collection does not install it. To install the add-in, set
its Installed property to True.

The Windows Registry doesn’t actually get updated until Excel closes normally.
Therefore, if Excel ends abnormally (that is, if it crashes), the add-in’s name won’t get
added to the Registry, and the add-in won’t be part of the AddIns collection when
Excel restarts.

Removing an item from the AddIns collection
Oddly, there is no direct way to remove an add-in from the AddIns collection. The AddIns col-
lection doesn’t have a Delete or Remove method. One way to remove an add-in from the Add-
Ins dialog box is to edit the Windows Registry database (using regedit.exe). After you do
this, the add-in won’t appear in the Add-Ins dialog box the next time that you start Excel. Note
that this method isn’t guaranteed to work with all add-in files.

Another way to remove an add-in from the AddIns collection is to delete, move, or rename its
XLAM (or XLA) file. You’ll get a warning like the one in Figure 21-7 the next time you try to install
or uninstall the add-in, along with an opportunity to remove it from the AddIns collection.

Figure 21-7: One way to remove a member of the AddIns collection.

AddIn object properties
An AddIn object is a single member of the AddIns collection. For example, to display the file-
name of the first member of the AddIns collection, use the following:

Msgbox AddIns(1).Name

Chapter 21: Creating and Using Add-Ins 723

An AddIn object has 14 properties, which you can read about in the Help system. Five of these
properties are hidden properties. Some of the terminology is a bit confusing, so I discuss a few of
the more important properties in the sections that follow.

The Name property of an addIn object
This property holds the filename of the add-in. Name is a read-only property, so you can’t change
the name of the file by changing the Name property.

The Path property of an addin object
This property holds the drive and path where the add-in file is stored. It doesn’t include a final
backslash or the filename.

The FullName property of an addin object
This property holds the add-in’s drive, path, and filename. This property is a bit redundant
because this information is also available from the Name and Path properties. The following
instructions produce exactly the same message:

MsgBox AddIns(1).Path & “\” & AddIns(1).Name
MsgBox AddIns(1).FullName

The Title property of an addin object
This hidden property holds a descriptive name for the add-in. The Title property is what
appears in the Add-Ins dialog box. This property is read-only, and the only way to add or change
the Title property of an add-in is to use the Document Properties panel (choose the
Developer➜Modify➜Document command). You must use this menu command with the XLSM
version of the file before converting it to an add-in. Another option is to right-click the add-in file
in Windows Explorer and choose Properties from the shortcut menu. Then click the Details tab
and make the change. This method won’t work if the file is open in Excel.

Typically, a member of a collection is addressed by way of its Name property setting. The
AddIns collection is different; it uses the Title property instead. The following example dis-
plays the filename for the Analysis ToolPak add-in (that is, analys32.xll), whose Title
property is “Analysis ToolPak”.

Sub ShowName()
 MsgBox AddIns(“Analysis Toolpak”).Name
End Sub

You can, of course, also reference a particular add-in with its index number if you happen to know
it. But in the vast majority of cases, you will want to refer to an add-in by using its Name property.

Part V: Advanced Programming Techniques724

The Comments property of an addin object
This property stores text that is displayed in the Add-Ins dialog box when a particular add-in is
selected. Comments is a read-only property. To change it, use the Document Properties panel
before you convert the workbook to an add-in. Or, use Windows Explorer, as described earlier for
the Title property. Comments can be as long as 255 characters, but the Add-Ins dialog box can
display only about 100 characters.

If your code attempts to read the Comments property of an add-in that has no comments, you
get an error.

The Installed property of an addin object
The Installed property is True if the add-in is currently installed — that is, if it is checked in the
Add-Ins dialog box. Setting the Installed property to True opens the add-in. Setting it to False
unloads it. Here’s an example of how to install (that is, open) the Analysis ToolPak add-in with VBA:

Sub InstallATP()
 AddIns(“Analysis ToolPak”).Installed = True
End Sub

After this procedure is executed, the Add-Ins dialog box displays a check mark next to Analysis
ToolPak. If the add-in is already installed, setting its Installed property to True has no effect.
To remove this add-in (uninstall it), simply set the Installed property to False.

If an add-in was opened with the File➜Open command, it isn’t considered to be offi-
cially installed. Consequently, its Installed property is False. An add-in is installed
only if it appears in the Add-Ins dialog box, with a check mark next to its name.

The ListAllAddIns procedure that follows creates a table that lists all members of the
AddIns collection and displays the following properties: Name, Title, Installed, Comments,
and Path.

Sub ListAllAddins()
 Dim ai As AddIn
 Dim Row As Long
 Dim Table1 As ListObject
 Cells.Clear
 Range(“A1:E1”) = Array(“Name”, “Title”, “Installed”, _
 “Comments”, “Path”)
 Row = 2
 On Error Resume Next
 For Each ai In Application.AddIns
 Cells(Row, 1) = ai.Name
 Cells(Row, 2) = ai.Title
 Cells(Row, 3) = ai.Installed
 Cells(Row, 4) = ai.Comments

Chapter 21: Creating and Using Add-Ins 725

 Cells(Row, 5) = ai.Path
 Row = Row + 1
 Next ai
 On Error GoTo 0
 Range(“A1”).Select
 ActiveSheet.ListObjects.Add
 ActiveSheet.ListObjects(1).TableStyle = _
 “TableStyleMedium2”
End Sub

Figure 21-8 shows the result of executing this procedure. If you modify the code to use the
AddIns2 collection, the table will also include add-ins that were opened using the File➜Open
command (if any). The AddIns2 collection is available only in Excel 2010.

This procedure is available on the companion CD-ROM. The filename is list add-in
information.xlsm.

Figure 21-8: A table that lists all members of the AddIns collection.

You can determine whether a particular workbook is an add-in by accessing its
IsAddIn property. This property isn’t read-only, so you can also convert a workbook to
an add-in by setting the IsAddIn property to True.

And, conversely, you can convert an add-in to a workbook by setting the IsAddIn
property to False. After doing so, the add-in’s worksheets will be visible in Excel —
even if the add-in’s VBA project is protected. By using this technique, I learned that
most of the dialog boxes in SOLVER.XLAM are Excel 5/95 dialog sheets, not UserForms.

Accessing an add-in as a workbook
You can open an add-in file by using the Add-Ins dialog box or by choosing the File➜Open com-
mand. The former method is the preferred method for the following reason: When you open an

Part V: Advanced Programming Techniques726

add-in with the File➜Open command, its Installed property is not set to True. Therefore,
you can’t close the file by using the Add-Ins dialog box. In fact, the only way to close such an
add-in is with a VBA statement such as the following:

Workbooks(“myaddin.xlam”).Close

Using the Close method on an installed add-in removes the add-in from memory, but
it does not set its Installed property to False. Therefore, the Add-Ins dialog box still
lists the add-in as installed, which can be very confusing. The proper way to remove an
installed add-in is to set its Installed property to False.

As you may have surmised, Excel’s add-in capability is a bit quirky. This component (except for the
addition of the AddIns2 collection) hasn’t been improved in many years. Therefore, as a devel-
oper, you need to pay particular attention to issues involving installing and uninstalling add-ins.

AddIn object events
An AddIn object has two events: AddInInstall (raised when the add-in is installed) and
AddInUninstall (raised when it is uninstalled). You can write event-handler procedures for
these events in the ThisWorkbook code module for the add-in.

The following example is displayed as a message when the add-in is installed:

Private Sub Workbook_AddInInstall()
 MsgBox ThisWorkbook.Name & _” add-in has been installed.”
End Sub

Don’t confuse the AddInInstall event with the Open event. The AddInInstall event
occurs only when the add-in is first installed — not every time it is opened. If you need
to execute code every time the add-in is opened, use a Workbook_Open procedure.

For additional information about events, see Chapter 19.

Optimizing the Performance of Add-ins
If you ask a dozen Excel programmers to automate a particular task, chances are that you’ll get a
dozen different approaches. Most likely, not all these approaches will perform equally well.

Following are a few tips that you can use to ensure that your code runs as quickly as possible.
These tips apply to all VBA code, not just the code in add-ins.

Chapter 21: Creating and Using Add-Ins 727

 Set the Application.ScreenUpdating property to False when writing data to a
worksheet or performing any other actions that cause changes to the display.

 Declare the data type for all variables used and avoid variants whenever possible. Use
an Option Explicit statement at the top of each module to force yourself to declare
all variables.

 Create object variables to avoid lengthy object references. For example, if you’re work-
ing with a Series object for a chart, create an object variable by using code like this:

Dim S1 As Series
Set S1 = ActiveWorkbook.Sheets(1).ChartObjects(1). _
 Chart.SeriesCollection(1)

 Whenever possible, declare object variables as a specific object type — not As Object.

 Use the With-End With construct, when appropriate, to set multiple properties or call
multiple methods for a single object.

 Remove all extraneous code. This is especially important if you’ve used the macro
recorder to create procedures.

 If possible, manipulate data with VBA arrays rather than worksheet ranges. Reading and
writing to a worksheet take much longer than manipulating data in memory. This is not a
firm rule, however. For best results, test both options.

 If your code writes lots of data to worksheets, consider setting the calculation mode to
Manual. Doing so may increase the speed significantly. Here’s a statement that changes
the calculation mode:

 Application.Calculation = xlCalculationManual

 Avoid linking UserForm controls to worksheet cells. Doing so may trigger a recalculation
whenever the user changes the UserForm control.

 Compile your code before creating the add-in. This may increase the file size slightly,
but it eliminates the need for Excel to compile the code before executing the procedures.

Special Problems with Add-Ins
Add-ins are great, but you should realize by now that there’s no free lunch. Add-ins present their
share of problems — or should I say challenges? In this section, I discuss some issues that you
need to know about if you’ll be developing add-ins for widespread user distribution.

Ensuring that an add-in is installed
In some cases, you may need to ensure that your add-in is installed properly — that is, opened
using the Add-Ins dialog box and not the File➜Open command. This section describes a

Part V: Advanced Programming Techniques728

technique that determines how an add-in was opened and gives the user an opportunity to install
the add-in if it is not properly installed.

If the add-in isn’t properly installed, the code displays a message (see Figure 21-9). Clicking Yes
installs the add-in. Clicking No leaves the file open but doesn’t install it. Clicking Cancel closes
the file.

Figure 21-9: When attempting to open the add-in incorrectly, the user sees this message.

The code that follows is the code module for the add-in’s ThisWorkbook object. This technique
relies on the fact that the AddInInstall event occurs before the Open event for the workbook.

Dim InstalledProperly As Boolean
Private Sub Workbook_AddinInstall()
 InstalledProperly = True
End Sub
Private Sub Workbook_Open()
 Dim ai As AddIn, NewAi As AddIn
 Dim M As String
 Dim Ans As Integer
 ‘Was just installed using the Add-Ins dialog box?
 If InstalledProperly Then Exit Sub

 ‘Is it in the AddIns collection?
 For Each ai In AddIns
 If ai.Name = ThisWorkbook.Name Then
 If ai.Installed Then
 MsgBox “This add-in is properly installed.”, _
 vbInformation, ThisWorkbook.Name
 Exit Sub
 End If
 End If
 Next ai

 ‘It’s not in AddIns collection, prompt user.
 M = “You just opened an add-in. Do you want to install it?”
 M = M & vbNewLine
 M = M & vbNewLine & “Yes - Install the add-in. “
 M = M & vbNewLine & “No - Open it, but don’t install it.”
 M = M & vbNewLine & “Cancel - Close the add-in”

Chapter 21: Creating and Using Add-Ins 729

 Ans = MsgBox(M, vbQuestion + vbYesNoCancel, _
 ThisWorkbook.Name)
 Select Case Ans
 Case vbYes
 ‘ Add it to the AddIns collection and install it.
 Set NewAi = _
 Application.AddIns.Add(ThisWorkbook.FullName)
 NewAi.Installed = True
 Case vbNo
 ‘no action, leave it open
 Case vbCancel
 ThisWorkbook.Close
 End Select
End Sub

The procedure covers the following possibilities:

 The add-in was opened automatically because it’s an installed add-in listed (and
checked) in the Add-Ins dialog box. The user doesn’t see a message.

 The user uses the Add-Ins dialog box to install the add-in. The user doesn’t see a
message.

 The add-in was opened manually (by using File➜Open), and it’s not a member of the
AddIns collection. The user sees the message and must take one of the three actions.

 The add-in was opened manually, and it’s a member of the AddIns collection — but it’s
not installed (not checked). The user sees the message and must take one of the three
actions.

By the way, you can also use this code as a way to simplify the installation of an add-in that you
give to someone. Just tell them to double-click the add-in’s filename (which opens it in Excel)
and respond Yes to the prompt. Better yet, modify the code so that the add-in is installed with-
out a prompt.

This add-in, named check addin.xlam, is available on the companion CD-ROM. Try
opening it using both methods (the Add-Ins dialog box and by choosing File➜Open).

Referencing other files from an add-in
If your add-in uses other files, you need to be especially careful when distributing the application.
You can’t assume anything about the storage structure of the system that users will run the
application on. The easiest approach is to insist that all files for the application be copied to a sin-
gle directory. Then you can use the Path property of your application’s workbook to build path
references to all other files.

Part V: Advanced Programming Techniques730

For example, if your application uses a custom help file, be sure that the help file is copied to the
same directory as the application itself. Then you can use a procedure like the following to make
sure that the help file can be located:

Sub GetHelp()
 Application.Help ThisWorkbook.Path & “\userhelp.chm”
End Sub

If your application uses Application Programming Interface (API) calls to standard Windows
DLLs, you can assume that these can be found by Windows. But if you use custom DLLs, the best
practice is to make sure that they’re installed in the Windows\System directory (which might or
might not be named Windows\System). You’ll need to use the GetSystemDirectory
Windows API function to determine the exact path of the System directory.

Detecting the proper Excel version for your add-in
As you may know, those who use an earlier version of Excel can open Excel 2007 (and later) files
if they’ve installed Microsoft’s Compatibility Pak. If your add-in uses any features unique to Excel
2007 or Excel 2010, you’ll want to warn users who attempt to open the add-in with an earlier
version. The following code does the trick:

Sub CheckVersion()
 If Val(Application.Version) < 12 Then
 MsgBox “This works only with Excel 2007 or later”
 ThisWorkbook.Close
 End If
End Sub

The Version property of the Application object returns a string. For example, this might
return 12.0a. This procedure uses VBA’s Val function, which ignores everything after the first
alphabetic character.

See Chapter 26 for additional information about compatibility.

PART VI
Developing
Applications
CHAPTER 22
Working with the Ribbon

CHAPTER 23
Working with Shortcut Menus

CHAPTER 24
Providing Help for Your Applications

CHAPTER 25
Developing User-Oriented Applications

733

22
Working with the Ribbon
In This Chapter

● Looking at the Excel Ribbon UI from a user’s perspective

● Using VBA to work with the Ribbon

● Customizing the Ribbon with RibbonX code

● Looking at examples of workbooks that modify the Ribbon

● Using boiler-plate code for creating an old-style toolbar

Ribbon Basics
Beginning with Microsoft Office 2007, the time-honored menu-and-toolbar user interface was
scrapped and replaced with a new tab-and-Ribbon interface. Although the new interface kind of
resembles the old-fashioned menus-and-toolbars interface, you’ll find that it’s radically different.

Long-time Excel users probably noticed that the menu system had become increasingly compli-
cated with each new version. In addition, the number of toolbars had become almost overwhelm-
ing. After all, every new feature must be accessible. In the past, this access meant adding more
items to the menus and building new toolbars. The Microsoft designers set out to solve this over-
crowding problem, and the Ribbon interface was their solution.

Reactions to the Office Ribbon interface can best be described as mixed. As with anything new,
some people love it, and others hate it. Count me among the former group. After using Excel
2007 for more than three years, it’s painful for me to go back to the confusing menu system in
Excel 2003.

Many experienced Excel users suffered from a mild case of bewilderment when they realized that
all their familiar command sequences no longer worked. Beginning users, on the other hand, are
usually able to get up to speed much more quickly because they aren’t overwhelmed with irrele-
vant menus and toolbars.

For the benefit of Ribbon newcomers, I provide some additional user-oriented information in the
sections that follow.

Part VI: Developing Applications734

The commands available in the Ribbon vary, depending on which tab is selected. The Ribbon is
arranged into groups of related commands. Here’s a quick overview of Excel’s tabs:

 Home: You’ll probably spend most of your time in the Home tab. This tab contains the
basic Clipboard commands, formatting commands, style commands, commands to insert
and delete rows and columns, plus an assortment of worksheet-editing commands.

 Insert: Select this tab when you need to insert something in a worksheet — a table, a dia-
gram, a chart, a symbol, and so on.

 Page Layout: This tab contains commands that affect the overall appearance of your
worksheet, including settings that deal with printing.

 Formulas: Use this tab to insert a formula, name a range, access the formula-auditing
tools, or control how Excel performs calculations.

 Data: Excel’s data-related commands are on this tab.

 Review: This tab contains tools to check spelling, translate words, add comments, and
protect sheets.

 View: The View tab contains commands that control various aspects of how a sheet is
viewed. Some commands on this tab are also available on the status bar.

 Developer: This tab isn’t visible by default. It contains commands that are useful for pro-
grammers. To display the Developer tab, right-click the Ribbon and choose Customize
The Ribbon. In the Customize Ribbon tab of the Excel Options dialog box, place a check
mark next to Developer.

 Add-Ins: This tab is visible only if you’ve loaded a workbook or add-in that customizes
the menu or toolbars (by using the CommandBars object). Because menus and toolbars
are no longer available, these customizations appear in the Add-Ins tab.

The appearance of the commands on the Ribbon varies, depending on the width of the Excel
window. When the window is too narrow to display everything, the commands adapt and may
seem to be missing, but the commands are still available. Figure 22-1 shows three views of the
Home tab of the Ribbon. In the top image, all controls are fully visible. In the middle image,
Excel’s window is made narrower. Notice that some of the descriptive text is gone, and some of
the icons are smaller. The bottom image shows the extreme case in which the window is very
narrow. Some groups display a single icon. However, if you click the icon, all the group com-
mands are available to you.

Chapter 22: Working with the Ribbon 735

If you’d like to hide the Ribbon to increase your worksheet view, just double-click any
of the tabs. The Ribbon goes away (but the tabs remain), and you’re able to see about
five additional rows of your worksheet. When you need to use the Ribbon again, just
click a tab, and it comes back temporarily. To permanently restore the Ribbon, double-
click a tab. You can also press Ctrl+F1 to toggle the Ribbon display on and off, or use
the ^ icon (next to the Help icon in the Excel title bar).

Figure 22-1: The Home tab of the Ribbon, with varying widths of the Excel window.

The CommandBar Object in Excel 2010
Excel 97 introduced a completely new way of handling toolbars and menus. These UI elements
are CommandBar objects. What’s commonly called a toolbar is actually one of three types of
command bars:

● Toolbar: This is a bar with one or more clickable controls.
● Menu bar: The two built-in menu bars are the Worksheet menu bar and the Chart

menu bar.
● Shortcut menu: This is the menu that pops up when you right-click an object.

For compatibility purposes, Excel 2007 and Excel 2010 still support the CommandBar object —
but its functionality has been significantly deprecated. It’s no longer possible for an end user to
create a custom toolbar. However, a VBA programmer can still create and work with
CommandBar objects (see “Creating an Old-Style Toolbar,” later in this chapter). The problem,
however, is that many of the CommandBar properties and methods are simply ignored in Excel
2007 and Excel 2010. For example, every toolbar or customized menu appears in the Add-Ins
tab of the Ribbon. Properties that control a toolbar’s dimensions and position no longer work. In
addition, floating toolbars are no longer possible.

continued

Part VI: Developing Applications736

continued

The accompanying figures show a customized menu and toolbar in Excel 2003, and the same
menu and toolbar in Excel 2010. Although these UI elements are still functional in Excel 2010, it’s
clearly not what the developer (me!) had in mind. Needless to say, many VBA developers will
want to redo the UI for their older applications.

Chapter 22: Working with the Ribbon 737

Using VBA with the Ribbon
Now, the big question: What can a VBA programmer do with the Ribbon? The simple answer is
this: not much.

In this chapter, I present a simple example of creating a custom toolbar by using the
CommandBar object (see “Creating an Old-Style Toolbar”). For complete details on creating
custom menus and toolbars with the CommandBar object, consult the Excel 2003 edition of this
book.

Customizing shortcut menus is still supported in Excel 2010, and I cover that topic in Chapter 23.

Part VI: Developing Applications738

Following is a list of what you can do with the Ribbon using VBA:

 Determine whether a particular control is enabled.

 Determine whether a particular control is visible.

 Determine whether a particular control is pressed (for toggle buttons and check boxes).

 Get a control’s label, screen tip, or supertip (a more detailed description of the control).

 Display the image associated with a control.

 Execute the command associated with a particular control.

Following is a list of things that you might like to do with the Ribbon but that aren’t possible:

 Determine which tab is currently selected.

 Activate a particular tab.

 Add a new tab.

 Add a new group to a tab.

 Add a new control.

 Remove a control.

 Disable a control.

 Hide a control.

In Excel 2010, the user can make modifications to the Ribbon by using the Customize
Ribbon tab of the Excel Options dialog box. Unfortunately, you can’t use VBA to make
these changes.

Accessing a Ribbon control
All told, Excel has more than 1,700 Ribbon controls. Every Ribbon control has a name, and you
use that name when you work with the control using VBA.

For example, the statement that follows displays a message box that shows the Enabled status of
the ViewCustomViews control. (This control is located in the View➜Workbook Views group.)

MsgBox Application.CommandBars.GetEnabledMso(“ViewCustomViews”)

Normally, this control is enabled. But (inexplicably), if the workbook contains a table (created by
Insert➜Tables➜Table), the ViewCustomViews control is disabled.

Chapter 22: Working with the Ribbon 739

Determining the name of a particular control is a manual task. First, display the Customize Ribbon
tab of the Excel Options dialog box. Locate the control in the list box on the left and then hover
the mouse pointer over the item. The control’s name appears in a pop-up screen tip, in parenthe-
ses (see Figure 22-2).

Figure 22-2: Using the Customize Ribbon tab of the Excel Options dialog box to determine the name of a
control.

Unfortunately, it’s not possible to write VBA code to loop through all the controls on the Ribbon
and display a list of their names.

The companion CD-ROM contains a workbook with the names of all Excel controls. The
workbook also displays additional information about each control, including the control
type, the tab name, and the group name. Figure 22-3 shows a portion of this file, which
is named ribbon control names.xlsx.

Part VI: Developing Applications740

Figure 22-3: A workbook that displays information about each Ribbon control.

Working with the Ribbon
In the previous section I provided an example of using the GetEnabledMso method of the
CommandBars object. Following is a list of all the methods that are relevant to working with the
Ribbon via the CommandBars object. All these methods take one argument: idMso, which rep-
resents the name of the command.

 ExecuteMso: Executes a control

 GetEnabledMso: Returns True if the specified control is enabled

 GetImageMso: Returns the image for a control

 GetLabelMso: Returns the label for a control

 GetPressedMso: Returns True if the specified control is pressed (applies to check box
and toggle button controls)

Chapter 22: Working with the Ribbon 741

 GetScreentipMso: Returns the screen tip for a control (the text that appears in the
control)

 GetSupertipMso: Returns the supertip for a control (the description of the control that
appears when you hover the mouse pointer over the control)

Some of these methods are fairly useless. Why would a VBA programmer need to determine the
screen tip for a control? I can’t think of a reason.

The VBA statement that follows toggles the Selection pane (a feature introduced in Excel 2007
that facilitates selecting objects on a worksheet):

Application.CommandBars.ExecuteMso(“SelectionPane”)

The following statement displays the Paste Special dialog box (and will display an error message
if the Windows Clipboard is empty):

Application.CommandBars.ExecuteMso(“PasteSpecialDialog”)

Here’s a command that tells you whether the formula bar is visible (it corresponds to the state of
the Formula Bar control in the View➜Show group):

MsgBox Application.CommandBars.GetPressedMso(“ViewFormulaBar”)

Note, however, that your code can’t change the visibility of the formula bar by accessing the
Ribbon control. Rather, use the DisplayFormulaBar property of the Application object:

Application.DisplayFormulaBar = True

The statement that follows displays True if the Merge & Center control is enabled. (This control
is disabled if the sheet is protected or if the active cell is within a table.)

MsgBox Application.CommandBars.GetEnabledMso(“MergeCenter”)

The following VBA code adds an ActiveX Image control to the active worksheet and uses the
GetImageMso method to display the “binoculars” icon from the Find & Select control in the
Home➜Editing group:

Sub ImageOnSheet()
 Dim MyImage As OLEObject
 Set MyImage = ActiveSheet.OLEObjects.Add _
 (ClassType:=”Forms.Image.1”, _

Part VI: Developing Applications742

 Left:=50, _
 Top:=50)
 With MyImage.Object
 .AutoSize = True
 .BorderStyle = 0
 .Picture = Application.CommandBars. _
 GetImageMso(“FindDialog”, 32, 32)
 End With
End Sub

To display the Ribbon icon in an Image control (named Image1) on a UserForm, use this procedure:

Private Sub UserForm_Initialize()
 With Image1
 .Picture = Application.CommandBars. _
 GetImageMso(“FindDialog”, 32, 32)
 .AutoSize = True
 End With
End Sub

Activating a tab
Microsoft provides no direct way to activate a Ribbon tab from VBA. But if you really need to do
so, using SendKeys is your only option. The SendKeys method simulates keystrokes. The key-
strokes required to activate the Home tab are Alt, followed by H. These keystrokes display the
keytips in the Ribbon. To hide the keytips, press F6. Using this information, the following state-
ment sends the keystrokes required to activate the Home tab:

Application.SendKeys “%h{F6}”

The SendKeys arguments for the other tabs are

 Insert: “%n{F6}”

 Page Layout: “%p{F6}”

 Formulas: “%m{F6}”

 Data: “%a{F6}”

 Review: “%r{F6}”

 View: “%w{F6}”

 Developer: “%l{F6}”

 Add-Ins: “%x{F6}”

Chapter 22: Working with the Ribbon 743

Customizing the Ribbon
You can’t perform any Ribbon modifications using VBA. Rather, you must write RibbonX code
and insert the code into the workbook file — which is done outside of Excel. You can, however,
create VBA callback procedures. A callback procedure is a VBA macro that is executed when a
custom Ribbon control is activated.

RibbonX code is XML markup that describes the controls, where in the Ribbon they’re displayed,
what they look like, and what happens when they’re activated. This book does not cover RibbonX —
it’s complex enough to be the subject of an entire book. I do, however, provide a few simple
examples so that you can understand what’s involved in modifying the Excel UI and decide
whether it’s something you’d like to learn.

For information about Excel’s file structure, refer to Chapter 4. That section describes
how to view the information inside of an XLSX workbook file.

A simple RibbonX example
This section contains a step-by-step walkthrough that will give you a feel for what it takes to
modify Excel’s Ribbon. This example creates a new Ribbon group (named Custom) on the Data
tab. It also creates two buttons in the new Ribbon group, labeled Hello World and Goodbye
World. Clicking either of these buttons executes a VBA macro.

The instructions that follow are tedious and error-prone. In reality, most developers
don’t use this method. Rather, they use software designed to make the process much
easier.

Storing UI changes
In Excel 2010, a user can make changes to the Ribbon and the Quick Access toolbar. In fact, you
can easily add commands to the Quick Access toolbar or Ribbon. How does Excel keep track of
these changes?

Quick Access toolbar and Ribbon modifications are stored in a file named Excel.officeUI.
The location of this file varies. On my system, it’s here:

C:\Users\<username>\AppData\Local\Microsoft\Office

I provide more information about the Excel.officeUI file in Chapter 4.

Using SendKeys may not be perfectly reliable. For example, if you execute the previous
example while a UserForm is displayed, the keystrokes will be sent to the UserForm, not to
the Ribbon.

Part VI: Developing Applications744

Follow these steps to create a workbook that contains RibbonX code that modifies the Ribbon:

 1. Create a new Excel workbook, insert a VBA module, and enter the two callback proce-
dures that follow.

 These procedures are the ones that execute when the buttons are clicked:

Sub HelloWorld(control As IRibbonControl)
 MsgBox “Hello World!”
End Sub
Sub GoodbyeWorld(control As IRibbonControl)
 ThisWorkbook.Close
End Sub

 2. Save the workbook and name it ribbon modification.xlsm.

 3. Close the workbook.

 4. Locate the folder that contains the ribbon modification.xlsm file and create a
folder named customUI.

 5. Inside the customUI folder, use a text editor (such as Windows Notepad) to create a text
file named customUI.xml with the following RibbonX XML code:

If your system is set up to hide extensions of known file types, you should turn off that
option so that you always see file extensions. In Windows Explorer, use Tools➜Folder
Options, and select the View tab in the Folder Options dialog box. Remove the check
mark from Hide Extensions For Known File Types.

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/
customui”>

<ribbon>
<tabs>
<tab idMso=”TabData”>
 <group id=”Group1” label=”Custom”>
 <button id=”Button1”
 label=”Hello World”
 size=”normal”

See your errors
Before you do any work with Ribbon customization, you should enable the display of RibbonX
errors. Access the Office➜Excel Options dialog box and click the Advanced tab. Scroll down to
the General section and place a check mark next to Show Add-in User Interface Errors.

When this setting is enabled, RibbonX errors (if any) are displayed when the workbook opens —
which is very helpful for debugging.

Chapter 22: Working with the Ribbon 745

 onAction=”HelloWorld”
 imageMso=”HappyFace” />
 <button id=”Button2”
 label=”Goodbye World”
 size=”normal”
 onAction=”GoodbyeWorld”
 imageMso=”DeclineInvitation” />
 </group>
</tab>
</tabs>
</ribbon>
</customUI>

 6. Using Windows Explorer, add a .zip extension to the ribbon modification.xlsm
file in Windows Explorer.

 The filename should now be ribbon modification.xlsm.zip.

 7. Drag the customUI folder you created in Step 4 into the ribbon modification.
xlsm.zip file.

 Windows treats Zip files as if they were folders, so drag-and-drop operations are allowed.

 8. Double-click the ribbon modification.xlsm.zip file to open it.

 Figure 22-4 shows the contents of the Zip file. As you see, the file contains several folders.

Figure 22-4: An Excel workbook, displayed as a Zip file.

 9. Double-click the _rels folder within the Zip file.

 This folder contains one file, named .rels.

 10. Drag the .rels file to a location outside the Zip file (to your desktop, for example).

 11. Open the .rels file (which is an XML file) with a text editor, such as Notepad.

Part VI: Developing Applications746

 12. Add the following line to the .rels file, before the </Relationships> tag:

<Relationship Type=”http://schemas.microsoft.com/office/2006/
relationships/ui/extensibility” Target=”/customUI/customUI.xml”
Id=”12345” />

 13. Save the .rels file and drag it back into the Zip file, overwriting the original version.

 14. Remove the .zip extension so that the file is back to its original name: ribbon
modification.xlsm.

Open the workbook in Excel. If all went well, you should see a new group with two buttons in the
Data tab (see Figure 22-5).

Figure 22-5: RibbonX code created a new group with two buttons.

This workbook, named ribbon modification.xlsm, is available on the companion
CD-ROM.

It’s important to understand that the Ribbon modification is document-specific. In other words,
the new Ribbon group is displayed only when the workbook that contains the RibbonX code is
the active workbook. This is a major departure from how UI modifications worked in versions
prior to Excel 2007.

To display Ribbon customizations when any workbook is active, convert the workbook
to an add-in file or add the RibbonX code to your Personal Macro Workbook.

If you’ve concluded that modifying Excel’s Ribbon isn’t worth the effort, don’t despair. Tools are
available that make the process much less tedious than I’ve described.

A simple Ribbon example, take 2
This section provides step-by-step instructions for making the same Ribbon modification
described in the previous section. In this example, I use the Custom UI Editor for Microsoft Office.
This program still requires that you create the RibbonX code manually, but it will validate the
code for you. It also eliminates all the tedious manual file manipulations. And finally, it can gener-
ate the VBA callback procedure declarations, which you can copy and paste to your VBA module.

Chapter 22: Working with the Ribbon 747

You can download a free copy of the Custom UI Editor for Microsoft Office from

http://openxmldeveloper.org/articles/customuieditor.aspx

To add the new group and buttons (as described in the previous section) using the Custom UI
Editor:

 1. In Excel, create a new workbook and save it as a macro-enabled XLSM file.

 2. Close the workbook.

 3. Launch the Custom UI Editor For Microsoft Office.

 4. Choose File➜Open and locate the workbook you saved in Step 1.

 5. Choose Insert➜Office 2007 Custom UI Part.

 Choosing this option will make the file compatible with both Excel 2007 and Excel 2010.

 6. Enter the RibbonX code shown in Figure 22-6.

Figure 22-6: The Custom UI Editor for Microsoft Office.

 7. Click the validate button to check for errors.

 8. Click the Generate Callbacks button and copy the code that appears.

 The Custom UI Editor generates two VBA callback procedures (see Figure 22-7). Select
and copy this code; you will later paste it into a VBA module the workbook.

Part VI: Developing Applications748

 9. Click the customUI.xml node in the tree diagram on the left.

 10. Choose File➜Save and then File➜Close.

Figure 22-7: The Custom UI Editor generated two VBA callback procedures.

 11. Activate Excel and open the workbook.

 12. Press Alt+11 to activate the VB Editor.

 13. Insert a VBA module and paste the code you copied in Step 8.

 14. Add a MsgBox statement to each of the two procedures so that you can verify that
they’re being executed.

As you can see, working with the Custom UI Editor is much easier than manipulating a file manually.

Figure 22-6 shows the Custom UI Editor.

The CUSTOM UI Part
In Step 5 of the preceding instructions, you inserted a customUI part for Office 2007. This
choice makes the workbook compatible with Excel 2007 and Excel 2010. The other option on the
Insert menu is Office 2010 Custom UI Part. If you put the RibbonX code in and Office 2010
Custom UI Part, the workbook won’t be compatible with Excel 2007.

If your application doesn’t use any commands that are unique to Excel 2010, using the Office
2007 custom UI part is the best solution. Also, keep in mind that a single file can have both an
Office 2007 part and an Office 2010 part. You use two parts if you want to load version-specific
RibbonX code for the UI. For example, you might write code to a command to the Excel 2010
Backstage View. Excel 2007 doesn’t have Backstage View, so you’d write different code to add a
command to the Excel 2007 Office button.

Chapter 22: Working with the Ribbon 749

Note that the first statement in the RibbonX code must be changed for an Office 2010 Custom UI
Part. The code must refer to this namespace:

<customUI xmlns=’http://schemas.microsoft.com/office/2009/07/customui’>

If you use the wrong customUI tag, the Custom UI Editor will let you know when you validate
the code.

VBA callback procedures
Recall that the workbook contains two VBA procedures, HelloWorld and GoodbyeWorld.
These procedure names correspond to the onAction parameters in the RibbonX code. The
onAction parameter is one way to link the RibbonX code to your VBA code.

Both the VBA procedures contain an argument named control, which is an IRibbonControl
object. This object has three properties, which you can access in your VBA code:

 Context: A handle to the active window containing the Ribbon that triggered the call-
back. For example, use the following expression to get the name of the workbook that
contains the RibbonX code:

control.Context.Caption

 Id: Contains the name of the control, specified as its Id parameter.

 Tag: Contains any arbitrary text that’s associated with the control.

The VBA callback procedures can be as complex as necessary.

The .rels file
Inserting the file that contains the RibbonX code has no effect unless you specify a relationship
between the document file and the customization file. These relationships, written in XML, are
stored in the .rels file, which is in the _rels folder. Here’s the relationship for the example pre-
sented in the previous section:

<Relationship Type=”http://schemas.microsoft.com/office/2006/
 relationships/ui/extensibility” Target=”/customUI/customUI.xml”
 Id=”12345” />

The Target parameter points to the customUI.xml file that contains the RibbonX code. The
Id parameter contains an arbitrary text string. The string can contain anything, as long as it’s
unique to the file (that is, as long as no other <Relationship> tag uses the same Id).

If you use the Custom UI Editor, you need not be concerned with the .rels file. Changes to this
file are made automatically.

Part VI: Developing Applications750

The RibbonX code
And now, the tricky part. Writing the XML code that defines your UI modification is no easy task.
As I’ve noted, this is not the book that will teach you how to write RibbonX code. You’ll find a few
simple examples here, but you’ll need to consult other sources for the fine points.

When you’re starting out, it’s best to start with examples that work (search the Web) and then
make small modifications, testing frequently along the way. It can be very frustrating to spend an
hour working on code that appears to be perfect in every way — and then realize that XML is
case-sensitive. ID is not the same as Id.

Using imageMso images
Microsoft Office 2010 provides more than 1,000 named images that are associated with various
commands. You can specify any of these images for your custom Ribbon controls — if you know
the image’s name.

The accompanying figure shows a workbook that contains the names of all the imageMso
images. Scroll through the image names, and you see 50 images at a time (in small or large
size), beginning with the image name in the active cell. This workbook, named mso image
browser.xlsm, is available on the companion CD-ROM.

You can also use these images in an Image control placed on a UserForm. The following state-
ment assigns the imageMso image named ReviewAcceptChanges to the Picture property
of a UserForm Image control named Image1. The size of the image is specified as 32 x 32 pixels.

Image1.Picture = Application.CommandBars. _
 GetImageMso(“ReviewAcceptChange”, 32, 32)

Chapter 22: Working with the Ribbon 751

You may be curious about the imageMso parameter, which determines which icon is
displayed next to the control. Microsoft Office includes more than 1,000 icons that you
can use with Ribbon controls. Each is accessed by its name. For more information, see
the sidebar “Using imageMso images.”

Another RibbonX example
This section contains another example of using RibbonX to modify the UI. This workbook creates
a new group on the Page Layout tab and adds a check box control that toggles the display of
page breaks.

Although Excel has more than 1,700 commands, it doesn’t have a command that tog-
gles the page break display. After printing or previewing a worksheet, the only way to
hide the page break display is to use the Excel Options dialog box. Therefore, this
example also has some practical value.

This example is a bit tricky because it requires that the new Ribbon control be in synch with the
active sheet. For example, if you activate a worksheet that doesn’t display page breaks, the check
box control should be in its unchecked state. If you activate a worksheet that displays page
breaks, the control should be checked. Furthermore, page breaks aren’t relevant for a chart
sheet, so the control should be disabled if you activate a chart sheet.

The RibbonX Code
The RibbonX code that adds a new group (with a CheckBox control) to the Page Layout tab follows:

<customUI
 xmlns=”http://schemas.microsoft.com/office/2006/01/customui”
 onLoad=”Initialize”>
<ribbon>
<tabs>
<tab idMso=”TabPageLayoutExcel”>
 <group id=”Group1” label=”Custom”>
 <checkBox id=”Checkbox1”
 label=”Page Breaks”
 onAction=”TogglePageBreakDisplay”
 getPressed=”GetPressed”
 getEnabled=”GetEnabled”/>
 </group>
</tab>
</tabs>
</ribbon>
</customUI>

Part VI: Developing Applications752

This RibbonX code references four VBA callback procedures (each of which is described later):

 Initialize: Executed when the workbook is opened.

 TogglePageBreakDisplay: Executed when the user clicks the check box control.

 GetPressed: Executed when the control is invalidated (the user activates a different
sheet).

 GetEnabled: Executed when the control is invalidated (the user activates a different
sheet).

Figure 22-8 shows the new control.

Figure 22-8: This check box control is always in synch with the page break display of the active sheet.

The VBA Code
The CustomUI tag includes an onLoad parameter, which specifies the Initialize VBA call-
back procedure, as follows (this code is in a standard VBA module):

Public MyRibbon As IRibbonUI
Sub Initialize(Ribbon As IRibbonUI)
‘ Executed when the workbook loads
 Set MyRibbon = Ribbon
End Sub

The Initialize procedure creates an IRibbonUI object named MyRibbon. Notice that
MyRibbon is a Public variable, so it’s accessible from other procedures in the module.

I created a simple event procedure that is executed whenever a worksheet is activated. This pro-
cedure, which is located in the ThisWorkbook code module, calls the
CheckPageBreakDisplay procedure:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 Call CheckPageBreakDisplay
End Sub

Chapter 22: Working with the Ribbon 753

The CheckPageBreakDisplay procedure invalidates the check box control. In other words, it
destroys any data associated with that control.

Sub CheckPageBreakDisplay()
‘ Executed when a sheet is activated
 MyRibbon.InvalidateControl (“Checkbox1”)
End Sub

When a control is invalidated, the GetPressed and GetEnabled procedures are called.

Sub GetPressed(control As IRibbonControl, ByRef returnedVal)
‘ Executed when the control is invalidated
 On Error Resume Next
 returnedVal = ActiveSheet.DisplayPageBreaks
End Sub
Sub GetEnabled(control As IRibbonControl, ByRef returnedVal)
‘ Executed when the control is invalidated
 returnedVal = TypeName(ActiveSheet) = “Worksheet”
End Sub

Notice that the returnedVal argument is passed ByRef. This means that your code is able to
change the value. And that’s exactly what happens. In the GetPressed procedure, the
returnedVal variable is set to the status of the DisplayPageBreaks property of the active
sheet. The result is that the control’s Pressed parameter is True if page breaks are displayed
(and the control is checked). Otherwise, the control isn’t checked.

In the GetEnabled procedure, the returnedVal variable is set to True if the active sheet is a
worksheet (as opposed to a chart sheet). Therefore, the control is enabled only when the active
sheet is a worksheet.

The only other VBA procedure is the onAction procedure, TogglePageBreakDisplay,
which is executed when the user checks or unchecks the check box:

Sub TogglePageBreakDisplay(control As IRibbonControl, pressed As Boolean)
‘ Executed when check box is clicked
 On Error Resume Next
 ActiveSheet.DisplayPageBreaks = pressed
End Sub

This pressed argument is True if the user checks the check box and False if he unchecks the
check box. The code sets the DisplayPageBreaks property accordingly.

Part VI: Developing Applications754

This workbook, named page break display.xlsm, is available on the companion
CD-ROM. The CD also contains an add-in version of this workbook (named page break
display add-in.xlam), which makes the new UI command available for all work-
books. The add-in version uses a class module to monitor sheet activation events for all
workbooks. Refer to Chapter 19 for more information about events, and Chapter 29 for
more information about class modules.

Ribbon controls demo
Figure 22-9 shows a custom Ribbon tab (My Stuff) with four groups of controls. In this section, I
briefly describe the RibbonX code and the VBA callback procedures.

Figure 22-9: A new Ribbon tab with four groups of controls.

This workbook, named ribbon controls demo.xlsm, is available on the companion
CD-ROM.

Creating a new tab
The RibbonX code that creates the new tab is

<ribbon>
 <tabs>
 <tab id=”CustomTab” label=”My Stuff”>
 </tab>
 </tabs>
</ribbon>

If you’d like to create a minimal UI, the ribbon tag has a startFromScratch attribute.
If set to True, all the built-in tabs are hidden.

<ribbon startFromScratch=”true” >

Chapter 22: Working with the Ribbon 755

Creating a Ribbon group
The code in the ribbon controls demo.xlsm example creates four groups on the My Stuff
tab. Here’s the code that creates the four groups:

<group id=”Group1” label=”Stuff”>
</group>
<group id=”Group2” label=”More Stuff”>
</group>
<group id=”Group3” label=”Built In Stuff”>
</group>
<group id=”Group4” label=”Galleries”>
</group>

Theses pairs of <group> and </group> tags are located within the <tab> and </tab> tags
that create the new tab.

Creating controls
Following is the RibbonX code that creates the controls in the first group (Stuff), shown in Figure
22-10. Notice that the controls are defined within the first set of <group> </group> tags.

Figure 22-10: A Ribbon group with four controls.

<group id=”Group1” label=”Stuff”>
 <labelControl id=”Label1” getLabel=”getLabel1” />
 <labelControl id=”Label2” getLabel=”getLabel2” />

 <editBox id=”EditBox1”
 showLabel=”true”
 label=”Number:”
 onChange=”EditBox1_Change”/>
 <button id=”Button1”
 label=”Calculator”
 size=”large”
 onAction=”ShowCalculator”
 imageMso=”Calculator” />
</group>

Two label controls each have an associated VBA callback procedure (named getLabel1 and
getLabel2). These procedures are:

Part VI: Developing Applications756

Sub getLabel1(control As IRibbonControl, ByRef returnedVal)
 returnedVal = “Hello “ & Application.UserName
End Sub
Sub getLabel2(control As IRibbonControl, ByRef returnedVal)
 returnedVal = “Today is “ & Date
End Sub

When the RibbonX code is loaded, these two procedures are executed, and the captions of the
label controls are dynamically updated with the username and the date.

The editBox control has an onChange callback procedure named EditBox1_Change, which
displays the square root of the number entered (or an error message if the square root can’t be
calculated). The EditBox1_Change procedure is

Sub EditBox1_Change(control As IRibbonControl, text As String)
 Dim squareRoot As Double
 On Error Resume Next
 squareRoot = Sqr(text)
 If Err.Number = 0 Then
 MsgBox “The square root of “ & text & “ is: “ & squareRoot
 Else
 MsgBox “Enter a positive number.”, vbCritical
 End If
End Sub

The last control in the Stuff group is a simple button. Its onAction parameter executes a VBA
procedure named ShowCalculator — which uses the VBA Shell function to display the
Windows calculator:

Sub ShowCalculator(control As IRibbonControl)
 On Error Resume Next
 Shell “calc.exe”, vbNormalFocus
 If Err.Number <> 0 Then MsgBox “Can’t start calc.exe”
End Sub

Figure 22-11 shows the controls in the second group, labeled More Stuff.

Figure 22-11: Three controls in a custom Ribbon group.

Chapter 22: Working with the Ribbon 757

The RibbonX code for the second group is as follows:

 <group id=”Group2” label=”More Stuff”>
 <toggleButton id=”ToggleButton1”
 size=”large”
 imageMso=”FileManageMenu”
 label=”Toggle Me”
 onAction=”ToggleButton1_Click” />
 <separator id=”sep1” />
 <checkBox id=”Checkbox1”
 label=”Checkbox”
 onAction=”Checkbox1_Change”/>
 <comboBox id=”Combo1”
 label=”Month”
 onChange=”Combo1_Change”>
 <item id=”Month1” label=”January” />
 <item id=”Month2” label=”February”/>
 <item id=”Month3” label=”March”/>
 <item id=”Month4” label=”April”/>
 <item id=”Month5” label=”May”/>
 <item id=”Month6” label=”June”/>
 <item id=”Month7” label=”July”/>
 <item id=”Month8” label=”August”/>
 <item id=”Month9” label=”September”/>
 <item id=”Month10” label=”October”/>
 <item id=”Month11” label=”November”/>
 <item id=”Month12” label=”December”/>
 </comboBox>
 </group>

The group contains a toggleButton, a separator, a checkBox, and a comboBox control.
These controls are fairly straightforward. Except for the separator control (which inserts a verti-
cal line), each has an associated callback procedure that simply displays the status of the control:

Sub ToggleButton1_Click(control As IRibbonControl, ByRef returnedVal)
 MsgBox “Toggle value: “ & returnedVal
End Sub
Sub Checkbox1_Change(control As IRibbonControl, pressed As Boolean)
 MsgBox “Checkbox value: “ & pressed
End Sub
Sub Combo1_Change(control As IRibbonControl, text As String)
 MsgBox text
End Sub

The comboBox control also accepts user-entered text. If you would like to limit the
choices to those that you provide, use a dropDown control.

Part VI: Developing Applications758

The controls in the third group consist of built-in controls (see Figure 22-12). To include a built-in
control in a custom group, you just need to know its name (the idMso parameter).

Figure 22-12: This group contains built-in controls.

The RibbonX code is

<group id=”Group3” label=”Built In Stuff”>
 <control idMso=”Copy” label=”Copy” />
 <control idMso=”Paste” label=”Paste” enabled=”true” />
 <control idMso=”WindowSwitchWindowsMenuExcel”
 label=”Switch Window” />
 <control idMso=”Italic” />
 <control idMso=”Bold” />
 <control idMso=”FileOpen” />
 </group>

These controls don’t have callback procedures because they perform the standard action.

Figure 22-13 shows the final group of controls, which consists of two galleries.

Figure 22-13: This Ribbon group contains two galleries.

The RibbonX code for these two gallery controls is

<group id=”Group4” label=”Galleries”>
 <gallery id=”Gallery1”
 imageMso=”ViewAppointmentInCalendar”
 label=”Pick a Month:”
 columns=”2” rows=”6”
 onAction=”MonthSelected” >
 <item id=”January” label=”January” imageMso=”QuerySelectQueryType”/>
 <item id=”February” label=”February” imageMso=”QuerySelectQueryType”/>
 <item id=”March” label=”March” imageMso=”QuerySelectQueryType”/>
 <item id=”April” label=”April” imageMso=”QuerySelectQueryType”/>
 <item id=”May” label=”May” imageMso=”QuerySelectQueryType”/>
 <item id=”June” label=”June” imageMso=”QuerySelectQueryType”/>
 <item id=”July” label=”July” imageMso=”QuerySelectQueryType”/>
 <item id=”August” label=”August” imageMso=”QuerySelectQueryType”/>
 <item id=”September” label=”September” imageMso=”QuerySelectQueryType”/>

Chapter 22: Working with the Ribbon 759

 <item id=”October” label=”October” imageMso=”QuerySelectQueryType”/>
 <item id=”November” label=”November” imageMso=”QuerySelectQueryType”/>
 <item id=”December” label=”December” imageMso=”QuerySelectQueryType”/>
 <button id=”Today”
 label=”Today...”
 imageMso=”ViewAppointmentInCalendar”
 onAction=”ShowToday”/>
 </gallery>
 <gallery id=”Gallery2”
 label=”Banjo Players”
 size=”large”
 columns=”4”
 itemWidth=”100” itemHeight=”125”
 imageMso= “Camera”
 onAction=”OnAction”>
 <item id=”bp01” image=”bp01” />
 <item id=”bp02” image=”bp02” />
 <item id=”bp03” image=”bp03” />
 <item id=”bp04” image=”bp04” />
 <item id=”bp05” image=”bp05” />
 <item id=”bp06” image=”bp06” />
 <item id=”bp07” image=”bp07” />
 <item id=”bp08” image=”bp08” />
 <item id=”bp09” image=”bp09” />
 <item id=”bp10” image=”bp10” />
 <item id=”bp11” image=”bp11” />
 <item id=”bp12” image=”bp12” />
 <item id=”bp13” image=”bp13” />
 <item id=”bp14” image=”bp14” />
 <item id=”bp15” image=”bp15” />
 </gallery>
</group>

Figure 22-14 shows the first gallery, a list of month names in two columns. The onAction
parameter executes the MonthSelected callback procedure, which displays the selected
month (which is stored as the id parameter):

Sub MonthSelected(control As IRibbonControl, _
 id As String, index As Integer)
 MsgBox “You selected “ & id
End Sub

The Pick a Month gallery also contains a button control with its own callback procedure (labeled
Today) at the bottom:

Sub ShowToday(control As IRibbonControl)
 MsgBox “Today is “ & Date
End Sub

Part VI: Developing Applications760

Figure 22-14: A gallery that displays month names, plus a button.

The second gallery, shown in Figure 22-15, displays 15 photos.

These photos are stored in the workbook file, in a folder named images, within the customUI
folder. Adding images also requires a _rels folder, with a list of relationships. To see how this
works, add a .zip extension to the workbook and then examine its contents.

Figure 22-15: A gallery of photos.

Chapter 22: Working with the Ribbon 761

A DynamicMenu Control Example
One of the most interesting Ribbon controls is the dynamicMenu control. This control lets your
VBA code feed XML data into the control — which provides the basis for menus that change
based on context.

Setting up a dynamicMenu control isn’t a simple task, but this control probably offers the most
flexibility in terms of using VBA to modify the Ribbon dynamically.

I created a simple dynamicMenu control demo that displays a different menu for each of the
three worksheets in a workbook. Figure 22-16 shows the menu that appears when Sheet1 is
active. When a sheet is activated, a VBA procedure sends XML code specific for the sheet. For
this demo, I stored the XML code directly in the worksheets to make it easier to read.
Alternatively, the XML markup can be stored as a string variable in your code.

Figure 22-16: The dynamicMenu control lets you create a menu that varies depending on the context.

Part VI: Developing Applications762

The RibbonX code that creates the new tab, the new group, and the dynamicMenu control follows:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”
onLoad=”ribbonLoaded”>

 <ribbon>
 <tabs>
 <tab id=”CustomTab” label=”Dynamic”>
 <group id=”group1” label=”Dynamic Menu Demo”>
 <dynamicMenu id=”DynamicMenu”
 getContent=”dynamicMenuContent”
 imageMso=”RegionLayoutMenu”
 size = “large”
 label=”Sheet-Specific Menu”/>
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

This example needs a way to invalidate the Ribbon whenever the user activates a new sheet. I
use the same method I used for the page break display example earlier in this chapter (see
“Another RibbonX example”): I declared a Public variable, MyRibbon, of type IRibbonUI. I
used a Workbook_SheetActivate procedure that called the UpdateDynamicRibbon pro-
cedure whenever a new sheet is activated:

Sub UpdateDynamicRibbon()
‘ Invalidate the Ribbon to force a call to dynamicMenuContent
 On Error Resume Next
 MyRibbon.Invalidate
 If Err.Number <> 0 Then
 MsgBox “Lost the Ribbon object. Save and reload.”
 End If
End Sub

The UpdateDynamicRibbon procedure invalidates the MyRibbon object, which forces a call
to the VBA callback procedure named dynamicMenuContent (a procedure referenced by the
getContent parameter in the RibbonX code). Notice the error-handling code. Some edits to
your VBA code destroy the MyRibbon object, which is created when the workbook is opened.
Attempting to invalidate an object that doesn’t exist causes an error, and the message box
informs the user that the workbook must be saved and reopened. Unfortunately, reopening the
workbook is the only way to re-create the MyRibbon object.

The dynamicMenuContent procedure follows. This procedure loops through the cells in col-
umn A of the active sheet, reads the XML code, and stores it in a variable named XMLcode.
When all the XML has been appended, it’s passed to the returnedVal argument. The net effect
is that the dynamicMenu control has new code, so it displays a different set of menu options.

Chapter 22: Working with the Ribbon 763

Sub dynamicMenuContent(control As IRibbonControl, _
 ByRef returnedVal)
 Dim r As Long
 Dim XMLcode As String
‘ Read the XML markup from the active sheet
 For r = 1 To Application.CountA(Range(“A:A”))
 XMLcode = XMLcode & ActiveSheet.Cells(r, 1) & “ “
 Next r
 returnedVal = XMLcode
End Sub

The workbook that contains this example is available on the companion CD-ROM. The
filename is dynamicmenu.xlsm.

More on Ribbon customization
I conclude this section with some additional points to keep in mind as you explore the wonderful
world of Excel Ribbon customization:

 When you’re working with the Ribbon, make sure that you turn on error message display.
Refer to the “See your errors” sidebar, earlier in this chapter.

 Remember that RibbonX code is case-sensitive.

 All the named control IDs are in English, and they’re the same across all language ver-
sions of Excel. Therefore, Ribbon modifications work regardless of what language version
of Excel is used.

 Ribbon modifications appear only when the workbook that contains the RibbonX code is
active. To make Ribbon modifications appear for all workbooks, the RibbonX code must
be in an add-in.

 The built-in controls scale themselves when the Excel window is resized. In Excel 2007,
custom controls do not scale, but they do in Excel 2010.

 Adding or removing controls from a built-in Ribbon group is not possible.

 You can, however, hide tabs. The RibbonX code that follows hides three tabs:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/
customui”>

<ribbon>
 <tabs>
 <tab idMso=”TabPageLayoutExcel” visible=”false” />
 <tab idMso=”TabData” visible=”false” />
 <tab idMso=”TabReview” visible=”false” />
 </tabs>
</ribbon>
</customUI>

Part VI: Developing Applications764

 You can also hide groups within a tab. Here’s RibbonX code that hides four groups on the
Insert tab (leaving only the Charts group):

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/
customui”>

<ribbon>
 <tabs>
 <tab idMso=”TabInsert”>
 <group idMso=”GroupInsertTablesExcel” visible=”false” />
 <group idMso=”GroupInsertIllustrations” visible=”false” />
 <group idMso=”GroupInsertLinks” visible=”false” />
 <group idMso=”GroupInsertText” visible=”false” />
 </tab>
 </tabs>
</ribbon>
</customUI>

 You can assign your own macro to a built-in control. This is known as repurposing the
control. The RibbonX code that follows intercepts three built-in commands:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/
customui”>

<commands>
 <command idMso=”FileSave” onAction=”mySave”/>
 <command idMso=”FilePrint” onAction=”myPrint”/>
 <command idMso=”FilePrintQuick” onAction=”myPrint”/>
</commands>
</customUI>

 You can also write RibbonX code to disable one or more built-in controls. The code that
follows disables the Insert ClipArt command:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/
customui”>

<commands>
 <command idMso=”ClipArtInsert” enabled=”false”/>
</commands>
</customUI>

 If you have two or more workbooks (or add-ins) that add controls to the same custom
Ribbon group, you must make sure that they both use the same namespace. Do this in
the <CustomUI> tag at the top of the RibbonX code.

Creating an Old-Style Toolbar
If you find that customizing the Ribbon is just too much work, you may be content to create a
simple custom toolbar using the pre–Excel 2007 CommandBar object. This technique is perfectly

Chapter 22: Working with the Ribbon 765

suitable for any workbook that only you will be using. It’s an easy way to provide quick access to
a number of macros.

In this section, I provide boilerplate code that you can adapt as needed. I don’t offer much in the
way of explanation. For more information about CommandBar objects, search the Web or con-
sult a previous edition of this book. CommandBar objects can be much more powerful than the
example presented here.

Limitations of old-style toolbars in Excel 2010
If you decide to create a toolbar for Excel 2010, be aware of the following limitations:

 The toolbar can’t be free-floating.

 It will always appear in the Add-Ins➜Custom Toolbars group (along with any other
 toolbars).

 Some of the CommandBar properties and methods are ignored by Excel.

Code to create a toolbar
The code in this section assumes that you have a workbook with two macros (named Macro1
and Macro2). It also assumes that you want the toolbar to be created when the workbook is
opened, and deleted when the workbook is closed.

Unlike Ribbon modifications, custom toolbars are visible regardless of which workbook
is active.

In the ThisWorkbook code module, enter the following procedures. The first one calls the pro-
cedure that creates the toolbar when the workbook is opened. The second calls the procedure to
delete the toolbar when the workbook is closed:

Private Sub Workbook_Open()
 Call CreateToolbar
End Sub
Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Call DeleteToolbar
End Sub

In Chapter 19, I describe a potentially serious problem with the Workbook_
BeforeClose event. Excel’s “Do you want to save . . .” prompt displays after the
Workbook_BeforeClose event handler runs. So if the user clicks Cancel, the work-
book remains open, but the custom menu items have already been deleted. In Chapter
19, I also present a way to get around this problem.

Part VI: Developing Applications766

The CreateToolbar procedure follows:

Const TOOLBARNAME As String = “MyToolbar”
Sub CreateToolbar()
 Dim TBar As CommandBar
 Dim Btn As CommandBarButton

‘ Delete existing toolbar (if it exists)
 On Error Resume Next
 CommandBars(TOOLBARNAME).Delete
 On Error GoTo 0

‘ Create toolbar
 Set TBar = CommandBars.Add
 With TBar
 .Name = TOOLBARNAME
 .Visible = True
 End With

‘ Add a button
 Set Btn = TBar.Controls.Add(Type:=msoControlButton)
 With Btn
 .FaceId = 300
 .OnAction = “Macro1”
 .Caption = “Macro1 Tooltip goes here”
 End With
‘ Add another button
 Set Btn = TBar.Controls.Add(Type:=msoControlButton)
 With Btn
 .FaceId = 25
 .OnAction = “Macro2”
 .Caption = “Macro2 Tooltip goes here”
 End With
End Sub

A workbook that contains this code is available on the companion CD-ROM. The file-
name is old-style toolbar.xlsm.

Figure 22-17 shows the two-button toolbar.

Figure 22-17: An old-style toolbar, located in the Custom Toolbars group of the Add-Ins tab.

Chapter 22: Working with the Ribbon 767

I use a module-level constant, TOOLBAR, which stores the toolbar’s name. This name is also used
in the DeleteToolbar procedure, so using a constant ensures that both procedures work with
the same name.

The procedure starts by deleting the existing toolbar that has the same name (if such a toolbar
exists). Including this statement is useful during development and also eliminates the error you
get if you attempt to create a toolbar using a duplicate name.

The toolbar is created by using the Add method of the CommandBars object. The two buttons
are added by using the Add method of the Controls object. Each button has three properties:

 FaceID: A number that determines the image displayed on the button. Chapter 23 con-
tains more information about FaceID images.

 OnAction: The macro that is executed when the button is clicked.

 Caption: The ScreenTip that appears when you hover the mouse pointer over the
 button.

Rather than set the FaceID property, you can set the Picture property using any of
the imageMso images. For example, the statement below displays a green check mark:

.Picture = Application.CommandBars.GetImageMso _
 (“AcceptInvitation”, 16, 16)

For more information about imageMso images, see the sidebar, “Using imageMso
images.”

When the workbook is closed, the Workbook_BeforeClose event procedure fires, which calls
DeleteToolbar:

Sub DeleteToolbar()
 On Error Resume Next
 CommandBars(TOOLBARNAME).Delete
 On Error GoTo 0
End Sub

Part VI: Developing Applications768

769

23
Working with Shortcut
Menus
In This Chapter

● Identifying shortcut menus

● Customizing the shortcut menus

● Disabling shortcut menus

● Using events in conjunction with shortcut menus

● Creating a completely new shortcut menu

CommandBar Overview
A CommandBar object is used for three Excel user interface elements:

 Custom toolbars

 Custom menus

 Customs shortcut (right-click) menus

Beginning with Excel 2007, the CommandBar object is in a rather odd position. If you write VBA
code to customize a menu or a toolbar, Excel intercepts that code and ignores many of your
commands. As I describe in Chapter 22, menu and toolbar customizations performed with the
CommandBar object appear in the Add-Ins➜Menu Commands or the Add-Ins➜Custom Toolbars
group. So, for all practical purposes, the CommandBar object in Excel is now limited to shortcut
menu operations.

In this section, I provide some background information about CommandBars.

Part VI: Developing Applications770

CommandBar types
Excel supports three types of CommandBars, differentiated by their Type property. The Type
property can be any of these three values:

 msoBarTypeNormal: A toolbar (Type = 0)

 msoBarTypeMenuBar: A menu bar (Type = 1)

 msoBarTypePopUp: A shortcut menu (Type = 2)

Even though toolbars and menu bars aren’t used in Excel 2010, these UI elements are still
included in the object model for compatibility with older applications. However, attempting to
display a CommandBar of Type 0 or 1 has no effect in Excel 2010. In Excel 2003, for example, the
following statement displays the Standard toolbar:

CommandBars(“Standard”).Visible = True

In Excel 2010, that statement is ignored.

This chapter focuses exclusively on Type 2 CommandBars (shortcut menus).

Listing shortcut menus
Excel 2010 has 65 shortcut menus. How do I know that? I ran the ShowShortcutMenuNames
procedure that follows, which loops through all CommandBars. If the Type property is msoBar-
TypePopUp (a built-in constant that has a value of 2), it displays the CommandBar’s index and
name in a worksheet.

Sub ShowShortcutMenuNames()
 Dim Row As Long
 Dim cbar As CommandBar
 Row = 1
 For Each cbar In CommandBars
 If cbar.Type = msoBarTypePopUp Then
 Cells(Row, 1) = cbar.Index
 Cells(Row, 2) = cbar.Name
 Row = Row + 1
 End If
 Next cbar
End Sub

Figure 23-1 shows part of the output from this procedure. The shortcut menu index values range
from 21 to 148. Also, notice that not all the names are unique. For example, CommandBar 35 and
CommandBar 38 both have a Name of Cell. This is because right-clicking a cell gives a different
shortcut menu when the worksheet is in Page Break Preview mode.

Chapter 23: Working with Shortcut Menus 771

Figure 23-1: A simple macro generates a list of all shortcut menus.

This example is available on the companion CD-ROM. The filename is show shortcut
menu names.xlsm.

Referring to CommandBars
You can reference a particular CommandBar object by its Index or by its Name property. For
example, the expressions that follow both refer to the shortcut menu that displays when you
right-click the Excel desktop (the area that’s visible when no documents are open):

Application.CommandBars (44)
Application.CommandBars(“Desktop”)

The CommandBars collection is a member of the Application object. When you reference
this collection in a regular VBA module or in a module for a sheet, you can omit the reference to
the Application object. For example, the following statement (contained in a standard VBA
module) displays the name of the object in the CommandBars collection that has an index of 44:

MsgBox CommandBars(44).Name

Part VI: Developing Applications772

When you reference the CommandBars collection from a code module for a ThisWorkbook
object, you must precede it with a reference to the Application object, like this:

MsgBox Application.CommandBars(44).Name

Unfortunately, the Index numbers have not always remained constant across the differ-
ent Excel versions. For example, In Excel 2007, CommandBar 36 and CommandBar 39
have the Name of Cell. In Excel 2010, these two index numbers have the Name of
Column. Therefore, it’s best to use names rather than index numbers.

Referring to controls in a CommandBar
A CommandBar object contains Control objects, which are buttons or menus. You can refer to
a control by its Index property or by its Caption property. Here’s a simple procedure that dis-
plays the caption of the first menu item on the Cell shortcut menu:

Sub ShowCaption()
 MsgBox Application.CommandBars(“Cell”). _
 Controls(1).Caption
End Sub

The following procedure displays the Caption property for each control in the shortcut menu
that appears when you right-click a sheet tab (that shortcut menu is named Ply):

Sub ShowCaptions()
 Dim txt As String
 Dim ctl As CommandBarControl
 For Each ctl In CommandBars(“Ply”).Controls
 txt = txt & ctl.Caption & vbNewLine
 Next ctl
 MsgBox txt
End Sub

When you execute this procedure, you see the message box shown in Figure 23-2. The ampersand
is used to indicate the underlined letter in the text — the keystroke that will execute the menu item.

In some cases, Control objects on a shortcut menu contain other Control objects. For exam-
ple, the Filter control on the Cell right-click menu contains other controls. The Filter control is a
submenu, and the additional items are submenu items.

The statement that follows displays the first submenu item in the Filter submenu:

MsgBox CommandBars(“Cell”).Controls(“Filter”).Controls(1).Caption

Chapter 23: Working with Shortcut Menus 773

Finding a control
If you’re writing code that will be used by a different language version of Excel, avoid using
the Caption property to access a particular shortcut menu item. The Caption property is
 language-specific, so your code will fail if the user has a different language version of Excel.

Instead, use the FindControl method in conjunction with the ID of the control (which is
 language-independent). For example, assume that you want to disable the Rename menu on
the shortcut menu that appears when you right-click a sheet tab. If your workbook will be used
only by people who have the English version of Excel, this statement will do the job:

CommandBars(“Ply”).Controls(“Rename”).Enabled = False

To ensure that the command will work with non-English versions, you need to know the ID of
the control. The following statement will tell you that the ID is 889:

MsgBox CommandBars(“Ply”).Controls(“Rename”).ID

Then, to disable that control, use this statement:

CommandBars.FindControl(ID:=889).Enabled = False

The CommandBar names are not internationalized, so a reference to CommandBars(“Desktop”)
will always work.

Figure 23-2: Displaying the Caption property for controls.

Properties of CommandBar controls
CommandBar controls have a number of properties that determine how the controls look and
work. This list contains some of the more useful properties for CommandBar controls:

 Caption: The text displayed for the control. If the control shows only an image, the
Caption appears when you move the mouse over the control.

 ID: A unique numeric identifier for the control.

Part VI: Developing Applications774

 FaceID: A number that represents a graphic image displayed next to the control’s text.

 Type: A value that determines whether a control is a button (msoControlButton) or a
submenu (msoControlPopup).

 Picture: A graphics image displayed next to the control’s text.

 BeginGroup: True if a separator bar appears before the control.

 OnAction: The name of a VBA macro that executes when the user clicks the control.

 BuiltIn: True if the control is an Excel built-in control.

 Enabled: True if the control can be clicked.

 Visible: True if the control is visible. Many of the shortcut menus contain hidden
 controls.

 ToolTipText: Text that appears when the user moves the mouse pointer over the con-
trol. (Not applicable for shortcut menus.)

Displaying all shortcut menu items
The ShowShortcutMenuItems procedure that follows creates a table that lists all the first-
level controls on every shortcut menu. For each control, the table includes the shortcut menu’s
Index and Name, plus the ID, Caption , Type, Enabled, and Visible property values.

Sub ShowShortcutMenuItems()
 Dim Row As Long
 Dim Cbar As CommandBar
 Dim ctl As CommandBarControl
 Range(“A1:G1”) = Array(“Index”, “Name”, “ID”, “Caption”, _
 “Type”, “Enabled”, “Visible”)
 Row = 2
 Application.ScreenUpdating = False
 For Each Cbar In Application.CommandBars
 If Cbar.Type = 2 Then
 For Each ctl In Cbar.Controls
 Cells(Row, 1) = Cbar.Index
 Cells(Row, 2) = Cbar.Name
 Cells(Row, 3) = ctl.ID
 Cells(Row, 4) = ctl.Caption
 If ctl.Type = 1 Then
 Cells(Row, 5) = “Button”
 Else
 Cells(Row, 5) = “Submenu”
 End If
 Cells(Row, 6) = ctl.Enabled
 Cells(Row, 7) = ctl.Visible
 Row = Row + 1

Chapter 23: Working with Shortcut Menus 775

 Next ctl
 End If
 Next Cbar
End Sub

Figure 23-3 shows a portion of the output.

Figure 23-3: Listing the items in all shortcut menus.

If you run the ShowShortcutMenuItems macro, you see that many of the shortcut menus con-
tain hidden or disabled controls. These hidden or disabled menu items represent items that aren’t
available because of the current context. For example, the Desktop shortcut menu (Index 44)
contains the following menu items:

 &New...

 &Open...

Part VI: Developing Applications776

 Save &Workspace...

 &Calculate Now

 F&ull Screen

Displaying Excel 2003 menus
One of the built-in shortcut menus is named Built-In Menus, and it contains the menu items used
in Excel 2003 (the final pre-Ribbon version of Excel). This shortcut menu isn’t attached to an
object, but you can display it using this VBA command:

Application.CommandBars(“Built-in Menus”).ShowPopup

The companion CD-ROM has an example (named make xl 2003 menus.xlsm) that contains
code to copy those shortcut menus to a toolbar. The toolbar is displayed in the Ribbon when the
Add-Ins tab is active. The result is that you can use the Excel 2003 menus with Excel 2010.

The accompanying figure shows how it looks.

Chapter 23: Working with Shortcut Menus 777

The Full Screen menu item is normally hidden — unless Excel is in full-screen mode. In such a
case, the menu item is made visible and its caption is changed to &Close Full Screen.

This example, named show shortcut menu items.xlsm, is available on the com-
panion CD-ROM.

Using VBA to Customize Shortcut Menus
In this section, I present some practical examples of VBA code that manipulates Excel’s shortcut
menus. These examples give you an idea of the types of things you can do with shortcut menus,
and they can all be modified to suit your needs.

Resetting a shortcut menu
The Reset method restores a shortcut menu to its original, default condition. The following pro-
cedure resets the Cell shortcut menu to its normal state:

Sub ResetCellMenu()
 CommandBars(“Cell”).Reset
End Sub

As I noted earlier, Excel has two shortcut menus named Cell. The preceding code resets only the
first one (index of 35). To reset the second Cell shortcut menu, you can use its index number (38)
instead of its name. But remember, the index numbers aren’t consistent across Excel versions.
Here’s a better procedure to reset both instances of the Cell shortcut menu:

Sub ResetCellMenu()
 Dim cbar As CommandBar
 For Each cbar In Application.CommandBars
 If cbar.Name = “Cell” Then cbar.Enabled = False
 Next cbar
End Sub

The following procedure resets all built-in toolbars to their original states:

Sub ResetAll()
 Dim cbar As CommandBar
 For Each cbar In Application.CommandBars
 If cbar.Type = msoBarTypePopup Then
 cbar.Reset
 cbar.Enabled = True
 End If
 Next cbar
End Sub

Part VI: Developing Applications778

If your application adds items to a shortcut menu, it’s a good practice to remove the
items individually when your application closes. If you simply reset the shortcut
menu, it will delete customizations made by other applications.

Disabling a Shortcut Menu
The Enabled property lets you disable an entire shortcut menu. For example, you can set this
property so that right-clicking a cell does not display the normal shortcut menu. The following
statement disables the Cell shortcut menu:

Application.CommandBars(“Cell”).Enabled = False

To re-enable the shortcut menu, set its Enabled property to True.

If you want to disable all shortcut menus, use the following procedure:

Sub DisableAllShortcutMenus()
 Dim cb As CommandBar
 For Each cb In CommandBars
 If cb.Type = msoBarTypePopup Then _
 cb.Enabled = False
 Next cb
End Sub

Disabling shortcut menus “sticks” between sessions. Therefore, you’ll probably want to
restore the shortcut menus before closing Excel. To restore the shortcut menus, modify
the preceding procedure to set the Enabled property to True.

Disabling shortcut menu items
You may want to disable one or more shortcut menu items on certain shortcut menus while your
application is running. When an item is disabled, its text appears in light gray, and clicking it has
no effect. The following procedure disables the Hide menu item from the Row and Column short-
cut menus:

Sub DisableHideMenuItems()
 CommandBars(“Column”).Controls(“Hide”).Enabled = False
 CommandBars(“Row”).Controls(“Hide”).Enabled = False
End Sub

Chapter 23: Working with Shortcut Menus 779

Adding a new item to the Cell shortcut menu
The AddToShortcut procedure that follows adds a new menu item to the Cell shortcut menu:
Toggle Word Wrap. Recall that Excel has two Cell shortcut menus. This procedure modifies the
normal right-click menu, but not the right-click menu that appears in Page Break Preview mode.

Sub AddToShortCut()
‘ Adds a menu item to the Cell shortcut menu
 Dim Bar As CommandBar
 Dim NewControl As CommandBarButton
 DeleteFromShortcut
 Set Bar = CommandBars(“Cell”)
 Set NewControl = Bar.Controls.Add _
 (Type:=msoControlButton, _
 temporary:=True)
 With NewControl
 .Caption = “Toggle &Word Wrap”
 .OnAction = “ToggleWordWrap”
 .Picture = Application.CommandBars.GetImageMso _
 (“WrapText”, 16, 16)
 .Style = msoButtonIconAndCaption
 End With
End Sub

Figure 23-4 shows the new menu item displayed after right-clicking a cell.

The first actual command after the declaration of a couple of variables calls the
DeleteFromShortcut procedure (listed later in this section). This statement ensures that only
one Toggle Word Wrap menu item appears on the shortcut Cell menu. Notice that the underlined
hot key for this menu item is W, not T. That’s because T is already used by the Cut menu item.

The Picture property is set by referencing the image used in the Ribbon for the Wrap Text
command. Refer to Chapter 22 for more information about images used in Ribbon commands.

The macro that is executed when the menu item is select is specified by the OnAction property.
In this case, the macro is named ToggleWordWrap:

Sub ToggleWordWrap()
 CommandBars.ExecuteMso (“WrapText”)
End Sub

This procedure simply executes the WrapText Ribbon command.

Part VI: Developing Applications780

Figure 23-4: The Cell shortcut menu with a custom menu item.

When you modify a shortcut menu, that modification remains in effect until you restart
Excel. In other words, modified shortcut menus don’t reset themselves when you close
the workbook that contains the VBA code. Therefore, if you write code to modify a
shortcut menu, you almost always write code to reverse the effect of your modification.

The DeleteFromShortcut procedure removes the new menu item from the Cell shortcut menu.

Sub DeleteFromShortcut()
 On Error Resume Next
 CommandBars(“Cell”).Controls _
 (“Toggle &Word Wrap”).Delete
End Sub

In most cases, you want to add and remove the shortcut menu additions automatically: Add the
shortcut menu item when the workbook is opened and delete the menu item when the workbook
is closed. Just add these two event procedures to the ThisWorkbook code module:

Private Sub Workbook_Open()
 Call AddToShortCut
End Sub
Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Call DeleteFromShortcut
End Sub

Chapter 23: Working with Shortcut Menus 781

The Workbook_Open procedure is executed when the workbook is opened, and the Workbook_
BeforeClose procedure is executed before the workbook is closed. Just what the doctor ordered.

Menu items added to a shortcut menu are available in all workbooks, not just the work-
book that creates the menu items.

The workbook described in this section is available on the companion CD-ROM. The
filename is add to cell shortcut.xlsm.

Adding a submenu to a shortcut menu
The example in this section adds a submenu with three options to the Cells shortcut menu. Figure
23-5 shows the worksheet after right-clicking a row. Each of the submenu items executes a
macro that changes the case of text in the selected cells.

The code that creates the submenu and submenu items is as follows:

Sub AddSubmenu()
‘ Adds a submenu to the six shortcut menus
 Dim Bar As CommandBar
 Dim NewMenu As CommandBarControl
 Dim NewSubmenu As CommandBarButton

 DeleteSubmenu
 Set Bar = CommandBars(“Cell”)
‘ Add submenu
 Set NewMenu = Bar.Controls.Add _
 (Type:=msoControlPopup, _
 temporary:=True)
 NewMenu.Caption = “Ch&ange Case”
 NewMenu.BeginGroup = True
‘ Add first submenu item
 Set NewSubmenu = NewMenu.Controls.Add _
 (Type:=msoControlButton)
 With NewSubmenu
 .FaceId = 38
 .Caption = “&Upper Case”
 .OnAction = “MakeUpperCase”
 End With
‘ Add second submenu item
 Set NewSubmenu = NewMenu.Controls.Add _
 (Type:=msoControlButton)
 With NewSubmenu
 .FaceId = 40
 .Caption = “&Lower Case”
 .OnAction = “MakeLowerCase”
 End With

Part VI: Developing Applications782

‘ Add third submenu item
 Set NewSubmenu = NewMenu.Controls.Add _
 (Type:=msoControlButton)
 With NewSubmenu
 .FaceId = 476
 .Caption = “&Proper Case”
 .OnAction = “MakeProperCase”
 End With
End Sub

Figure 23-5: This shortcut menu has a submenu with three submenu items.

The submenu is added first, and its Type property is msoControlPopup. Then the three sub-
menu items are added, and each has a different OnAction property.

The code to delete the submenu is much simpler:

Sub DeleteSubmenu()
 On Error Resume Next
 CommandBars(“Cell”).Controls(“Cha&nge Case”).Delete
End Sub

Chapter 23: Working with Shortcut Menus 783

The workbook described in this section is available on the companion CD-ROM. The
filename is shortcut with submenu.xlsm.

Shortcut Menus and Events
The examples in this section demonstrate various shortcut-menu programming techniques used
in conjunction with events.

Finding FaceID images
The icon that’s displayed on a shortcut menu item is determined by one of two property
 settings:

● Picture: This option lets you use an imageMso from the Ribbon. For an example, see
“Adding a new item to the Cell shortcut menu,” earlier in this chapter.

● FaceID: This is the easiest option because the FaceID property is just a numeric value
that represents one of hundreds of images.

But how do you find out which number corresponds to a particular FaceID image? Excel
doesn’t provide a way, so I created an application the lets you enter beginning and ending
FaceID numbers. Click a button, and the images are displayed in the worksheet. Each image
has a name that corresponds to its FaceID value. See the accompanying figure, which shows
FaceID values from 1 to 500. This workbook, named show faceids.xlsm, is available on the
companion CD-ROM.

Part VI: Developing Applications784

I discuss event programming in depth in Chapter 19.

Adding and deleting menus automatically
If you need to modify a shortcut menu when a workbook is opened, use the Workbook_Open
event. The following code, stored in the code module for the ThisWorkbook object, executes
the ModifyShortcut procedure (not shown here):

Private Sub Workbook_Open()
 Call ModifyShortcut
End Sub

To return the shortcut back to its state before the modification, use a procedure such as the fol-
lowing. This procedure is executed before the workbook closes, and it executes the
RestoreShortcut procedure (not shown here):

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Call RestoreShortcut
End Sub

A problem could arise, however, if the workbook isn’t saved when the user closes it. Excel’s “Do
you want to save the changes?” prompt occurs after the Workbook_BeforeClose event han-
dler runs. So if the user clicks Cancel, the workbook remains open, but your custom menu has
already been deleted!

One solution to this problem is to bypass Excel’s prompt and write your own code in the
Workbook_BeforeClose procedure to ask the user to save the workbook. The following code
demonstrates how:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 If Not Me.Saved Then
 Msg = “Do you want to save the changes you made to “
 Msg = Msg & Me.Name & “?”
 Ans = MsgBox(Msg, vbQuestion + vbYesNoCancel)
 Select Case Ans
 Case vbYes
 Me.Save
 Case vbNo
 Me.Saved = True
 Case vbCancel
 Cancel = True
 Exit Sub
 End Select

Chapter 23: Working with Shortcut Menus 785

 End If
 Call RestoreShortcut
End Sub

This procedure determines whether the workbook has been saved. If it has been saved, no prob-
lem; the RestoreShortcut procedure is executed, and the workbook is closed. But if the work-
book hasn’t been saved, the procedure displays a message box that duplicates the one Excel
normally shows. If the user clicks Yes, the workbook is saved, the menu is deleted, and the work-
book is closed. If the user clicks No, the code sets the Saved property of the Workbook object to
True (without actually saving the file) and deletes the menu. If the user clicks Cancel, the
BeforeClose event is canceled, and the procedure ends without restoring the shortcut menu.

Disabling or hiding shortcut menu items
When a shortcut menu item is disabled, its text appears in a faint shade of gray, and clicking it
has no effect. When a menu item is hidden, it doesn’t appear on the shortcut menu. You can, of
course, write VBA code to enable or disable shortcut menu items. Similarly, you can write code to
hide shortcut menu items. The key, of course, is tapping into the correct event.

The following code, for example, disables the Change Case shortcut menu item (which was
added to the Cells menu) when Sheet2 is activated. This procedure is located in the code module
for Sheet2:

Private Sub Worksheet_Activate()
 CommandBars(“Cell”).Controls(“Change Case”).Enabled = False
End Sub

To enable the menu item when Sheet2 is deactivated, add this procedure. The net effect is that
the Change Case menu item is available at all times except when Sheet2 is active.

Private Sub Worksheet_Deactivate()
 CommandBars(“Cell”).Controls(“Change Case”).Enabled = True
End Sub

to hide the menu item rather than disable it, simply access the Visible property instead of the
Enabled property.

Creating a context-sensitive shortcut menu
You can create an entirely new shortcut menu and display it in response to a particular event.
The code that follows creates a shortcut menu named MyShortcut and adds six menu items to
it. These menu items have their OnAction property set to execute a simple procedure that dis-
plays one of the tabs in the Format Cells dialog box (see Figure 23-6).

Part VI: Developing Applications786

Figure 23-6: A new shortcut menu appears only when the user right-clicks a cell in the shaded area of the
worksheet.

Sub CreateShortcut()
 Set myBar = CommandBars.Add _
 (Name:=”MyShortcut”, Position:=msoBarPopup, _
 Temporary:=True)

‘ Add a menu item
 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = “&Number Format...”
 .OnAction = “ShowFormatNumber”
 .FaceId = 1554
 End With

‘ Add a menu item
 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = “&Alignment...”
 .OnAction = “ShowFormatAlignment”
 .FaceId = 217
 End With

‘ Add a menu item
 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = “&Font...”
 .OnAction = “ShowFormatFont”
 .FaceId = 291

Chapter 23: Working with Shortcut Menus 787

 End With
‘ Add a menu item
 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = “&Borders...”
 .OnAction = “ShowFormatBorder”
 .FaceId = 149
 .BeginGroup = True
 End With

‘ Add a menu item
 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = “&Patterns...”
 .OnAction = “ShowFormatPatterns”
 .FaceId = 1550
 End With

‘ Add a menu item
 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = “Pr&otection...”
 .OnAction = “ShowFormatProtection”
 .FaceId = 2654
 End With
End Sub

After the shortcut menu is created, you can display it by using the ShowPopup method. The fol-
lowing procedure, located in the code module for a Worksheet object, is executed when the
user right-clicks a cell:

Private Sub Worksheet_BeforeRightClick _
 (ByVal Target As Excel.Range, Cancel As Boolean)
 If Union(Target.Range(“A1”), Range(“data”)).Address = _
 Range(“data”).Address Then
 CommandBars(“MyShortcut”).ShowPopup
 Cancel = True
 End If
End Sub

If the active cell is within a range named data when the user right-clicks, the MyShortcut
menu appears. Setting the Cancel argument to True ensures that the normal shortcut menu
isn’t displayed. Note that the mini toolbar isn’t displayed.

Part VI: Developing Applications788

You can also display this shortcut menu without even using the mouse. Create a simple proce-
dure and assign a shortcut key by using the Options button in the Macro dialog box.

Sub ShowMyShortcutMenu()
‘ Ctrl+Shift+M shortcut key
 CommandBars(“MyShortcut”).ShowPopup
End Sub

The companion CD-ROM contains an example (named context-sensitive shortcut
menu.xlsm) that creates a new shortcut menu and displays it in place of the normal Cell
shortcut menu.

789

24
Providing Help for Your
Applications
In This Chapter

● Providing user help for your applications

● Using only the components supplied with Excel to provide help

● Displaying help files created with the HTML Help system

● Associating a help file with your application

● Displaying HTML Help in other ways

Help for Your Excel Applications
If you develop a nontrivial application in Excel, you may want to consider building in some sort of
help for end users. Doing so makes the users feel more comfortable with the application and
could eliminate many of those time-wasting phone calls from users with basic questions. Another
advantage is that help is always available: That is, the instructions can’t be misplaced or buried
under a pile of books.

You can provide help for your Excel applications in a number of ways, ranging from simple to
complex. The method that you choose depends on your application’s scope and complexity and
how much effort you’re willing to put into this phase of development. Some applications might
require only a brief set of instructions on how to start them. Others may benefit from a full-
blown, searchable Help system. Most often, applications need something in between.

This chapter classifies user help into two categories:

 Unofficial Help system: This method of displaying help uses standard Excel components
(such as a UserForm).

 Official Help system: This Help system uses a compiled CHM file produced by Microsoft’s
HTML Help Workshop.

Part VI: Developing Applications790

Online help?
In the past, I’ve referred to Excel’s on-screen assistance as online help. In fact, that’s the common
name for this type of assistance. But in recent years, the term online has come to refer to information
available via the Internet. Some people were confused by the expression online help because the help
information is actually stored on their local drives.

Therefore, I now use the expression Help system to refer to assistance provided by an application. But,
beginning with Excel 2003, things have come full circle. The Help system for Excel 2003 and later is
(optionally) truly online. You can view locally stored help information or (with an Internet connection)
search for more up-to-date information at the Microsoft Web site.

Creating a compiled help file isn’t a trivial task, but it is worth the effort if your application is
complex or if it will be used by a large number of people.

Beginning with Microsoft Office 2007, Microsoft abandoned CHM help files in their
Office product, and used a completely different (and much more complicated) Help
system called MS Help 2. This Help system isn’t covered in this book.

All the examples in this chapter are available on the companion CD-ROM. Because most
examples consist of multiple files, each example is in a separate directory on the CD.

Help Systems That Use Excel Components
Perhaps the most straightforward method of providing help to your users is to use the features
contained in Excel itself. The primary advantage of this method is that you don’t need to learn
how to create HTML help files — which can be a major undertaking and might take longer to
develop than your application.

In this section, I provide an overview of some help techniques that use the following built-in Excel
components:

 Cell comments: Using comments is about as simple as it gets.

 A text box control: A short macro is all it takes to toggle the display of a text box that
shows help information.

 A worksheet: An easy way to add help is to insert a worksheet, enter your help informa-
tion, and name its tab Help. When the user clicks the tab, the worksheet is activated.

 A custom UserForm: A number of techniques involve displaying help text in a UserForm.

Chapter 24: Providing Help for Your Applications 791

About the examples in this chapter
Many of the examples in this chapter use a common workbook application to demonstrate vari-
ous ways of providing help. The application uses data stored in a worksheet to generate and
print form letters.

As you can see in the following figure, cells display the total number of records in the database
(C2, calculated by a formula), the current record number (C3), the first record to print (C4), and
the last record to print (C5). To display a particular record, the user enters a value into cell C3. To
print a series of form letters, the user specifies the first and last record numbers in cells C4 and C5.

continued

Part VI: Developing Applications792

Using cell comments for help
Perhaps the simplest way to provide user help is to use cell comments. This technique is most
appropriate for describing the type of input that’s expected in a cell. When the user moves the
mouse pointer over a cell that contains a comment, that comment appears in a small window, like
a ToolTip (see Figure 24-1). Another advantage is that this technique doesn’t require any macros.

Automatic display of cell comments is an option. The following VBA instruction, which can be
placed in a Workbook_Open procedure, ensures that cell comment indicators are displayed for
cells that contain comments:

Application.DisplayCommentIndicator = xlCommentIndicatorOnly

A workbook that demonstrates the use of cell comments is available on the companion
CD-ROM. The filename is cell comments\formletter.xlsm.

Most users don’t realize it, but a comment can also display an image. Right-click the
comment’s border and choose Format Comment from the shortcut menu. In the Format
Comment dialog box, select the Colors and Lines tab. Click the Color drop-down list
and select Fill Effects. In the Fill Effects dialog box, click the Picture tab and then click
the Select Picture button to choose the image file.

Another option is to use Excel’s Data➜Data Tools➜Data Validation command, which displays a
dialog box that lets you specify validation criteria for a cell or range. You can just ignore the data
validation aspect and use the Input Message tab of the Data Validation dialog box to specify a
message that’s displayed when the cell is activated. This text is limited to approximately 250
characters.

continued

The application is very simple, but it does consist of several discrete components. I use this
example to demonstrate various ways of displaying context-sensitive help.

The form letter workbook consists of the following components:

● Form: A worksheet that contains the text of the form letter.
● Data: A worksheet that contains a seven-field database table.
● HelpSheet: A worksheet that’s present only in the examples that store help text on a

worksheet.
● PrintMod: A VBA module that contains macros to print the form letters.
● HelpMod: A VBA module that contains macros that control the help display. The content

of this module varies depending on the type of help being demonstrated.
● UserForm1: A UserForm is present only if the help technique involves a UserForm.

Chapter 24: Providing Help for Your Applications 793

Figure 24-1: Using cell comments to display help.

Using a text box for help
Using a text box to display help information is also easy to implement. Simply create a text box
by choosing Insert➜Text➜Text Box, enter the help text, and format it to your liking.

In lieu of a text box, you can use a different shape and add text to it. Choose
Insert➜Illustrations➜Shapes and choose a shape. Then just starting typing the text.

Figure 24-2 shows an example of a shape set up to display help information. I added a shadow
effect to make the object appear to float above the worksheet.

Most of the time, you won’t want the text box to be visible. Therefore, you can add a button to
your application to execute a macro that toggles the Visible property of the text box. An
example of such a macro follows. In this case, the TextBox is named HelpText.

Sub ToggleHelp()
 ActiveSheet.TextBoxes(“HelpText”).Visible = _
 Not ActiveSheet.TextBoxes(“HelpText”).Visible
End Sub

A workbook that demonstrates using a text box for help is available on the companion
CD-ROM. The filename is textbox\formletter.xlsm.

Part VI: Developing Applications794

Figure 24-2: Using a shape object with text to display help for the user.

Using a worksheet to display help text
Another easy way to add help to your application is to create a macro that activates a separate
worksheet that holds the help information. Just attach the macro to a button control, and voilà! . . .
quick-and-dirty help.

Figure 24-3 shows a sample help worksheet. I designed the range that contains the help text to
simulate a page from a yellow notebook pad — a fancy touch that you may or may not like.

To keep the user from scrolling around the HelpSheet worksheet, the macro sets the
ScrollArea property of the worksheet. Because this property isn’t stored with the workbook,
it’s necessary to set it when the worksheet is activated. I also protected the worksheet to prevent
the user from changing the text and selecting cells, and I “froze” the first row so that the Return
to the Form button is always visible, regardless of how far down the sheet the user scrolls.

The main disadvantage of using this technique is that the help text isn’t visible along with the
main work area. One possible solution is to write a macro that opens a new window to display
the sheet.

Chapter 24: Providing Help for Your Applications 795

Figure 24-3: Putting user help in a separate worksheet is an easy way to go.

The companion CD-ROM contains a workbook named worksheet\formletter.xlsm
that demonstrates using a worksheet for help.

Displaying help in a UserForm
Another way to provide help to the user is to display the text in a UserForm. In this section, I
describe several techniques that involve UserForms.

Using Label controls to display help text
Figure 24-4 shows a UserForm that contains two Label controls: one for the title and one for
the actual help text. A SpinButton control enables the user to navigate among the topics. The

Part VI: Developing Applications796

text itself is stored in a worksheet, with topics in column A and text in column B. A macro trans-
fers the text from the worksheet to the Label controls.

Figure 24-4: Clicking one of the arrows on the SpinButton changes the text displayed in the Labels.

Clicking the SpinButton control executes the following procedure. This procedure simply sets
the Caption property of the two Label controls to the text in the appropriate row of the work-
sheet (named HelpSheet).

Private Sub SpinButton1_Change()
 HelpTopic = SpinButton1.Value
 LabelTopic.Caption = Sheets(“HelpSheet”). _
 Cells(HelpTopic, 1)
 LabelText.Caption = Sheets(“HelpSheet”).Cells(HelpTopic, 2)
 Me.Caption = APPNAME & “ (Help Topic “ & HelpTopic & “ of “ _
 & SpinButton1.Max & “)”
End Sub

Here, APPNAME is a global constant that contains the application’s name.

Using Control tips in a UserForm
Every UserForm control has a ControlTipText property, which can store brief descriptive
text. When the user moves the mouse pointer over a control, the Control tip (if any) is displayed
in a pop-up window. See the accompanying figure.

Chapter 24: Providing Help for Your Applications 797

A workbook that demonstrates this technique is available on the companion CD-ROM.
The filename is userform1\formletter.xlsm.

Using a scrolling Label to display help text
This technique displays help text in a single Label control. Because a Label control can’t con-
tain a vertical scroll bar, the Label is placed inside a Frame control, which can contain a scroll
bar. Figure 24-5 shows an example of a UserForm set up in this manner. The user can scroll
through the text by using the Frame’s scroll bar.

Figure 24-5: Inserting a Label control inside a Frame control adds scrolling to the Label.

The text displayed in the Label is read from a worksheet named HelpSheet when the UserForm
is initialized. Here’s the UserForm_Initialize procedure for this worksheet:

Private Sub UserForm_Initialize()
 Dim LastRow As Long
 Dim r As Long
 Dim txt As String
 Me.Caption = APPNAME & “ Help”
 LastRow = Sheets(“HelpSheet”).Cells(Rows.Count, 1).End(xlUp).Row
 txt = “”
 For r = 1 To LastRow
 txt = txt & Sheets(“HelpSheet”).Cells(r, 1) _
 .Text & vbCrLf
 Next r
 With Label1
 .Top = 0
 .Caption = txt
 .Width = 260
 .AutoSize = True
 End With

Part VI: Developing Applications798

 With Frame1
 .ScrollHeight = Label1.Height
 .ScrollTop = 0
 End With
End Sub

Notice that the code adjusts the Frame’s ScrollHeight property to ensure that the scrolling
covers the complete height of the Label. Again, APPNAME is a global constant that contains the
application’s name.

Because a Label can’t display formatted text, I used underscore characters in the HelpSheet
worksheet to delineate the Help topic titles.

A workbook that demonstrates this technique is available on the companion CD-ROM
as a file named userform2\formletter.xlsm.

Using a ComboBox control to select a Help topic
The example in this section improves upon the previous example. Figure 24-6 shows a UserForm
that contains a ComboBox control and a Label control. The user can select a topic from the
drop-down ComboBox or view the topics sequentially by clicking the Previous or Next button.

This example is a bit more complex than the example in the previous section, but it’s also much
more flexible. It uses the label-within-a-scrolling-frame technique (described previously) to sup-
port help text of any length.

The help text is stored in a worksheet named HelpSheet in two columns (A and B). The first
column contains the topic headings, and the second column contains the text. The ComboBox
items are added in the UserForm_Initialize procedure. The CurrentTopic variable is a
module-level variable that stores an integer that represents the Help topic.

Figure 24-6: Using a drop-down list control to select a Help topic.

Chapter 24: Providing Help for Your Applications 799

Private Sub UpdateForm()
 ComboBoxTopics.ListIndex = CurrentTopic - 1
 Me.Caption = HelpFormCaption & _
 “ (“ & CurrentTopic & “ of “ & TopicCount & “)”

 With LabelText
 .Caption = HelpSheet.Cells(CurrentTopic, 2)
 .AutoSize = False
 .Width = 212
 .AutoSize = True
 End With
 With Frame1
 .ScrollHeight = LabelText.Height + 5
 .ScrollTop = 1
 End With

 If CurrentTopic = 1 Then
 NextButton.SetFocus
 ElseIf CurrentTopic = TopicCount Then
 PreviousButton.SetFocus
 End If
 PreviousButton.Enabled = CurrentTopic <> 1
 NextButton.Enabled = CurrentTopic <> TopicCount
End Sub

A workbook that demonstrates this technique is available on the companion CD-ROM.
The filename is userform3\formletter.xlsm.

Displaying Help in a Web Browser
This section describes two ways to display user help in a Web browser.

Using HTML files
Yet another way to display help for an Excel application is to create one or more HTML files and
provide a hyperlink that displays the file in the default Web browser. The HTML files can be
stored locally or on your corporate intranet. You can create the hyperlink to the help file in a cell
(macros not required). Figure 24-7 shows an example of help in a browser.

Easy-to-use HTML editors are readily available, and your HTML-based Help system can be as sim-
ple or as complex as necessary. A disadvantage is that you may need to distribute a large num-
ber of HTML files. One solution to this problem is to use an MHTML file, which I describe next.

Part VI: Developing Applications800

Figure 24-7: Displaying help in a Web browser.

A workbook that demonstrates this technique is available on the companion CD-ROM.
The filename is web browser\formletter.xlsm.

Using an MHTML file
MHTML, which stands for MIME Hypertext Markup Language, is a Web archive format. MHTML
files can be displayed by Microsoft Internet Explorer (and a few other browsers).

The nice thing about using an MHTML file for an Excel Help system is that you can create these
files in Excel. Just create your help text using any number of worksheets. Then, choose File➜Save
As, click the Save As Type drop-down list, and select Single File Web Page (*.mht; *.mhtml). VBA
macros aren’t saved in this format.

Figure 24-8 shows an MHTML file displayed in Internet Explorer.

Apparently, some versions of Internet Explorer won’t display an MHTML file hyperlinked
from Excel if the filename or path includes space characters.

In Excel, you can create a hyperlink to display the MHTML file.

A workbook that demonstrates this technique is available on the companion CD-ROM.
The filename is mhtml_file\formletter.xlsm.

If you save a multisheet Excel workbook as an MHTML file, the file will contain
JavaScript code — which may generate a security warning when the file is opened.

Chapter 24: Providing Help for Your Applications 801

Figure 24-8: Displaying an MHTML file in a Web browser.

Using the HTML Help System
One of the most common Help systems used in Windows applications is HTML Help, which uses
CHM files. This system replaces the old Windows Help system (WinHelp), which used Hlp files
(see the sidebar, “Microsoft’s Help system evolution”). Both of these Help systems enable the
developer to associate a context ID with a particular Help topic. This makes it possible to display
a particular Help topic in a context-sensitive manner.

In this section, I briefly describe the HTML help-authoring system. Details on creating such Help
systems are well beyond the scope of this book. However, you’ll find lots of information and
examples online.

If you plan to develop a large-scale Help system, I strongly recommend that you pur-
chase a help-authoring software product to make your job easier. Help-authoring soft-
ware makes it much easier to develop help files because the software takes care of lots
of the tedious details for you. Many products are available, including freeware, share-
ware, and commercial offerings.

Part VI: Developing Applications802

A compiled HTML Help system transforms a series of HTML files into a compact Help system.
Additionally, you can create a combined table of contents and index as well as use keywords for
advanced hyperlinking capability. HTML Help can also use additional tools such as graphics files,
ActiveX controls, scripting, and DHTML (Dynamic HTML). Figure 24-9 shows an example of a
simple HTML help system.

A workbook that demonstrates this technique is available on the companion CD-ROM.
The filename is html help\formletter.xlsm.

Figure 24-9: An example of HTML Help.

Microsoft’s Help system evolution
Over the years, Microsoft has incorporated four different Help systems in its applications and
operating systems:

● WinHelp: Based on RTF (rich-text formatting) files. This Help system was first used in
Windows 3.0, in 1990. Multiple RTF files are compiled into a single help file with an .hlp
extension. Versions of Microsoft Office prior to Office 2000 use WinHelp.

● HTML Help: Based on HTML (HyperText Markup Language) files. This Help system was first
used in Internet Explorer 4.0, in 1997. Multiple HTML files are compiled into a single help
file with a .chm extension. Office 2000 was the first version of Office to use HTML Help.

● Microsoft Help 2: Supports HTML, DHTML, XML, VBScript, and JavaScript. Multiple files are
compiled into an .hsx file. This is the Help technology used in Office 2007. This Help sys-
tem is intended for large-scale applications.

● Assistance Platform Help: AP Help is the Help system used by Windows Vista and Windows 7.

Chapter 24: Providing Help for Your Applications 803

HTML Help is displayed by the HTML Help Viewer, which uses the layout engine of Internet
Explorer. The information is displayed in a window, and the table of contents, index, and search
tools are displayed in a separate pane. In addition, the help text can contain standard hyperlinks
that display another topic or even a document on the Internet. It’s also important that HTML Help
can access files stored on a Web site. This is ideal for directing users to a source of up-to-date
information that might not have been available when the Help system was created.

You need a special compiler to create an HTML Help system. The HTML Help Workshop, along
with lots of additional information, is available free from Microsoft’s MSDN Web site. Navigate to
this address and search for HTML Help Workshop:

http://msdn.microsoft.com

Figure 24-10 shows the HTML Help Workshop with the project file that created the Help system
shown in Figure 24-9.

Figure 24-10: Using the HTML Help Workshop to create a help file.

Part VI: Developing Applications804

Using the Help method to display HTML Help
Use the Help method of the Application object to display a help file — either a WinHelp HLP
file or an HTML Help CHM file. This method works even if the help file doesn’t have any context
IDs defined.

The syntax for the Help method is as follows:

Application.Help(helpFile, helpContextID)

Both arguments are optional. If the name of the help file is omitted, Excel’s help file is displayed.
If the context ID argument is omitted, the specified help file is displayed with the default topic.

The following example displays the default topic of myapp.chm, which is assumed to be in the
same directory as the workbook that it’s called from. Note that the second argument is omitted.

Sub ShowHelpContents()
 Application.Help ThisWorkbook.Path & “\myapp.chm”
End Sub

Displaying an Excel Help topic
In some cases, you may want your VBA code to display a particular topic from Excel’s Help sys-
tem. For example, assume that you’d like to give the user the option to view Excel’s Help system
information on chart types.

First, make sure that the Excel Help window is displaying help from your computer (not from
Office.com. (Use the control in the bottom-right corner of the Help window to change the con-
nection status.) Next, you need to determine the Topic ID number of the topic. To do so, locate
the topic in the Help system; then right-click and choose Properties. The Address (URL) field
contains the Topic ID embedded in the URL. (It’s a 10-character string that begins with the letter
H.) Make a note of the Topic ID, and use it in a VBA statement like this:

Application.Assistance.ShowHelp “ HA10342187”

In Excel 2007, this technique works only if the user’s Help system is set up to display local con-
tents only (that is, the Help system is in Offline mode). In Excel 2010, however, the correct Help
topic is displayed regardless of the setting.

Another option is to use the SearchHelp method. Just supply a search term, and the user will see
a list of matching Help topics. Here’s an example:

Application.Assistance.SearchHelp “format chart elements”

Chapter 24: Providing Help for Your Applications 805

The following instruction displays the Help topic with a context ID of 1002 from an HTML help
file named myapp.chm:

Application.Help ThisWorkbook.Path & “\myapp.chm”, 1002

Associating a Help File with Your Application
You can associate a particular HTML help file with your Excel application in one of two ways: by
using the Project Properties dialog box or by writing VBA code.

In the Visual Basic Editor (VBE), choose Tools➜xxx Properties (where xxx corresponds to your
project’s name). In the Project Properties dialog box, click the General tab and specify a compiled
HTML help file for the project. This file should have a .chm extension.

The statement that follows demonstrates how to associate a help file with your application by
using a VBA statement. The following instruction sets up an association to myfuncs.chm, which
is assumed to be in the same directory as the workbook:

ThisWorkbook.VBProject.HelpFile = ThisWorkbook.Path & “\myfuncs.chm”

If this statement generates an error, you must enable programmatic access to VBA
projects. In Excel, choose Developer➜Code➜Macro Security to display the Trust Center
dialog box. Then uncheck the option labeled Trust Access to the VBA Project Object
Model.

When a help file is associated with your application, you can call up a particular Help topic in the
following situations:

 When the user presses F1 while a custom worksheet function is selected in the Insert
Function dialog box.

 When the user presses F1 while a UserForm is displayed. The Help topic associated with
the control that has the focus is displayed.

Associating a Help topic with a VBA function
If you create custom worksheet functions with VBA, you might want to associate a help file and
context ID with each function. After these items are assigned to a function, the Help topic can be
displayed from the Insert Function dialog box by pressing F1.

Part VI: Developing Applications806

To specify a context ID for a custom worksheet function, follow these steps:

 1. Create the function as usual.

 2. Make sure that your project has an associated help file (refer to the preceding section).

 3. In the VBE, press F2 to activate the Object Browser.

 4. Select your project from the Project/Library drop-down list.

 5. In the Classes window, select the module that contains your function.

 6. In the Members Of window, select the function.

 7. Right-click the function and then select Properties from the shortcut menu.

 This displays the Member Options dialog box, shown in Figure 24-11.

Figure 24-11: Specify a context ID for a custom function in the Member Options dialog box.

 8. Enter the context ID of the Help topic for the function.

 You can also enter a description of the function.

The Member Options dialog box doesn’t let you specify the help file. It always uses the
help file associated with the project.

You may prefer to write VBA code that sets up the context ID and help file for your custom func-
tions. You can do this by using the MacroOptions method.

The following procedure uses the MacroOptions method to specify a description, help file, and
context ID for two custom functions (AddTwo and Squared). You need to execute this macro
only one time.

Sub SetOptions()
‘ Set options for the AddTwo function
 Application.MacroOptions Macro:=”AddTwo”, _
 Description:=”Returns the sum of two numbers”, _
 HelpFile:=ThisWorkbook.Path & “\myfuncs.chm”, _
 HelpContextID:=1000, _
 ArgumentDescriptions:=Array(“The first number to add”, _

Chapter 24: Providing Help for Your Applications 807

 “The second number to add”)

‘ Set options for the Squared function
 Application.MacroOptions Macro:=”Squared”, _
 Description:=”Returns the square of an argument”, _
 HelpFile:=ThisWorkbook.Path & “\myfuncs.chm”, _
 HelpContextID:=2000, _
 ArgumentDescriptions:=Array(“The number to be squared”)
End Sub

After executing these procedures, the user can get help directly from the Insert Function dialog
box by pressing F1 or by clicking the Help on This Function hyperlink.

The preceding example also demonstrates a new argument for the MacroOptions
method. Excel 2010 accepts the ArgumentDescriptions argument. You can use this
argument to provide a description of each argument in your function. These descrip-
tions appear in the Function Arguments dialog box, which is displayed after the Insert
Function dialog box.

A workbook that demonstrates this technique is available on the companion CD-ROM.
The filename is function help\myfuncs.xlsm.

Part VI: Developing Applications808

809

25
Developing User-Oriented
Applications
In This Chapter

● Describing a user-oriented application

● Looking at the Loan Amortization Wizard, which generates a worksheet with an amorti-
zation schedule for a fixed-rate loan

● Demonstrating application development concepts and techniques by the Loan
Amortization Wizard

● Reviewing an application development checklist

What is a User-Oriented Application?
I use the term user-oriented application for an Excel application that someone with minimal train-
ing can use. These applications produce useful results even for users who know virtually nothing
about Excel.

The Loan Amortization Wizard discussed in this chapter qualifies as a user-oriented application
because it’s designed in such a way that the end user doesn’t need to know the intimate details
of Excel to use it. Replying to a few simple prompts produces a useful and flexible worksheet
complete with formulas.

The Loan Amortization Wizard
The Loan Amortization Wizard generates a worksheet that contains an amortization schedule for
a fixed-rate loan. An amortization schedule projects month-by-month details for a loan. The
details include the monthly payment amount, the amount of the payment that goes toward inter-
est, the amount that goes toward reducing the principal, and the new loan balance.

Part VI: Developing Applications810

An alternative to creating an amortization schedule using a wizard is to create a template file. As
you’ll see, this wizard approach offers several advantages.

Figure 25-1 shows an amortization schedule generated by the Loan Amortization Wizard.

Figure 25-1: This amortization schedule shows details for a 30-year mortgage.

The Loan Amortization Wizard is available on the CD-ROM that accompanies this book.
It’s an unprotected add-in named loan amortization wizard.xlam.

Using the Loan Amortization Wizard
The Loan Amortization Wizard consists of a five-step dialog box sequence that collects informa-
tion from the user. Typical of a wizard, this enables the user to go forward and backward through
the steps. Clicking the Finish button creates the new worksheet. If all the steps haven’t been
completed when the user clicks Finish, default values are used. Clicking the Cancel button closes
the UserForm, and no action is taken.

Chapter 25: Developing User-Oriented Applications 811

This application uses a single UserForm with a MultiPage control to display the five steps,
shown in Figures 25-2 through 25-6.

Figure 25-2: Step 1 of the Loan Amortization Wizard.

Figure 25-3: Step 2 of the Loan Amortization Wizard.

Figure 25-4: Step 3 of the Loan Amortization Wizard.

Part VI: Developing Applications812

Figure 25-5: Step 4 of the Loan Amortization Wizard.

Figure 25-6: Step 5 of the Loan Amortization Wizard.

The Loan Amortization Wizard workbook structure
The Loan Amortization Wizard consists of the following components:

 FormMain: A UserForm that serves as the primary user interface.

 FormHelp: A UserForm that displays online help.

 FormMessage: A UserForm that displays a message when the add-in is opened. The
user can disable this display.

 HelpSheet: A worksheet that contains the text used in the online help.

 ModMain: A VBA module that contains a procedure that displays the main UserForm.

 ThisWorkbook: The code module for this object contains the Workbook_Open event-
handler procedure.

In addition, the workbook file contains some simple RibbonX XML code that creates the Loan
Amortization Wizard button in the Insert tab of the Ribbon.

Chapter 25: Developing User-Oriented Applications 813

How the Loan Amortization Wizard works
The Loan Amortization Wizard is an add-in, so you should install it by using the Add-Ins dialog
box. To display this dialog box, choose File➜Options➜Add-Ins. Then, in the Excel Options dialog
box, choose Excel Add-Ins from the Manage drop-down list and click Go. Use the Browse button
to locate the add-in file. After it’s installed, an add-in remains installed across Excel sessions. The
add-in works perfectly well, however, if it’s opened with the File➜Open command.

Modifying the user interface
Every add-in needs a way to allow the user to access the procedures. I added some RibbonX
code to the file that adds a button to a new group in the Insert tab (see Figure 25-7). Clicking this
button executes the StartAmortizationWizard procedure, which displays the FormMain
UserForm.

Figure 25-7: A new group on the Insert tab contains one control.

The RibbonX code that creates the Ribbon control is

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

 <ribbon>

 <tabs>

 <tab idMso=”TabInsert”>

 <group id=”gpUtils” label=”Loan Amortization”>

 <button id=”b1”

Creating the Loan Amortization Wizard
The Loan Amortization Wizard application started out as a simple concept and evolved into a
relatively complex project. My primary goal was to demonstrate as many development concepts
as possible and still have a useful end product. I would like to say that I clearly envisioned the
end result before I began developing the application, but I’d be lying.

My basic idea was much less ambitious. I simply wanted to create an application that gathered user
input and created a worksheet. But, after I got started, I began thinking of ways to enhance my sim-
ple program. I eventually stumbled down several blind alleys. Some folks would consider my wan-
derings time-wasting, but those false starts became a vital part of the development process.

I completed the entire project in one (long) day, and I spent a few more hours fine-tuning and
testing it. I added a few more accouterments for the version included in this edition of the book.

Part VI: Developing Applications814

 size=”large”

 imageMso=”CreateQueryFromWizard”

 label=”Loan Amortization Wizard”

 supertip=”Click here to create an amortization schedule.”

 onAction=”StartAmortizationWizard”/>

 </group>

 </tab>

 </tabs>

 </ribbon>

</customUI>

Refer to Chapter 22 for information about modifying the Ribbon.

Displaying an initial message
I’ve installed many Excel add-ins over the years, and I’ve found that many of them don’t provide
a clue as to how to access the add-in. To make this application as user-friendly as possible, I
added a UserForm that is displayed when the workbook is opened. This form tells the user how
to start the wizard. Figure 25-8 shows the UserForm.

To prevent it from become annoying, this UserForm includes an option to turn off the message in
the future.

Following is the Workbook_Open procedure that displays the dialog box:

Private Sub Workbook_Open()

 If GetSetting(APPNAME, “Defaults”, “ShowMessage”, “Yes”) = “Yes” Then

 FormMessage.Show

 End If

End Sub

Figure 25-8: This form is displayed when the Loan Amortization Wizard is opened.

The user’s choice regarding the future display of the UserForm is stored in the Windows Registry.
The Registry key is specified by the application’s name (a global constant, APPNAME). The default
value is “Yes,” so the UserForm will display at least one time.

Chapter 25: Developing User-Oriented Applications 815

Following is the code that is executed when the user clicks the OK button:

Private Sub OKButton_Click()
 If cbMessage Then
 SaveSetting APPNAME, “Defaults”, “ShowMessage”, “No”
 Else
 SaveSetting APPNAME, “Defaults”, “ShowMessage”, “Yes”
 End If
 Unload Me
End Sub

If the user checks the check box control, then the registry setting is set to “No,” and the
UserForm won’t be displayed again.

Initializing FormMain for the wizard
The UserForm_Initialize procedure for FormMain does quite a bit of work:

 It sets the MultiPage control’s Style property to fmTabStyleNone. The tabs are
present in the Visual Basic Editor to make the UserForm easier to edit.

 It sets the MultiPage control’s Value property to 0. This ensures that it displays the
first page, regardless of its value when the workbook was last saved.

 It adds items to three ComboBox controls used on the form.

 It calls the GetDefaults procedure, which retrieves the most recently used setting
from the Windows Registry (see the upcoming section “Saving and retrieving default
 settings”).

 It checks whether a workbook is active. If no workbook is active, the code disables the
OptionButton that enables the user to create the new worksheet in the active workbook.

 If a workbook is active, an additional check determines whether the workbook’s structure
is protected. If so, the procedure disables the OptionButton that enables the user to cre-
ate the worksheet in the active workbook.

Processing events while the UserForm is displayed
The code module for the FormMain UserForm contains several event-handler procedures that
respond to the Click and Change events for the controls on the UserForm.

Clicking the Back and Next buttons determines which page of the MultiPage control is
displayed. The MultiPage1_Change procedure adjusts the UserForm’s caption and
enables and disables the Back and Next buttons as appropriate. See Chapter 15 for
more information about programming a wizard.

Part VI: Developing Applications816

Displaying help in the wizard
You have several options when it comes to displaying online help. I chose a technique that dis-
plays help text in the UserForm shown in Figure 25-9 to display text stored in a worksheet. You’ll
notice that this help is context-sensitive. When the user clicks the Help button, the Help topic dis-
played is relevant to the current page of the MultiPage control.

Worksheets in an add-in aren’t visible. To view the worksheet that contains the help text for this
add-in, you need to temporarily set the workbook’s IsAddin property to False. One way to
accomplish this is to select the project in the Project window and execute this statement in the
Immediate window:

ThisWorkbook.IsAddin = False

Figure 25-9: User help is presented in a UserForm that copies text stored in a worksheet.

For more information about the technique of transferring worksheet text to a
UserForm, refer to Chapter 24.

Creating the new worksheet
When the user clicks the Finish button, the action begins. The Click event-handler procedure
for this button performs the following actions:

 It calls a function named DataIsValid, which checks the user’s input to ensure that it’s
valid. If all the entries are valid, the function returns True, and the procedure continues.
If an invalid entry is encountered, DataIsValid sets the focus to the control that needs
to be corrected and returns a descriptive error message (see Figure 25-10).

 If the user’s responses are valid, the procedure creates a new worksheet either in the
active workbook or in a new workbook, per the user’s request.

Chapter 25: Developing User-Oriented Applications 817

Figure 25-10: If an invalid entry is made, the focus is set back to the control that contains the error.

 The loan parameters (purchase price, down payment information, loan amount, term, and
interest rate) are written to the worksheet. This requires the use of some If statements
because the down payment can be expressed as a percentage of the purchase price or as
a fixed amount.

 The column headers are written to the worksheet.

 The first row of formulas is written below the column headers. The first row is different
from the remaining rows because its formulas refer to data in the loan parameters sec-
tion. The other formulas all refer to the previous row. Notice that I use named ranges in
the formulas. These are sheet-level names, so the user can store more than one amortiza-
tion schedule in the same workbook.

 For unnamed references, I use row number and column number notation, which is much
easier than trying to determine actual cell addresses.

 The second row of formulas is written to the worksheet and then copied down one row
for each month.

 If the user requested annual totals as opposed to simply monthly data, the procedure
uses the Subtotal method to create subtotals. This, by the way, is an example of how
using a native feature in Excel can save lots of coding.

 Because subtotaling the Balance column isn’t appropriate, the procedure replaces formu-
las in the Balance column with a formula that returns the year-end balance.

 When Excel adds subtotals, it also creates an outline. If the user didn’t request an outline,
the procedure uses the ClearOutline method to remove it. If an outline was
requested, the procedure hides the outline symbols.

 Next, the procedure applies formatting to the cells: number formatting, plus an
AutoFormat if the user requested color output.

 The amortization schedule is then converted to a table, and a style is applied based on
the user’s choice of black-and-white or color.

 The procedure then adjusts the column widths, freezes the titles just below the header
row, and protects the formulas and a few other key cells that shouldn’t be changed.

 If the Protect Sheet option is specified in Step 5, the sheet is protected (but not with a
password).

Part VI: Developing Applications818

 Finally, the SaveDefaults procedure writes the current values of the UserForm’s con-
trols to the Windows registry. These values will be the new default settings the next time
the user creates an amortization schedule. (See the following section.)

Saving and retrieving default settings
If you run this application, you’ll notice that the FormMain UserForm always displays the setting
that you most recently used. In other words, it remembers your last choices and uses them as the
new default values. This step makes it very easy to generate multiple what-if amortization sched-
ules that vary in only a single parameter. The code remembers the user input by storing the val-
ues in the Windows Registry and then retrieving them when the UserForm is initialized. When the
application is used for the first time, the Registry doesn’t have any values, so it uses the default
values stored in the UserForm controls.

The following GetDefaults procedure loops through each control on the UserForm. If the con-
trol is a TextBox, ComboBox, OptionButton, CheckBox, or SpinButton, it calls VBA’s
GetSetting function and reads the value to the Registry. Note that the third argument for
GetSetting is the value to use if the setting isn’t found. In this case, it uses the value of the
control specified at design time. APPNAME is a global constant that contains the name of the
application.

Sub GetDefaults()
‘ Reads default settings from the registry
 Dim ctl As Control
 Dim CtrlType As String

 For Each ctl In Me.Controls
 CtrlType = TypeName(ctl)
 If CtrlType = “TextBox” Or _
 CtrlType = “ComboBox” Or _
 CtrlType = “OptionButton” Or _
 CtrlType = “CheckBox” Or _
 CtrlType = “SpinButton” Then
 ctl.Value = GetSetting _
 (APPNAME, “Defaults”, ctl.Name, ctl.Value)
 End If
 Next ctl
End Sub

Figure 25-11 shows how these values appear in the Registry, as displayed by the Windows
Registry Editor program.

Chapter 25: Developing User-Oriented Applications 819

Figure 25-11: The Windows Registry stores the default values for the wizard.

The following SaveDefaults procedure is similar to the GetDefaults procedure. It uses
VBA’s SaveSetting statement to write the current values to the Registry:

Sub SaveDefaults()

‘ Writes current settings to the registry

 Dim ctl As Control

 Dim CtrlType As String

 For Each ctl In Me.Controls

 CtrlType = TypeName(ctl)

 If CtrlType = “TextBox” Or _

 CtrlType = “ComboBox” Or _

 CtrlType = “OptionButton” Or _

 CtrlType = “CheckBox” Or _

 CtrlType = “SpinButton” Then

 SaveSetting APPNAME, “Defaults”, ctl.Name, CStr(ctl.Value)

 End If

 Next ctl

End Sub

Part VI: Developing Applications820

Notice that the code uses the CStr function to convert each setting to a string. This function
helps avoid problems for those who use non-English regional settings. Without the string conver-
sion, True and False are translated to the user’s language before they’re stored in the Registry.
But they’re not translated back to English when the setting is retrieved — which causes an error.

The SaveSetting statement and the GetSetting function always use the following Registry key:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\

Potential enhancements for the Loan Amortization Wizard
It’s been said that you never finish writing an application — you just stop working on it. Without
even thinking too much about it, I can come up with several enhancements for the Loan
Amortization Wizard:

 An option to display cumulative totals for interest and principal

 An option to work with adjustable-rate loans and make projections based on certain
interest rate scenarios

 More formatting options (for example, no decimal places, no dollar signs, and so on)

 Options to enable the user to specify page headers or footers

Application Development Concepts
Following the logic in an application developed by someone other than yourself is often difficult.
To help you understand my work, I included lots of comments in the code and described the gen-
eral program flow in the preceding sections. But, if you really want to understand this application,
I suggest that you use the Debugger to step through the code.

At the very least, the Loan Amortization Wizard demonstrates some useful techniques and con-
cepts that are important for Excel developers:

 Modifying the Ribbon.

 Using a wizard-like UserForm to gather information.

 Setting the Enabled property of a control dynamically.

 Linking a TextBox control and a SpinButton control.

 Displaying online help to a user.

 Naming cells with VBA.

 Writing and copying formulas with VBA.

 Reading from and writing to the Windows Registry.

Chapter 25: Developing User-Oriented Applications 821

Developing user-oriented applications in Excel isn’t easy. You must be keenly aware of how peo-
ple will use (and abuse) the application in real life. Although I tried to make this application com-
pletely bulletproof, I did not do extensive real-world testing, so I wouldn’t be surprised if it fails
under some conditions.

Application development checklist
When developing user-oriented applications, you need to keep in mind many things. Let the fol-
lowing checklist serve as a reminder:

● Do the dialog boxes all work from the keyboard? Don’t forget to add hot keys and check
the tab order carefully.

● Did you make any assumptions about directories? If your application reads or writes files,
you can’t assume that a particular directory exists or that it’s the current directory.

● Did you make provisions for canceling all dialog boxes? You can’t assume that the user
will end a dialog box by clicking the OK button.

● Did you assume that no other worksheets are open? If your application is the only work-
book open during testing, you could overlook something that happens when other work-
books are open.

● Did you assume that a workbook is visible? It’s possible, of course, to use Excel with no
workbooks visible.

● Did you attempt to optimize the speed of your application? For example, you often can
speed up your application by declaring variable types and defining object variables.

● Are your procedures adequately documented? Will you understand your code if you
revisit it in six months?

● Did you include appropriate end-user documentation? Doing so often eliminates (or at
least reduces) the number of follow-up questions.

● Did you allow time to revise your application? Chances are the application won’t be per-
fect the first time out. Build in some time to fix it.

Part VI: Developing Applications822

PART VII
Other Topics
CHAPTER 26
Compatibility Issues

CHAPTER 27
Manipulating Files with VBA

CHAPTER 28
Manipulating Visual Basic Components

CHAPTER 29
Understanding Class Modules

CHAPTER 30
Working with Colors

CHAPTER 31
Frequently Asked Questions about Excel Programming

825

26
Compatibility Issues
In This Chapter

● Increasing the probability that your Excel 2010 applications will also work with previous
versions of Excel

● Declaring API functions that work with 32-bit Excel 2010, 64-bit Excel 2010, and earlier
versions of Excel

● Being aware of issues if you’re developing Excel applications for international use

What Is Compatibility?
Compatibility is an oft-used term among computer people. In general, it refers to how well soft-
ware performs under various conditions. These conditions might be defined in terms of hardware,
software, or a combination of the two. For example, software written for Windows will not run
directly on other operating systems, such as Mac OS X or Linux.

In this chapter, I discuss a more specific compatibility issue involving how your Excel 2010 appli-
cations will work with earlier versions of Excel for Windows and Excel for Macintosh. The fact
that two versions of Excel might use the same file format isn’t always enough to ensure complete
compatibility between the contents of their files. For example, Excel 97, Excel 2000, Excel 2002,
Excel 2003, and Excel 2002 for Macintosh all use the same file format, but compatibility prob-
lems are rampant. Just because a particular version of Excel can open a worksheet file or an add-
in doesn’t guarantee that that version of Excel can carry out the VBA macro instructions
contained in it. Another example: Excel 2010 and Excel 2007 both use the same file format. If
your application uses features that were introduced in Excel 2010, you can’t expect that Excel
2007 users will magically have access to these new features.

Excel is a moving target, and there is really no way that you can guarantee complete compatibil-
ity. Unfortunately, cross-version compatibility doesn’t happen automatically. In most cases, you
need to do quite a bit of additional work to achieve compatibility.

Part VII: Other Topics826

Types of Compatibility Problems
You need to be aware of several categories of potential compatibility problems. These issues are
listed here and discussed further in this chapter:

 File format issues: You can save workbooks in several different Excel file formats. Earlier
versions of Excel might not be able to open workbooks that were saved in a later ver-
sion’s file format. For more information about sharing Excel 2010 (and Excel 2007) files,
see the sidebar, “The Microsoft Office Compatibility Pack.”

 New feature issues: It should be obvious that you can’t use a feature introduced in a par-
ticular version of Excel in previous versions of Excel.

 Microsoft issues: For whatever reason, Microsoft itself is responsible for some types of
compatibility issues. For example, as I note in Chapter 23, index numbers for shortcut
menus haven’t remained consistent across Excel versions.

 Windows versus Macintosh issues: If your application must work on both platforms, plan
to spend lots of time ironing out various compatibility problems. Excel for Macintosh no
longer supports VBA, so it’s likely that you’ll be forced to create a separate version for
the Macintosh.

 Bit issues: Excel 2010 is the first version of Excel that’s available in both 32-bit and 64-bit
editions. If your VBA code uses API functions, you’ll need to be aware of some potential
problems if the code must run in both 32-bit and 64-bit Excel, as well as other versions of
Excel.

 International issues: If your application will be used by those who use a different lan-
guage version of Excel, you must address a number of additional issues.

After reading this chapter, it should be clear that there is only one way to ensure compatibility:
You must test your application on every target platform and with every target version of Excel.
Often, this amount of testing is simply not feasible. However, you, as a developer, can take cer-
tain measures to help ensure that your application works with different versions of Excel.

If you’re reading this chapter in search of a complete list of specific compatibility issues
among the various versions of Excel, you will be disappointed. As far as I know, no such
list exists, and it would be virtually impossible to compile one. These types of issues are
far too numerous and complex.

A good source for information about potential compatibility problems is Microsoft’s
support site. The URL is

http:// support.microsoft.com

Information at this site can often help you identify bugs that appear in a particular
version of Excel.

Chapter 26: Compatibility Issues 827

Avoid Using New Features
If your application must work with both Excel 2010 and earlier versions, you need to avoid any
features that were added after the earliest Excel version that you will support. Another alterna-
tive is to incorporate the new features selectively. In other words, your code can determine which
version of Excel is being used and then take advantage of the new features or not.

VBA programmers must be careful not to use any objects, properties, or methods that aren’t
available in earlier versions. In general, the safest approach is to develop your application for the
lowest version number. For compatibility with Excel 2000 and later, you should use Excel 2000
for development; then test thoroughly by using the later versions.

A very useful feature that was introduced in Excel 2007 is the Compatibility Checker, shown in
Figure 26-1. Display this dialog box by choosing File➜Info➜Check For Issues➜ Check
Compatibility. The Compatibility Checker identifies any compatibility issues that might cause a
problem if the file is opened using an earlier version of Excel.

Unfortunately, the Compatibility Checker doesn’t even look at the VBA code — which is a prime
candidate for compatibility problems. However, you can download the Microsoft Office Code
Compatibility Inspector (search for it at http://Microsoft.com). This tool installs as an add-
in and adds new commands to the Developer tab. It may help you locate potential compatibility
problems in your VBA code. As I write this book, the Microsoft Office Code Compatibility
Inspector was available as beta software — and it wasn’t very helpful. Perhaps the final version
will be more useful.

The Microsoft Office Compatibility Pack
If you plan to share your Excel 2010 application with others who haven’t upgraded to Excel 2010
(or Excel 2007), you have two choices:

● Always save your files in the older XLS file format.
● Make sure the recipients of your files have installed the Microsoft Office Compatibility

Pack.

The Microsoft Office Compatibility Pack is a free download available at www.microsoft.com.
When installed, Office XP and Office 2003 users can open, edit, and save documents, work-
books, and presentations in the new file formats for Word, Excel, and PowerPoint.

Keep in mind that this compatibility pack doesn’t endow earlier versions of Excel with any of the
new features in Excel 2007 or Excel 2010. It simply allows those users to open and save files in
the new file format.

Part VII: Other Topics828

Figure 26-1: The Compatibility Checker.

But Will It Work on a Mac?
A common problem that I hear about is Macintosh compatibility. Excel for Macintosh represents a
very small proportion of the total Excel market, and many developers choose simply to ignore it.
The good news is that the old Excel XLS file format is compatible across both platforms. The bad
news is that the features supported aren’t identical, and VBA macro compatibility is far from per-
fect. In fact, the current version of Excel for Macintosh doesn’t even support VBA.

Determining Excel’s version number
The Version property of the Application object returns the version of Excel. The returned
value is a string, so you might need to convert it to a value. Use VBA’s Val function to make the
conversion. The following function, for example, returns True if the user is running Excel 2007
or later:

Function XL12OrLater()
 XL12OrLater = Val(Application.Version) >= 12
End Function

Excel 2007 is version 12, and Excel 2010 is version 14. There is no version 13, presumably because
some people think it’s an unlucky number.

Chapter 26: Compatibility Issues 829

The remainder of this section assumes that you’re working with an older version of
Excel for Macintosh — a version that still supports VBA.

You can write VBA code to determine which platform your application is running. The following
function accesses the OperatingSystem property of the Application object and returns
True if the operating system is any version of Windows (that is, if the returned string contains
the text “Win”):

Function WindowsOS() As Boolean
 If Application.OperatingSystem like “*Win*” Then
 WindowsOS = True
 Else
 WindowsOS = False
 End If
End Function

Many subtle (and not so subtle) differences exist between the Windows versions and the Mac
versions of Excel. Many of those differences are cosmetic (for example, different default fonts),
but others are much more serious. For example, Excel for Macintosh doesn’t include ActiveX con-
trols. Also, it uses the 1904 date system as the default, so workbooks that use dates could be off
by four years. Excel for Windows, by default, uses the 1900 date system. On the Macintosh, a
date serial number of 1 refers to January 1, 1904; in Excel for Windows, that same serial number
represents January 1, 1900.

Another limitation concerns Windows API functions: They won’t work with Excel for Macintosh. If
your application depends on such functions, you need to develop a workaround.

If your code deals with paths and filenames, you need to construct your path with the appropri-
ate path separator (a colon for the Macintosh, a backslash for Windows). A better approach is to
avoid hard-coding the path separator character and use VBA to determine it. The following state-
ment assigns the path separator character to a variable named PathSep:

PathSep = Application.PathSeparator

After this statement is executed, your code can use the PathSep variable in place of a hard-
coded colon or backslash.

Rather than try to make a single file compatible with both platforms, most developers choose to
develop on one platform (typically Excel for Windows) and then modify the application so that it
works on the Mac platform. In other words, you’ll probably need to maintain two separate ver-
sions of your application.

There is only one way to make sure that your application is compatible with the Macintosh ver-
sion of Excel: You must test it thoroughly on a Macintosh — and be prepared to develop some
workarounds for procedures that don’t work correctly.

Part VII: Other Topics830

Dealing with 64-bit Excel
You can install Excel 2010 as a 32-bit application or as a 64-bit application. The latter works only
if you’re running a 64-bit version of Windows. The 64-bit version can handle much larger work-
books because it takes advantage of the larger address space in 64-bit Windows.

Most users don’t need the 64-bit version of Excel because they don’t work with massive amounts
of data in a workbook. And remember, the 64-bit version offers no performance boost. Some
operations may actually be slower in the 64-bit version.

In general, workbooks created using the 32-bit version will work fine in the 64-bit version. The
only potential problem is if the workbook contains VBA code that uses Windows API functions.
The 32-bit API function declarations won’t compile in the 64-bit version.

For example, the following declaration works with 32-bit Excel versions, but causes a compile
error with 64-bit Excel 2010:

Declare Function GetWindowsDirectoryA Lib “kernel32” _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long

The following declaration works with Excel 2010 (both 32-bit and 64-bit), but causes a compile
error in previous versions of Excel:

Declare PtrSafe Function GetWindowsDirectoryA Lib “kernel32” _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long

To use this API function in both 32-bit and 64-bit Excel, you must declare two versions of the
function by using two conditional compiler directives:

 VBA7 returns True if your code is using Version 7 of VBA (which is included in Office 2010).

 Win64 returns True if the code is running in 64-bit Excel.

Only one version of VBA can be installed on a system. So, if you have older versions of
Excel installed and then install Excel 2010, the older versions will all be running VBA 7.
Unfortunately, if you activate the VB Editor in one of these older versions and choose
Help➜About Microsoft Visual Basic, the dialog box won’t report that it’s running VBA 7.

Here’s an example of how to use these directives to declare an API function that’s compatible
with 32-bit and 64-bit Excel:

#If VBA7 And Win64 Then
 Declare PtrSafe Function GetWindowsDirectoryA Lib “kernel32” _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long
#Else

Chapter 26: Compatibility Issues 831

 Declare Function GetWindowsDirectoryA Lib “kernel32” _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long
#End If

The first Declare statement is used when VBA7 and Wind64 are both True — which is the case
only for 16-Bit Excel 2010. In all other versions, the second Declare statement is used.

Creating an International Application
The final compatibility concern deals with language issues and international settings. Excel is
available in many different language versions. The following statement displays the country code
for the version of Excel:

MsgBox Application.International(xlCountryCode)

The United States/English version of Excel has a country code of 1. Other country codes are
listed in Table 26-1.

Table 26-1: Excel Country Codes
Country Country Code

English 1

Russian 7

Greek 30

Dutch 31

French 33

Spanish 34

Hungarian 36

Italian 39

Czech 42

Danish 45

Swedish 46

Norwegian 47

Polish 48

German 49

Portuguese (Brazil) 55

Thai 66

Japanese 81

continued

Part VII: Other Topics832

Table 26-1: Excel Country Codes (continued)

Country Country Code

Korean 82

Vietnamese 84

Simplified Chinese 86

Turkish 90

Indian 91

Urdu 92

Portuguese 351

Finnish 358

Traditional Chinese 886

Arabic 966

Hebrew 972

Farsi 982

Excel also supports language packs, so a single copy of Excel can actually display any number of
different languages. The language comes into play in two areas: the user interface and the execu-
tion mode.

You can determine the current language used by the user interface by using a statement such as:

Msgbox Application.LanguageSettings.LanguageID(msoLanguageIDUI)

The language ID for English is 1033.

If your application will be used by those who speak another language, you need to ensure that
the proper language is used in your dialog boxes. Also, you need to identify the user’s decimal
and thousands separator characters. In the United States, these are almost always a period and a
comma, respectively. However, users in other countries might have their systems set up to use
other characters. Yet another issue is date and time formatting: The United States is one of the
few countries that use the (illogical) month/day/year format.

If you’re developing an application that will be used only by people within your company, you
probably won’t need to be concerned with international compatibility. But, if your company has
offices throughout the world, or if you plan to distribute your application outside your country,
you need to address a number of issues to ensure that your application will work properly. I dis-
cuss these issues in the following sections.

Multilanguage applications
An obvious consideration involves the language that is used in your application. For example, if
you use one or more dialog boxes, you probably want the text to appear in the language of the

Chapter 26: Compatibility Issues 833

user. Fortunately, changing the language isn’t too difficult (assuming, of course, that you can
translate your text or know someone who can).

The companion CD-ROM contains an example that demonstrates how to allow the user
to choose from three languages in a dialog box: English, Spanish, or German. The file-
name is multilingual wizard.xlsm.

The first step of the multilingual wizard (found on the CD) contains three OptionButtons that
enable the user to select a language. The text for the three languages is stored in a worksheet.

The UserForm_Initialize procedure contains code that attempts to guess the user’s lan-
guage by checking the International property:

Select Case Application.International(xlCountryCode)
 Case 34 ‘Spanish
 UserLanguage = 2
 Case 49 ‘German
 UserLanguage = 3
 Case Else ‘default to English
 UserLanguage = 1 ‘default
End Select

Figure 26-2 shows the UserForm displaying text in all three languages.

Figure 26-2: The Wizard Demo in English, Spanish, and German.

Part VII: Other Topics834

VBA language considerations
In general, you need not be concerned with the language in which you write your VBA code.
Excel uses two object libraries: the Excel object library and the VBA object library. When you
install Excel, it registers the English language version of these object libraries as the default
libraries. (This is true regardless of the language version of Excel.)

Using local properties
If your code will display worksheet information, such as a formula or a range address, you proba-
bly want to use the local language. For example, the following statement displays the formula in
cell A1:

MsgBox Range(“A1”).Formula

For international applications, a better approach is to use the FormulaLocal property rather
than the Formula property:

MsgBox Range(“A1”).FormulaLocal

Several other properties also have local versions. These are shown in Table 26-2 (refer to the
Help system for specific details).

Table 26-2: Properties That Have Local Versions

Property Local Version Return Contents

Address AddressLocal An address

Category CategoryLocal A function category (XLM macros only)

Formula FormulaLocal A formula

FormulaR1C1 FormulaR1C1Local A formula, using R1C1 notation

Name NameLocal A name

NumberFormat NumberFormatLocal A number format

RefersTo RefersToLocal A reference

RefersToR1C1 RefersToR1C1Local A reference, using R1C1 notation

Identifying system settings
Generally, you can’t assume that the end user’s system is set up likwe the system on which you
develop your application. For international applications, you need to be aware of the following
settings:

Chapter 26: Compatibility Issues 835

 Decimal separator: The character used to separate the decimal portion of a value.

 Thousands separator: The character used to delineate every three digits in a value.

 List separator: The character used to separate items in a list.

You can determine the current separator settings by accessing the International property of
the Application object. For example, the following statement displays the decimal separator,
which won’t always be a period:

MsgBox Application.International(xlDecimalSeparator)

The 45 international settings that you can access with the International property are listed
in Table 26-3.

Table 26-3: Constants for the International Property

Constant What It Returns

xlCountryCode Country version of Microsoft Excel.

xlCountrySetting Current country setting in the Windows Control Panel.

xlDecimalSeparator Decimal separator.

xlThousandsSeparator Thousands separator.

xlListSeparator List separator.

xlUpperCaseRowLetter Uppercase row letter (for R1C1-style references).

xlUpperCaseColumnLetter Uppercase column letter.

xlLowerCaseRowLetter Lowercase row letter.

xlLowerCaseColumnLetter Lowercase column letter.

xlLeftBracket Character used instead of the left bracket ([) in R1C1-style relative
references.

xlRightBracket Character used instead of the right bracket (]) in R1C1-style
 references.

xlLeftBrace Character used instead of the left brace ({) in array literals.

xlRightBrace Character used instead of the right brace (}) in array literals.

xlColumnSeparator Character used to separate columns in array literals.

xlRowSeparator Character used to separate rows in array literals.

xlAlternateArraySeparator Alternate array item separator to be used if the current array
 separator is the same as the decimal separator.

xlDateSeparator Date separator (/).

xlTimeSeparator Time separator (:).

xlYearCode Year symbol in number formats (y).

continued

Part VII: Other Topics836

Table 26-3: Constants for the International Property (continued)

Constant What It Returns

xlMonthCode Month symbol (m).

xlDayCode Day symbol (d).

xlHourCode Hour symbol (h).

xlMinuteCode Minute symbol (m).

xlSecondCode Second symbol (s).

xlCurrencyCode Currency symbol.

xlGeneralFormatName Name of the General number format.

xlCurrencyDigits Number of decimal digits to be used in currency formats.

xlCurrencyNegative A value that represents the currency format for negative currency
values.

xlNoncurrencyDigits Number of decimal digits to be used in noncurrency formats.

xlMonthNameChars Always returns three characters for backward-compatibility; abbre-
viated month names are read from Microsoft Windows and can be
any length.

xlWeekdayNameChars Always returns three characters for backward-compatibility; abbre-
viated weekday names are read from Microsoft Windows and can
be any length.

xlDateOrder An integer that represents the order of date elements.

xl24HourClock True if the system is using 24-hour time; False if the system is
using 12-hour time.

xlNonEnglishFunctions True if the system isn’t displaying functions in English.

xlMetric True if the system is using the metric system; False if the system
is using the English measurement system.

xlCurrencySpaceBefore True if a space is added before the currency symbol.

xlCurrencyBefore True if the currency symbol precedes the currency values; False
if it follows them.

xlCurrencyMinusSign True if the system is using a minus sign for negative numbers;
False if the system is using parentheses.

xlCurrencyTrailingZeros True if trailing zeros are displayed for zero currency values.

xlCurrencyLeadingZeros True if leading zeros are displayed for zero currency values.

xlMonthLeadingZero True if a leading zero is displayed in months (when months are
displayed as numbers).

xlDayLeadingZero True if a leading zero is displayed in days.

xl4DigitYears True if the system is using four-digit years; False if the system is
using two-digit years.

xlMDY True if the date order is month-day-year for dates displayed in the
long form; False if the date order is day/month/year.

xlTimeLeadingZero True if a leading zero is displayed in times.

Chapter 26: Compatibility Issues 837

Date and time settings
If your application writes formatted dates and will be used in other countries, you might want to
make sure that the date is in a format familiar to the user. The best approach is to specify a date
by using VBA’s DateSerial function and let Excel take care of the formatting details. (It will
use the user’s short date format.)

The following procedure uses the DateSerial function to assign a date to the StartDate
variable. This date is then written to cell A1 with the local short date format.

Sub WriteDate()
 Dim StartDate As Date
 StartDate = DateSerial(2010, 4, 15)
 Range(“A1”) = StartDate
End Sub

If you need to do any other formatting for the date, you can write code to do so after the date
has been entered into the cell. Excel provides several named date and time formats, plus quite a
few named number formats. The online help describes all these formats (search for named date/
time formats or named numeric formats).

Part VII: Other Topics838

839

27
Manipulating Files with VBA
In This Chapter

● Getting a basic overview of VBA text file manipulation features

● Performing common file operations

● Opening a text file

● Displaying extended file information, such as details for media files

● Reading and writing a text file with VBA

● Exporting a range to HTML and XML format

● Zipping and unzipping files

● Using ActiveX Data Objects to import data

Performing Common File Operations
Many applications that you develop for Excel require working with external files. For example,
you might need to get a listing of files in a directory, delete files, rename files, and so on. Excel, of
course, can import and export several types of text files. In many cases, however, Excel’s built-in
text file handling isn’t sufficient. For example, you might want to paste a list of filenames into a
range, or export a range of cells to a simple HyperText Markup Language (HTML) file.

In this chapter, I describe how to use Visual Basic for Applications (VBA) to perform common
(and not so common) file operations and work directly with text files.

Excel provides two ways to perform common file operations:

 Use traditional VBA statements and functions. This method works for all versions of
Excel.

 Use the FileSystemObject object, which uses the Microsoft Scripting Library. This
method works for Excel 2000 and later.

Part VII: Other Topics840

Some earlier versions of Excel also supported the use of the FileSearch object. That
feature was removed, beginning with Excel 2007. If you execute an old macro that uses
the FileSearch object, the macro will fail.

In the sections that follow, I discuss these two methods and present examples.

Using VBA file-related statements
The VBA statements that you can use to work with files are summarized in Table 27-1. Most of
these statements are straightforward, and all are described in the Help system.

Table 27-1: VBA File-Related Statements

Command What It Does

ChDir Changes the current directory.

ChDrive Changes the current drive.

Dir Returns a filename or directory that matches a specified pattern or file attribute.

FileCopy Copies a file.

FileDateTime Returns the date and time when a file was last modified.

FileLen Returns the size of a file, in bytes.

GetAttr Returns a value that represents an attribute of a file.

Kill Deletes a file.

MkDir Creates a new directory.

Name Renames a file or directory.

RmDir Removes an empty directory.

SetAttr Changes an attribute for a file.

The remainder of this section consists of examples that demonstrate some of the file manipula-
tion commands.

A VBA function to determine whether a file exists
The following function returns True if a particular file exists and False if it doesn’t exist. If the
Dir function returns an empty string, the file couldn’t be found, so the function returns False.

Function FileExists(fname) As Boolean
 FileExists = Dir(fname) <> “”
End Function

Chapter 27: Manipulating Files with VBA 841

The argument for the FileExists function consists of a full path and filename. The function
can be either used in a worksheet or called from a VBA procedure. Here’s an example:

MyFile = “c:\budgeting\2011 budget notes.docx”
Msgbox FileExists(MyFile)

A VBA function to determine whether a path exists
The following function returns True if a specified path exists and False otherwise:

Function PathExists(pname) As Boolean
‘ Returns TRUE if the path exists
 On Error Resume Next
 PathExists = (GetAttr(pname) And vbDirectory) = vbDirectory
End Function

The pname argument is a string that contains a directory (without a filename). The trailing back-
slash in the pathname is optional. Here’s an example of calling the function:

MyFolder = “c:\users\john\desktop\downloads\”
MsgBox PathExists(MyFolder)

The FileExists and PathExists functions are available on the CD-ROM. The file-
name is file functions.xlsm.

A VBA procedure to display a list of files in a directory
The following procedure displays (in the active worksheet) a list of files contained in a particular
directory, along with the file size and date:

Sub ListFiles()
 Dim Directory As String
 Dim r As Long
 Dim f As String
 Dim FileSize As Double
 Directory = “f:\excelfiles\budgeting\”
 r = 1
‘ Insert headers
 Cells(r, 1) = “FileName”
 Cells(r, 2) = “Size”
 Cells(r, 3) = “Date/Time”
 Range(“A1:C1”).Font.Bold = True
‘ Get first file

Part VII: Other Topics842

 f = Dir(Directory, vbReadOnly + vbHidden + vbSystem)
 Do While f <> “”
 r = r + 1
 Cells(r, 1) = f
 ‘Adjust for filesize > 2 gigabytes
 FileSize = FileLen(Directory & f)
 If FileSize < 0 Then FileSize = FileSize + 4294967296#
 Cells(r, 2) = FileSize
 Cells(r, 3) = FileDateTime(Directory & f)
 ‘ Get next file
 f = Dir()
 Loop
End Sub

Figure 27-1 shows an example of the output of the ListFiles subroutine.

VBA’s FileLen function uses the Long data type. Consequently, it will return an incor-
rect size (a negative number) for files larger than about 2 gigabytes. The code checks
for a negative value from the FileLen function, and makes an adjustment if necessary.

Figure 27-1: Output from the ListFiles procedure.

Notice that the procedure uses the Dir function twice. The first time (used with an argument), it
retrieves the first filename found. Subsequent calls (without an argument) retrieve additional file-
names. When no more files are found, the Dir function returns an empty string.

Chapter 27: Manipulating Files with VBA 843

The companion CD-ROM contains a version of this procedure which allows you to select
a directory from a dialog box. The filename is create file list.xlsm.

The Dir function also accepts wildcard file specifications in its first argument. To get a list of
Excel files, for example, you could use a statement such as this:

f = Dir(Directory & “*.xl??”, vbReadOnly + vbHidden + vbSystem)

This statement retrieves the name of the first *.xl?? file in the specified directory. The wildcard
specification returns a four-character extension that begins with XL. For example, the extension
could be .xlsx, .xltx, or .xlam. The second argument for the Dir function lets you specify the attri-
butes of the files (in terms of built-in constants). In this example, the Dir function retrieves file-
names that have no attributes, read-only files, hidden files, and system files.

Table 27-2 lists the built-in constants for the Dir function.

Table 27-2: File Attribute Constants for the Dir Function

Constant Value Description

vbNormal 0 Files with no attributes. This is the default setting and is always in effect.

vbReadOnly 1 Read-only files.

vbHidden 2 Hidden files.

vbSystem 4 System files.

vbVolume 8 Volume label. If any other attribute is specified, this attribute is ignored.

vbDirectory 16 Directories. This attribute doesn’t work. Calling the Dir function with the
vbDirectory attribute doesn’t continually return subdirectories.

If you use the Dir function to loop through files and call another procedure to process
the files, make sure that the other procedure doesn’t use the Dir function. Only one
“set” of Dir calls can be active at any time.

A recursive VBA procedure to display a list of files in nested directories
The example in this section creates a list of files in a specified directory, including all of its sub-
directories. This procedure is unusual because it calls itself — a concept known as recursion.

Public Sub RecursiveDir(ByVal CurrDir As String, Optional ByVal Level As Long)

 Dim Dirs() As String

 Dim NumDirs As Long

 Dim FileName As String

 Dim PathAndName As String

Part VII: Other Topics844

 Dim i As Long

 Dim Filesize As Double

‘ Make sure path ends in backslash

 If Right(CurrDir, 1) <> “\” Then CurrDir = CurrDir & “\”

‘ Put column headings on active sheet

 Cells(1, 1) = “Path”

 Cells(1, 2) = “Filename”

 Cells(1, 3) = “Size”

 Cells(1, 4) = “Date/Time”

 Range(“A1:D1”).Font.Bold = True

‘ Get files

 FileName = Dir(CurrDir & “*.*”, vbDirectory)

 Do While Len(FileName) <> 0

 If Left(FileName, 1) <> “.” Then ‘Current dir

 PathAndName = CurrDir & FileName

 If (GetAttr(PathAndName) And vbDirectory) = vbDirectory Then

 ‘store found directories

 ReDim Preserve Dirs(0 To NumDirs) As String

 Dirs(NumDirs) = PathAndName

 NumDirs = NumDirs + 1

 Else

 ‘Write the path and file to the sheet

 Cells(WorksheetFunction.CountA(Range(“A:A”)) + 1, 1) = _

 CurrDir

 Cells(WorksheetFunction.CountA(Range(“B:B”)) + 1, 2) = _

 FileName

 ‘adjust for filesize > 2 gigabytes

 Filesize = FileLen(PathAndName)

 If Filesize < 0 Then Filesize = Filesize + 4294967296#

 Cells(WorksheetFunction.CountA(Range(“C:C”)) + 1, 3) = Filesize

 Cells(WorksheetFunction.CountA(Range(“D:D”)) + 1, 4) = _

 FileDateTime(PathAndName)

 End If

 End If

 FileName = Dir()

 Loop

 ‘ Process the found directories, recursively

 For i = 0 To NumDirs - 1

 RecursiveDir Dirs(i), Level + 2

 Next i

End Sub

The procedure takes one argument, CurrDir, which is the directory being examined.
Information for each file is displayed in the active worksheet. As the procedure loops through the
files, it stores the subdirectory names in an array named Dirs. When no more files are found, the
procedure calls itself using an entry in the Dirs array for its argument. When all of the directo-
ries in the Dirs array have been processed, the procedure ends.

Chapter 27: Manipulating Files with VBA 845

Because the RecursiveDir procedure uses an argument, it must be executed from another
procedure by using a statement like this:

Call RecursiveDir(“c:\directory\”)

The companion CD-ROM contains a version of this procedure that allows you to select a
directory from a dialog box. The filename is recursive file list.xlsm.

Using the FileSystemObject object
The FileSystemObject object is a member of the Windows Scripting Host and provides
access to a computer’s file system. This object is often used in script-oriented Web pages (for
example, VBScript and JavaScript) and can be used with Excel 2000 and later versions.

The Windows Scripting Host is sometimes used as a way to spread computer viruses
and other malware. Consequently, the Windows Scripting Host may be disabled on
some systems. Therefore, use caution if you’re designing an application that will be
used on many different systems.

The name FileSystemObject is a bit misleading because it actually includes a number of
objects, each designed for a specific purpose:

 Drive: Represents a drive or a collection of drives.

 File: Represents a file or a collection of files.

 Folder: Represents a folder or a collection of folders.

 TextStream: Represents a stream of text that is read from, written to, or appended to a
text file.

The first step in using the FileSystemObject object is to create an instance of the object. You
can do this task in two ways: early binding and late binding.

The late binding method uses two statements, like this:

 Dim FileSys As Object
 Set FileSys = CreateObject(“Scripting.FileSystemObject”)

Note that the FileSys object variable is declared as a generic Object rather than as an actual
object type. The object type is resolved at runtime.

The early binding method of creating the object requires that you set up a reference to the
Windows Scripting Host Object Model. You do this by using Tools➜References in the VBE (see

Part VII: Other Topics846

Figure 27-2). After you’ve established the reference, create the object by using statements like
these:

Dim FileSys As FileSystemObject
Set FileSys = CreateObject(“Scripting.FileSystemObject”)

Using the early binding method enables you to take advantage of the VBE’s Auto List Members
feature to help you identify properties and methods as you type. In addition, you can use the
Object Browser (by pressing F2) to learn more about the object model.

Figure 27-2: Creating a reference to the Windows Script Host Object Model.

The examples that follow demonstrate various tasks using the FileSystemObject object.

Using FileSystemObject to determine whether a file exists
The Function procedure that follows accepts one argument (the path and filename) and
returns True if the file exists:

Function FileExists3(fname) As Boolean
 Dim FileSys As Object ‘FileSystemObject
 Set FileSys = CreateObject(“Scripting.FileSystemObject”)
 FileExists3 = FileSys.FileExists(fname)
End Function

The function creates a new FileSystemObject object named FileSys and then accesses the
FileExists property for that object.

Chapter 27: Manipulating Files with VBA 847

Using FileSystemObject to determine whether a path exists
The Function procedure that follows accepts one argument (the path) and returns True if the
path exists:

Function PathExists2(path) As Boolean
 Dim FileSys As Object ‘FileSystemObject
 Set FileSys = CreateObject(“Scripting.FileSystemObject”)
 PathExists2 = FileSys.FolderExists(path)
End Function

Using FileSystemObject to list information about all available disk drives
The example in this section uses FileSystemObject to retrieve and display information about
all disk drives. The procedure loops through the Drives collection and writes various property
values to a worksheet.

Figure 27-3 shows the results when the procedure is executed on a system with 12 drives. The
data shown is the drive letter, whether the drive is “ready,” the drive type, the volume name, the
total size, and the available space.

Figure 27-3: Output from the ShowDriveInfo procedure.

This workbook, named show drive info.xlsm, is available on the companion
CD-ROM.

Sub ShowDriveInfo()
 Dim FileSys As FileSystemObject
 Dim Drv As Drive
 Dim Row As Long
 Set FileSys = CreateObject(“Scripting.FileSystemObject”)

Part VII: Other Topics848

 Cells.ClearContents
 Row = 1
‘ Column headers
 Range(“A1:F1”) = Array(“Drive”, “Ready”, “Type”, “Vol. Name”, _
 “Size”, “Available”)
 On Error Resume Next
‘ Loop through the drives
 For Each Drv In FileSys.Drives
 Row = Row + 1
 Cells(Row, 1) = Drv.DriveLetter
 Cells(Row, 2) = Drv.IsReady
 Select Case Drv.DriveType
 Case 0: Cells(Row, 3) = “Unknown”
 Case 1: Cells(Row, 3) = “Removable”
 Case 2: Cells(Row, 3) = “Fixed”
 Case 3: Cells(Row, 3) = “Network”
 Case 4: Cells(Row, 3) = “CD-ROM”
 Case 5: Cells(Row, 3) = “RAM Disk”
 End Select
 Cells(Row, 4) = Drv.VolumeName
 Cells(Row, 5) = Drv.TotalSize
 Cells(Row, 6) = Drv.AvailableSpace
 Next Drv
 ‘Make a table
 ActiveSheet.ListObjects.Add xlSrcRange, _
 Range(“A1”).CurrentRegion, , xlYes
End Sub

Chapter 11 describes another method of getting drive information by using Windows
API functions.

Displaying Extended File Information
The example in this section displays extended file properties for all files in a specified directory. The
information that’s available depends on the file type. For example, image files have properties such as
Camera Model and Dimensions; audio files have properties such as Artist, Title, Duration, and so on.

The actual properties available depends on the version of Windows. Windows Vista supports 267
properties and Windows 7 supports even more. Here’s a procedure that creates a list of file prop-
erties in the active worksheet:

Sub ListFileProperties()
 Dim i As Long
 Dim objShell As Object ‘IShellDispatch4
 Dim objFolder As Object ‘Folder3

Chapter 27: Manipulating Files with VBA 849

‘ Create the object
 Set objShell = CreateObject(“Shell.Application”)
‘ Specify any folder
 Set objFolder = objShell.Namespace(“C:\”)
‘ List the properties
 For i = 0 To 500
 Cells(i + 1, 1) = _
 objFolder.GetDetailsOf(objFolder.Items, i)
 Next i
End Sub

Unfortunately, the property values aren’t consistent across Windows versions. For exam-
ple, in Windows 2000, the Title property is stored as number 11. In Windows XP, the Title
property is stored as number 10. In Windows Vista, the Title property is number 21.

The FileInfo procedure, which uses the Windows Shell.Application object, follows. This
procedure prompts for a directory using the GetDirectory function (not shown here) and then
lists the first 41 properties of each file in the directory.

Sub FileInfo()
 Dim c As Long, r As Long, i As Long
 Dim FileName As Object ‘FolderItem2
 Dim objShell As Object ‘IShellDispatch4
 Dim objFolder As Object ‘Folder3

‘ Create the object
 Set objShell = CreateObject(“Shell.Application”)

‘ Prompt for the folder
 Set objFolder = objShell.Namespace(GetDirectory)
‘ Insert headers on active sheet
 Worksheets.Add
 c = 0
 For i = 0 To 40
 c = c + 1
 Cells(1, c) = objFolder.GetDetailsOf(objFolder.Items, i)
 Next i
‘ Loop through the files
 r = 1
 For Each FileName In objFolder.Items
 c = 0
 r = r + 1
 For i = 0 To 40
 c = c + 1
 Cells(r, c) = objFolder.GetDetailsOf(FileName, i)
 Next i
 Next FileName
‘ Make it a table

Part VII: Other Topics850

 ActiveSheet.ListObjects.Add xlSrcRange, _
 Range(“A1”).CurrentRegion
End Sub

Figure 27-4 shows part of the output of this procedure, for a directory that contains MP3 audio files.

Figure 27-4: A table of information about the files in a directory.

This example uses late binding to create a Shell.Application object, so the objects are
declared generically. To use early binding, use the VBE Tools➜References command and create a
reference to Microsoft Shell Controls and Automation.

This example, named file information.xlsm, is available on the companion CD-ROM.

Working with Text Files
VBA contains a number of statements that allow low-level manipulation of files. These Input/
Output (I/O) statements give you much more control over files than Excel’s normal text file
import and export options.

You can access a file in any of three ways:

 Sequential access: By far the most common method. This type allows reading and writ-
ing individual characters or entire lines of data.

 Random access: Used only if you’re programming a database application — something
that’s not really appropriate for VBA.

 Binary access: Used to read or write to any byte position in a file, such as storing or dis-
playing a bitmap image. This access method is rarely used in VBA.

Chapter 27: Manipulating Files with VBA 851

Because random and binary access files are rarely used with VBA, this chapter focuses on
sequential access files, which are accessed sequentially. In other words, your code starts reading
from the beginning of the file and reads each line sequentially. For output, your code writes data
to the end of the file.

The method of reading and writing text files discussed in this book is the traditional
data-channel approach. Another option is to use the object approach. The
FileSystemObject object contains a TextStream object that can be used to read and
write text files. The FileSystemObject object is part of the Windows Scripting Host.
This scripting service is disabled on some systems because of the malware potential.

Opening a text file
VBA’s Open statement (not to be confused with the Open method of the Workbooks object)
opens a file for reading or writing. Before you can read from or write to a file, you must open it.

The Open statement is quite versatile and has a rather complex syntax:

Open pathname For mode [Access access] [lock] _
 As [#]filenumber [Len=reclength]

 pathname: (Required) The pathname part of the Open statement is quite straightfor-
ward. It simply contains the name and path (optional) of the file to be opened.

 mode: (Required) The file mode must be one of the following:

● Append: A sequential access mode that either allows the file to be read or allows
data to be appended to the end of the file.

● Input: A sequential access mode that allows the file to be read but not written to.

● Output: A sequential access mode that allows the file to be read or written to. In this
mode, a new file is always created. (An existing file with the same name is deleted.)

● Binary: A random access mode that allows data to be read or written to on a byte-
by-byte basis.

● Random: A random access mode that allows data to be read or written in units deter-
mined by the reclength argument of the Open statement.

 access: (Optional) The access argument determines what can be done with the file. It
can be Read, Write, or Read Write.

 lock: (Optional) The lock argument is useful for multiuser situations. The options are
Shared, Lock Read, Lock Write, and Lock Read Write.

Part VII: Other Topics852

 filenumber: (Required) A file number ranging from 1 to 511. You can use the
FreeFile function to get the next available file number. (Read about FreeFile in the
upcoming section, “Getting a file number.”)

 reclength: (Optional) The record length (for random access files) or the buffer size
(for sequential access files).

Reading a text file
The basic procedure for reading a text file with VBA consists of the following steps:

 1. Open the file by using the Open statement.

 2. Specify the position in the file by using the Seek function (optional).

 3. Read data from the file (by using the Input, Input #, or Line Input # statements).

 4. Close the file by using the Close statement.

Writing a text file
The basic procedure for writing a text file is as follows:

 1. Open or create the file by using the Open statement.

 2. Specify the position in the file by using the Seek function (optional).

 3. Write data to the file by using the Write # or Print # statement.

 4. Close the file by using the Close statement.

Getting a file number
Most VBA programmers simply designate a file number in their Open statement. For example:

Open “myfile.txt” For Input As #1

Then you can refer to the file in subsequent statements as #1.

If a second file is opened while the first is still open, you’d designate the second file as #2:

Open “another.txt” For Input As #2

Chapter 27: Manipulating Files with VBA 853

Another approach is to use VBA’s FreeFile function to get a file handle. Then you can refer to
the file by using a variable. Here’s an example:

FileHandle = FreeFile
Open “myfile.txt” For Input As FileHandle

Determining or setting the file position
For sequential file access, you rarely need to know the current location in the file. If for some rea-
son you need to know this information, you can use the Seek function.

Statements for reading and writing
VBA provides several statements to read and write data to a file.

Three statements are used for reading data from a sequential access file:

 Input: Reads a specified number of characters from a file.

 Input #: Reads data as a series of variables, with variables separated by a comma.

 Line Input #: Reads a complete line of data (delineated by a carriage return and/or
linefeed character).

Excel’s text file import and export features
Excel supports three types of text files:

● CSV (Comma-Separated Value) files: Columns of data are separated by a comma, and
each row of data ends in a carriage return. For some non-English versions of Excel, a semi-
colon rather than a comma is used.

● PRN: Columns of data are aligned by character position, and each row of data ends in a
carriage return. These files are also known as fixed width files.

● TXT (Tab-delimited) files: Columns of data are separated by Tab characters, and each row
of data ends in a carriage return.

When you attempt to open a text file with the File➜Open command, the Text Import Wizard
might appear in order to help you delineate the columns. If the text file is tab-delimited or
comma-delimited, Excel usually opens the file without displaying the Text Import Wizard. If the
data isn’t interpreted correctly, close the file and try renaming it to use a .txt extension.

The Text to Columns Wizard (accessed by choosing Data➜Data Tools➜Text to Columns) is
identical to the Text Import Wizard but works with data stored in a single worksheet column.

Part VII: Other Topics854

Two statements are used for writing data to a sequential access file:

 Write #: Writes a series of values, with each value separated by a comma and enclosed
in quotes. If you end the statement with a semicolon, a carriage return/linefeed sequence
is not inserted after each value. Data written with Write # is usually read from a file
with an Input # statement.

 Print #: Writes a series of values, with each value separated by a Tab character. If you
end the statement with a semicolon, a carriage return/linefeed sequence isn’t inserted
after each value. Data written with Print # is usually read from a file with a Line
Input # or an Input statement.

Text File Manipulation Examples
This section contains a number of examples that demonstrate various techniques that manipulate
text files.

Importing data in a text file
The code in the following example reads a text file and then places each line of data in a single
cell (beginning with the active cell):

Sub ImportData()
 Open “c:\data\textfile.txt” For Input As #1
 r = 0
 Do Until EOF(1)
 Line Input #1, data
 ActiveCell.Offset(r, 0) = data
 r = r + 1
 Loop
 Close #1
End Sub

In most cases, this procedure won’t be very useful because each line of data is simply dumped
into a single cell. It would be easier to just open the text file directly by using File➜Open.

When Excel parses your data incorrectly
Have you ever imported a CSV file, or pasted data into a worksheet, only to find that Excel split
up your data incorrectly? If so, the culprit is probably the Text To Columns feature. Here’s Step 2
of the wizard that’s used to split a single column of delimited data into multiple columns.

Chapter 27: Manipulating Files with VBA 855

In this case, three delimiters are specified: tab, comma, and colon.

Splitting text into separate columns is a very useful feature. The problem is, Excel tries to be
helpful by remembering these settings for subsequent CSV imports and paste operations.
Sometimes remembering these settings really is helpful, but often, it’s not. To clear these delim-
iters, you must display this dialog box, clear the settings, and click Cancel.

If you’re importing or pasting via a macro, there’s no direct way for your macro to check these
settings or reset them. The solution is to “fake” a text-to-columns operation. The following pro-
cedure does that, with the effect of clearing all the settings from the Text To Columns dialog box
(and making no changes to your workbook).

Sub ClearTextToColumns()
 On Error Resume Next
 If IsEmpty(Range(“A1”)) Then Range(“A1”) = “XYZZY”
 Range(“A1”).TextToColumns Destination:=Range(“A1”), _
 DataType:=xlDelimited, _
 TextQualifier:=xlDoubleQuote, _
 ConsecutiveDelimiter:=False, _
 Tab:=False, _
 Semicolon:=False, _
 Comma:=False, _
 Space:=False, _
 Other:=False, _
 OtherChar:=””
 If Range(“A1”) = “XYZZY” Then Range(“A1”) = “”
 If Err.Number <> 0 Then MsgBox Err.Description
End Sub

This macro assumes that a worksheet is active, and it’s not protected. Note that the contents of
cell A1 won’t be modified because no operations are specified for the TextToColumns method.
If cell A1 is empty, the code inserts a temporary string (because the TextToColumns method
will fail if the cell is empty). Before ending, the procedure deletes the temporary string.

Part VII: Other Topics856

Exporting a range to a text file
The example in this section writes the data in a selected worksheet range to a CSV text file. Excel,
of course, can export data to a CSV file, but it exports the entire worksheet. This macro works
with a specified range of cells.

Sub ExportRange()
 Dim Filename As String
 Dim NumRows As Long, NumCols As Integer
 Dim r As Long, c As Integer
 Dim Data
 Dim ExpRng As Range
 Set ExpRng = Selection
 NumCols = ExpRng.Columns.Count
 NumRows = ExpRng.Rows.Count
 Filename = Application.DefaultFilePath & “\textfile.csv”
 Open Filename For Output As #1
 For r = 1 To NumRows
 For c = 1 To NumCols
 Data = ExpRng.Cells(r, c).Value
 If IsNumeric(Data) Then Data = Val(Data)
 If IsEmpty(ExpRng.Cells(r, c)) Then Data = “”
 If c <> NumCols Then
 Write #1, Data;
 Else
 Write #1, Data
 End If
 Next c
 Next r
 Close #1
End Sub

Notice that the procedure uses two Write # statements. The first statement ends with a semi-
colon, so a carriage return/linefeed sequence isn’t written. For the last cell in a row, however, the
second Write # statement doesn’t use a semicolon, which causes the next output to appear on
a new line.

I use a variable named Data to store the contents of each cell. If the cell is numeric, the variable
is converted to a value. This step ensures that numeric data won’t be stored with quotation
marks. If a cell is empty, its Value property returns 0. Therefore, the code also checks for a blank
cell (by using the IsEmpty function) and substitutes an empty string instead of a zero.

Figure 27-5 shows the contents of the resulting file, viewed in Windows Notepad.

This example and the example in the next section are available on the companion
CD-ROM. The filename is export and import csv.xlsm.

Chapter 27: Manipulating Files with VBA 857

Figure 27-5: This text file was generated by VBA.

Importing a text file to a range
The example in this section reads the CSV file created in the previous example and then stores
the values beginning at the active cell in the active worksheet. The code reads each character
and essentially parses the line of data, ignoring quote characters and looking for commas to
delineate the columns.

Sub ImportRange()
 Dim ImpRng As Range
 Dim Filename As String
 Dim r As Long, c As Integer
 Dim txt As String, Char As String * 1
 Dim Data
 Dim i As Integer

 Set ImpRng = ActiveCell
 On Error Resume Next
 Filename = Application.DefaultFilePath & “\textfile.csv”
 Open Filename For Input As #1
 If Err <> 0 Then
 MsgBox “Not found: “ & Filename, vbCritical, “ERROR”
 Exit Sub
 End If
 r = 0
 c = 0
 txt = “”
 Application.ScreenUpdating = False
 Do Until EOF(1)
 Line Input #1, Data
 For i = 1 To Len(Data)
 Char = Mid(Data, i, 1)
 If Char = “,” Then ‘comma

Part VII: Other Topics858

 ActiveCell.Offset(r, c) = txt
 c = c + 1
 txt = “”
 ElseIf i = Len(Data) Then ‘end of line
 If Char <> Chr(34) Then txt = txt & Char
 ActiveCell.Offset(r, c) = txt
 txt = “”
 ElseIf Char <> Chr(34) Then
 txt = txt & Char
 End If
 Next i
 c = 0
 r = r + 1
 Loop
 Close #1
 Application.ScreenUpdating = True
End Sub

The preceding procedure works with most data, but it has a flaw: It doesn’t handle data
that contains a comma or a quote character. But commas resulting from formatting are
handled correctly. (They’re ignored.) In addition, an imported date will be surrounded
by number signs: for example, #2007-05-12#.

Logging Excel usage
The example in this section writes data to a text file every time Excel is opened and closed. In
order for this example to work reliably, the procedure must be located in a workbook that’s
opened every time you start Excel. Storing the macro in your Personal Macro Workbook is an
excellent choice.

The following procedure, stored in the code module for the ThisWorkbook object, is executed
when the file is opened:

Private Sub Workbook_Open()
 Open Application.DefaultFilePath & “\excelusage.txt” For Append As #1
 Print #1, “Started “ & Now
 Close #1
End Sub

The procedure appends a new line to a file named excelusage.txt. The new line contains the
current date and time and might look something like this:

Started 11/16/2010 9:27:43 PM

Chapter 27: Manipulating Files with VBA 859

The following procedure is executed before the workbook is closed. It appends a new line that
contains the word Stopped along with the current date and time.

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Open Application.DefaultFilePath & “\excelusage.txt” _
 For Append As #1
 Print #1, “Stopped “ & Now
 Close #1
End Sub

A workbook that contains these procedures is on the companion CD-ROM. The file is
named excel usage log.xlsm.

Refer to Chapter 19 for more information about event-handler procedures such as
Workbook_Open and Workbook_BeforeClose.

Filtering a text file
The example in this section demonstrates how to work with two text files at once. The
FilterFile procedure that follows reads a text file (infile.txt) and copies only the rows
that contain a specific text string (“January”) to a second text file (output.txt).

Sub FilterFile()
 Open ThisWorkbook.Path & “\infile.txt” For Input As #1
 Open Application.DefaultFilePath & “\output.txt” For Output As #2
 TextToFind = “January”
 Do Until EOF(1)
 Line Input #1, data
 If InStr(1, data, TextToFind) Then
 Print #2, data
 End If
 Loop
 Close ‘Close all files
End Sub

This example, named filter text file.xlsm, is available on the companion CD-ROM.

Exporting a range to HTML format
The example in this section demonstrates how to export a range of cells to an HTML file. An
HTML file, as you might know, is simply a text file that contains special formatting tags that
describe how the information will be presented in a Web browser.

Part VII: Other Topics860

Why not use Excel’s File➜Save As command and choose the Web Page file type? The procedure
listed here has a distinct advantage: It doesn’t produce bloated HTML code. For example, I used
the ExportToHTML procedure to export a range of 70 cells. The file size was 2.6KB. Then I used
Excel’s File➜Save as Web Page command to export the sheet. The result was 15.8KB — more
than six times larger.

But, on the other hand, the ExportToHTML procedure doesn’t maintain all the cell formatting. In fact,
the only formatting information that it produces is bold, italic, and horizontal alignment. However, the
procedure is good enough for many situations, and it serves as the basis for additional enhancements.

Sub ExportToHTML()
 Dim Filename As Variant
 Dim TDOpenTag As String, TDCloseTag As String
 Dim CellContents As String
 Dim Rng As Range
 Dim r As Long, c As Integer

‘ Use the selected range of cells
 Set Rng = Application.Intersect(ActiveSheet.UsedRange, Selection)
 If Rng Is Nothing Then
 MsgBox “Nothing to export.”, vbCritical
 Exit Sub
 End If
‘ Get a file name
 Filename = Application.GetSaveAsFilename(_
 InitialFileName:=”myrange.htm”, _
 fileFilter:=”HTML Files(*.htm), *.htm”)
 If Filename = False Then Exit Sub

‘ Open the text file
 Open Filename For Output As #1

‘ Write the tags
 Print #1, “<HTML>”
 Print #1, “<TABLE BORDER=0 CELLPADDING=3>”

‘ Loop through the cells
 For r = 1 To Rng.Rows.Count
 Print #1, “<TR>”
 For c = 1 To Rng.Columns.Count
 Select Case Rng.Cells(r, c).HorizontalAlignment
 Case xlHAlignLeft
 TDOpenTag = “<TD ALIGN=LEFT>”
 Case xlHAlignCenter
 TDOpenTag = “<TD ALIGN=CENTER>”
 Case xlHAlignGeneral
 If IsNumeric(Rng.Cells(r, c)) Then
 TDOpenTag = “<TD ALIGN=RIGHT>”
 Else
 TDOpenTag = “<TD ALIGN=LEFT>”

Chapter 27: Manipulating Files with VBA 861

 End If
 Case xlHAlignRight
 TDOpenTag = “<TD ALIGN=RIGHT>”
 End Select

 TDCloseTag = “</TD>”
 If Rng.Cells(r, c).Font.Bold Then
 TDOpenTag = TDOpenTag & “”
 TDCloseTag = “” & TDCloseTag
 End If
 If Rng.Cells(r, c).Font.Italic Then
 TDOpenTag = TDOpenTag & “<I>”
 TDCloseTag = “</I>” & TDCloseTag
 End If
 CellContents = Rng.Cells(r, c).Text
 Print #1, TDOpenTag & CellContents & TDCloseTag
 Next c
 Print #1, “</TR>”
 Next r
‘ Close the table
 Print #1, “</TABLE>”
 Print #1, “</HTML>”
‘ Close the file
 Close #1

‘ Tell the user
 MsgBox Rng.Count & “ cells were exported to “ & Filename
End Sub

The procedure starts by determining the range to export. This is based on the intersection of the
selected range and the used area of the worksheet. This ensures that entire rows or columns
aren’t processed. Next, the user is prompted for a filename, and the text file is opened. The bulk
of the work is done within two For-Next loops. The code generates the appropriate HTML tags
and writes the information to the text file. The only complicated part is determining the cell’s
horizontal alignment. (Excel doesn’t report this information directly.) Finally, the file is closed,
and the user sees a summary message.

Figure 27-6 shows a range in a worksheet, and Figure 27-7 shows how it looks in a Web browser
after being converted to HTML.

This example, named export to HTML.xlsm, is available on the companion CD-ROM.

Part VII: Other Topics862

Figure 27-6: A worksheet range, ready to be converted to HTML.

Figure 27-7: The worksheet data after being converted to HTML.

Chapter 27: Manipulating Files with VBA 863

Exporting a range to an XML file
This example exports an Excel range to a simple XML data file. As you might know, an XML file
uses tags to wrap each data item. The procedure in this section uses the labels in the first row as
the XML tags. Figure 27-8 shows the range in a worksheet table, and Figure 27-9 shows the XML
file displayed in a Web browser.

Figure 27-8: The data in this range will be converted to XML.

Figure 27-9: The worksheet data after being converted to XML.

Part VII: Other Topics864

Although Excel 2003 introduced improved support for XML files, even Excel 2010 can’t
create an XML file from an arbitrary range of data unless you have a map file (schema)
for the data.

The ExportToXML procedure follows. You’ll notice that it has a quite a bit in common with the
ExportToHTML procedure in the previous section.

Sub ExportToXML()

 Dim Filename As Variant

 Dim Rng As Range

 Dim r As Long, c As Long

‘ Set the range

 Set Rng = Range(“Table1[#All]”)

‘ Get a file name

 Filename = Application.GetSaveAsFilename(_

 InitialFileName:=”myrange.xml”, _

 fileFilter:=”XML Files(*.xml), *.xml”)

 If Filename = False Then Exit Sub

‘ Open the text file

 Open Filename For Output As #1

‘ Write the <xml> tags

 Print #1, “<?xml version=””1.0”” encoding=””UTF-8”” standalone=””yes””?>”

 Print #1, “<EmployeeList xmlns:xsi=””http://www.w3.org/2001/XMLSchema-

instance””>”

‘ Loop through the cells

 For r = 2 To Rng.Rows.Count

 Print #1, “<Employee>”

 For c = 1 To Rng.Columns.Count

 Print #1, “<” & Rng.Cells(1, c) & “>”;

 If IsDate(Rng.Cells(r, c)) Then

 Print #1, Format(Rng.Cells(r, c), “yyyy-mm-dd”);

 Else

 Print #1, Rng.Cells(r, c).Text;

 End If

 Print #1, “</” & Rng.Cells(1, c) & “>”

 Next c

 Print #1, “</Employee>”

 Next r

‘ Close the table

 Print #1, “</EmployeeList>”

‘ Close the file

 Close #1

‘ Tell the user

 MsgBox Rng.Rows.Count - 1 & “ records were exported to “ & Filename

End Sub

Chapter 27: Manipulating Files with VBA 865

This example, named export to XML.xlsm, is available on the companion CD-ROM.

You can open the exported XML file with Excel. When opening an XML file, you’ll see the dialog
box shown in Figure 27-10. If you choose the As an XML Table option, the file will be displayed as
a table. Keep in mind that any formulas in the original table aren’t preserved.

Figure 27-10: When opening an XML file, Excel offers three options.

Zipping and Unzipping Files
Perhaps the most commonly used type of file compression is the Zip format. Even Excel 2010
files are stored in the Zip format (although they don’t use the .zip extension). A Zip file can
contain any number of files, and even complete directory structures. The content of the files
determines the degree of compression. For example, JPG image files and MP3 audio files are
already compressed, so zipping these file types will have little effect on the file size.

The examples in this section are available on the companion CD-ROM. The files are
named ‘zip files.xlsm’ and ‘unzip a file.xlsm’.

Zipping files
The example in this section demonstrates how to create a Zip file from a group of user-selected
files. The ZipFiles procedure displays a dialog box so that the user can select the files. It then
creates a Zip file named compressed.zip in Excel’s default directory.

Sub ZipFiles()
 Dim ShellApp As Object
 Dim FileNameZip As Variant
 Dim FileNames As Variant
 Dim i As Long, FileCount As Long
‘ Get the file names
 FileNames = Application.GetOpenFilename _
 (FileFilter:=”All Files (*.*),*.*”, _
 FilterIndex:=1, _
 Title:=”Select the files to ZIP”, _
 MultiSelect:=True)

Part VII: Other Topics866

‘ Exit if dialog box canceled
 If Not IsArray(FileNames) Then Exit Sub

 FileCount = UBound(FileNames)
 FileNameZip = Application.DefaultFilePath & “\compressed.zip”

 ‘Create empty Zip File with zip header
 Open FileNameZip For Output As #1
 Print #1, Chr$(80) & Chr$(75) & Chr$(5) & Chr$(6) & String(18, 0)
 Close #1

 Set ShellApp = CreateObject(“Shell.Application”)
 ‘Copy the files to the compressed folder
 For i = LBound(FileNames) To UBound(FileNames)
 ShellApp.Namespace(FileNameZip).CopyHere FileNames(i)
 ‘Keep script waiting until Compressing is done
 On Error Resume Next
 Do Until ShellApp.Namespace(FileNameZip).items.Count = i
 Application.Wait (Now + TimeValue(“0:00:01”))
 Loop
 Next i

 If MsgBox(FileCount & “ files were zipped to:” & _
 vbNewLine & FileNameZip & vbNewLine & vbNewLine & _
 “View the zip file?”, vbQuestion + vbYesNo) = vbYes Then _
 Shell “Explorer.exe /e,” & FileNameZip, vbNormalFocus
End Sub

Figure 27-11 shows the file selection dialog box generated by using the GetOpenFilename
method of the Application object (see Chapter 12 for more information). This dialog box
allows the user to select multiple files from a single directory.

The ZipFiles procedure creates a file named compressed.zip and writes a string of charac-
ters, which identify it as a Zip file. Next, a Shell.Application object is created, and the code
uses its CopyHere method to copy the files into the Zip archive. The next section of the code is
a Do Until loop, which checks the number of files in the Zip archive every second. This is nec-
essary because copying the files could take some time, and, if the procedure ends before the files
are copied, the Zip file will be incomplete (and probably corrupt). This loop slows the procedure
considerably, but I haven’t been able to figure out an alternative.

When the number of files in the Zip archive matches the number that should be there, the loop
ends, and the user is presented with a message like the one shown in Figure 27-12. Clicking the
Yes button opens a Windows Explorer window that shows the zipped files.

The ZipFiles procedure presented here was kept simple to make it easy to under-
stand. The code does no error checking and is not very flexible. For example, there is no
option to choose the Zip filename or location, and the current compressed.zip file is
always overwritten without warning. It’s certainly no replacement for the zipping tools
built into Windows, but it’s an interesting demonstration of what you can do with VBA.

Chapter 27: Manipulating Files with VBA 867

Figure 27-11: This dialog box lets the user select the files to be zipped.

Figure 27-12: The user is informed when the Zip file is complete.

Unzipping a File
The example in this section performs the opposite function of the previous example. It asks the
user for a ZIP filename and then unzips the files and puts them in a directory named Unzipped,
located in Excel’s default file directory.

Part VII: Other Topics868

Sub UnzipAFile()
 Dim ShellApp As Object
 Dim TargetFile
 Dim ZipFolder
‘ Target file & temp dir
 TargetFile = Application.GetOpenFilename _
 (FileFilter:=”Zip Files (*.zip), *.zip”)
 If TargetFile = False Then Exit Sub

 ZipFolder = Application.DefaultFilePath & “\Unzipped\”
‘ Create a temp folder
 On Error Resume Next
 RmDir ZipFolder
 MkDir ZipFolder
 On Error GoTo 0
‘ Copy the zipped files to the newly created folder
 Set ShellApp = CreateObject(“Shell.Application”)
 ShellApp.Namespace(ZipFolder).CopyHere _
 ShellApp.Namespace(TargetFile).items
 If MsgBox(“The files was unzipped to:” & _
 vbNewLine & ZipFolder & vbNewLine & vbNewLine & _
 “View the folder?”, vbQuestion + vbYesNo) = vbYes Then _
 Shell “Explorer.exe /e,” & ZipFolder, vbNormalFocus
End Sub

The UnzipAFile procedure uses the GetOpenFilename method to get the Zip file. It then
creates the new folder and uses the Shell.Application object to copy the contents of the
Zip file to the new folder. Finally, the user can choose to display the new directory.

Working with ADO
ADO (ActiveX Data Objects) is an object model that enables you to access data stored in a vari-
ety of formats (including common database formats and even text files). Importantly, this meth-
odology allows you to use a single object model for all your data sources. ADO is currently the
preferred data access methodology and shouldn’t be confused with DAO (Data Access Objects).

This section presents a simple example that uses ADO to retrieve data from an Access database.

ADO programming is a very complex topic. If you need to access external data in your
Excel application, you’ll probably want to invest in one or more books that cover this
topic in detail.

The ADO_Demo example retrieves data from an Access database named budget data.accdb.
This database contains one table (named Budget). This example retrieves the data in which the
Item field contains the text Lease, the Division field contains the text N. America, and the
Year field contains 2008. The qualifying data is stored in a Recordset object, and the data is
then transferred to a worksheet (see Figure 27-13).

Chapter 27: Manipulating Files with VBA 869

Figure 27-13: This data was retrieved from an Access database.

Sub ADO_Demo()
‘ This demo requires a reference to
‘ the Microsoft ActiveX Data Objects 2.x Library

 Dim DBFullName As String
 Dim Cnct As String, Src As String
 Dim Connection As ADODB.Connection
 Dim Recordset As ADODB.Recordset
 Dim Col As Integer
 Cells.Clear
‘ Database information
 DBFullName = ThisWorkbook.Path & “\budget data.accdb”

‘ Open the connection
 Set Connection = New ADODB.Connection
 Cnct = “Provider=Microsoft.ACE.OLEDB.12.0;”
 Cnct = Cnct & “Data Source=” & DBFullName & “;”
 Connection.Open ConnectionString:=Cnct

‘ Create RecordSet
 Set Recordset = New ADODB.Recordset
 With Recordset
‘ Filter

Part VII: Other Topics870

 Src = “SELECT * FROM Budget WHERE Item = ‘Lease’ “
 Src = Src & “and Division = ‘N. America’ “
 Src = Src & “and Year = ‘2008’”
 .Open Source:=Src, ActiveConnection:=Connection
‘ Write the field names
 For Col = 0 To Recordset.Fields.Count - 1
 Range(“A1”).Offset(0, Col).Value = _
 Recordset.Fields(Col).Name
 Next
‘ Write the recordset
 Range(“A1”).Offset(1, 0).CopyFromRecordset Recordset
 End With
 Set Recordset = Nothing
 Connection.Close
 Set Connection = Nothing
End Sub

This example (named simple ado example.xlsm), along with the Access database
file (named budget data.accdb), is available on the companion CD-ROM. In addition,
the CD-ROM contains an example of using ADO to query a CSV text file. The file named
simple ado example2.xlsm uses a large CSV files named music_list.csv.

871

28
Manipulating Visual Basic
Components
In This Chapter

● Getting an overview of the VBA Integrated Development Environment (IDE) and its
object model

● Using VBA to add and remove modules from a project

● Writing VBA code that creates more VBA code

● Using VBA to help create UserForms

● Creating a UserForm on the fly

Introducing the IDE
This chapter covers a topic that some readers might find extremely useful: writing Visual Basic
for Applications (VBA) code that manipulates components in a VBA project. The VBA IDE con-
tains an object model that exposes key elements of your VBA projects, including the Visual Basic
Editor (VBE) itself. This object model enables you to write VBA code that adds or removes mod-
ules, generates other VBA code, or even creates UserForms on the fly.

The IDE is essentially an Object Linking and Embedding (OLE) automation interface for the Visual
Basic Editor. After you establish a reference to the object, you have access to all the VBE’s objects,
properties, and methods, and you can also declare objects from the IDE’s member classes.

Use the VBE’s Tools➜References command to display the References dialog box, where you can
add a reference to the Microsoft Visual Basic for Applications Extensibility Library (see Figure
28-1). This gives you access to an object called VBIDE. Creating a reference to VBIDE enables
you to declare object variables contained in the VBIDE and also gives you access to a number of
predefined constants that relate to the IDE. Actually, you can access the objects in the IDE with-
out creating a reference, but you won’t be able to use the constants in your code, nor will you be
able to declare specific objects that refer to IDE components.

Part VII: Other Topics872

Figure 28-1: Adding a reference to the Microsoft Visual Basic for Applications Extensibility Library.

Refer to Chapter 20 for background information about OLE automation.

After you understand how the IDE object model works, you can write code to perform a variety
of operations, including the following:

 Adding and removing VBA modules

 Inserting VBA code

 Creating UserForms

 Adding controls to a UserForm

An important security note
If you’re using Excel to develop applications for others to use, be aware that the procedures in this
chapter may not work. Because of the threat of macro viruses, Microsoft (beginning with Excel
2002) made it much more difficult for a VBA macro to modify components in a VBA project. If you
attempt to execute any of the procedures in this chapter, you may see an error message.

Whether you see this error message depends on a setting in Excel’s Trust Center dialog box. To
view or change this setting:

 1. Choose File➜Options.

 2. In the Excel options dialog box, click the Trust Center tab.

 3. In the Trust Center Tab, click the Trust Center Settings button.

 4. In the Trust Center dialog box, click the Macro Settings tab.

Chapter 28: Manipulating Visual Basic Components 873

The IDE Object Model
Programming the IDE requires an understanding of its object model. The top object in the object
hierarchy is the VBE (Visual Basic Environment). As with Excel’s object model, the VBE contains
other objects. A simplified version of the IDE object hierarchy is as follows:

Or, you can use the Developer➜Code➜Macro Security command to go directly to this
 dialog box.

You’ll find a check box labeled Trust Access to the VBA Project Object Model.

This setting is turned off by default. Even if the user chooses to trust the macros contained in the
workbook, the macros can’t modify the VBA project if this setting is turned off. Note that this
setting applies to all workbooks and can’t be changed for only a particular workbook.

You can’t directly determine the value of this particular setting by using VBA. The only way to
detect this setting is to attempt to access the VBProject object and then check for an error.
The following code demonstrates:

On Error Resume Next
Set x = ActiveWorkbook.VBProject
If Err <> 0 Then
 MsgBox “Your security settings do not allow this macro to run.”
 Exit Sub
End If

Not all the examples in this chapter are intended to be used by end users. Many of them are
designed to help developers create projects. For these projects, you’ll need to enable the Trust
Access to Visual Basic Project setting.

Part VII: Other Topics874

VBE
 VBProject
 VBComponent
 CodeModule
 Designer
 Property
 Reference
 Window
 CommandBar

This chapter ignores the Extensibility Library’s Windows collection and CommandBars
collection, which aren’t all that useful for Excel developers. Rather, the chapter focuses
on the VBProject object, which can be very useful for developers — but make sure
that you read the “An important security note” sidebar.

The VBProjects collection
Every open workbook or add-in is represented by a VBProject object. To access the
VBProject object for a workbook using early binding, make sure that you’ve established a ref-
erence to the Microsoft Visual Basic for Applications Extensibility Library (see “Introducing the
IDE,” earlier in this chapter).

The VBProject property of the Workbook object returns a VBProject object. The following
instructions, for example, create an object variable that represents the VBProject object for the
active workbook:

Dim VBP As VBProject
Set VBP = ActiveWorkbook.VBProject

If you get an error message when VBA encounters the Dim statement, make sure that
you’ve added a reference to Microsoft Visual Basic for Applications Extensibility
Library.

Each VBProject object contains a collection of the VBA component objects in the project
(UserForms, modules, class modules, and document modules). Not surprisingly, this collection is
called VBComponents. A VBProject object also contains a References collection for the
project, representing the libraries being referenced currently by the project.

You can’t add a new member to the VBProjects collection directly. Rather, you do so indirectly
by opening or creating a new workbook in Excel. Doing so automatically adds a new member to
the VBProjects collection. Similarly, you can’t remove a VBProject object directly; closing a
workbook removes the VBProject object from the collection.

Chapter 28: Manipulating Visual Basic Components 875

The VBComponents collection
To access a member of the VBComponents collection, use the VBComponents property with an
index number or name as its argument. The following instructions demonstrate the two ways to
access a VBA component and create an object variable:

Set VBC = ThisWorkbook.VBProject.VBComponents(1)
Set VBC = ThisWorkbook.VBProject.VBComponents(“Module1”)

The References collection
Every VBA project in Excel contains a number of references. You can view, add, or delete the ref-
erences for a project by choosing the Tools➜References command. (Refer to Figure 28-1 to see
the References dialog box.) Every project contains some references (such as VBA itself, Excel,
OLE Automation, and the Office object library), and you can add more references to a project as
needed.

You can also manipulate the references for a project by using VBA. The References collection
contains Reference objects, and these objects have properties and methods. The following
procedure, for example, displays a message box that lists the Name, Description, and
FullPath property for each Reference object in the active workbook’s project:

Sub ListReferences()
 Dim Ref As Reference
 Msg = “”
 For Each Ref In ActiveWorkbook.VBProject.References
 Msg = Msg & Ref.Name & vbNewLine
 Msg = Msg & Ref.Description & vbNewLine
 Msg = Msg & Ref.FullPath & vbNewLine & vbNewLine
 Next Ref
 MsgBox Msg
End Sub

Figure 28-2 shows the result of running this procedure when a workbook that contains six refer-
ences is active.

Because it declares an object variable of type Reference, the ListReferences pro-
cedure requires a reference to the VBA Extensibility Library. If you declare Ref as a
generic Object, the VBA Extensibility Library reference is not needed.

You can also add a reference programmatically by using either of two methods of the
Reference class. The AddFromFile method adds a reference if you know its filename and
path. AddFromGuid adds a reference if you know the reference’s globally unique identifier, or
GUID. Refer to the Help system for more information.

Part VII: Other Topics876

Figure 28-2: This message box displays information about the references for a project.

Displaying All Components in a VBA Project
The ShowComponents procedure, which follows, loops through each VBA component in the
active workbook and writes the following information to a worksheet:

 The component’s name

 The component’s type

 The number of lines of code in the code module for the component

Sub ShowComponents()
 Dim VBP As VBIDE.VBProject
 Dim VBC As VBComponent
 Dim row As Long

 Set VBP = ActiveWorkbook.VBProject
‘ Write headers
 Cells.ClearContents
 Range(“A1:C1”) = Array(“Name”, “Type”, “Code Lines”)
 Range(“A1:C1”).Font.Bold = True
 row = 1
‘ Loop through the VB Components
 For Each VBC In VBP.VBComponents
 row = row + 1

Chapter 28: Manipulating Visual Basic Components 877

‘ Name
 Cells(row, 1) = VBC.Name
‘ Type
 Select Case VBC.Type
 Case vbext_ct_StdModule
 Cells(row, 2) = “Module”
 Case vbext_ct_ClassModule
 Cells(row, 2) = “Class Module”
 Case vbext_ct_MSForm
 Cells(row, 2) = “UserForm”
 Case vbext_ct_Document
 Cells(row, 2) = “Document Module”
 End Select
‘ Lines of code
 Cells(row, 3) = VBC.CodeModule.CountOfLines
 Next VBC
End Sub

Notice that I used built-in constants (for example, vbext_ct_StdModule) to determine the
component type. These constants aren’t defined unless you’ve established a reference to the
Microsoft Visual Basic for Applications Extensibility Library.

Figure 28-3 shows the result of running the ShowComponents procedure. In this case, the VBA
project contained six components, and only one of them had an empty code module.

This code is available on the CD-ROM in a workbook named list VB components.
xlsm. The workbook includes an enhancement that lets you choose from all open VB
projects.

Figure 28-3: The result of executing the ShowComponents procedure.

Listing All VBA Procedures in a Workbook
The ListProcedures macro in this section creates a list (in a message box) of all VBA proce-
dures in the active workbook.

Part VII: Other Topics878

Sub ListProcedures()
 Dim VBP As VBIDE.VBProject
 Dim VBC As VBComponent
 Dim CM As CodeModule
 Dim StartLine As Long
 Dim Msg As String
 Dim ProcName As String

‘ Use the active workbook
 Set VBP = ActiveWorkbook.VBProject

‘ Loop through the VB components
 For Each VBC In VBP.VBComponents
 Set CM = VBC.CodeModule
 Msg = Msg & vbNewLine
 StartLine = CM.CountOfDeclarationLines + 1
 Do Until StartLine >= CM.CountOfLines
 Msg = Msg & VBC.Name & “: “ & _
 CM.ProcOfLine(StartLine, vbext_pk_Proc) & vbNewLine
 StartLine = StartLine + CM.ProcCountLines _
 (CM.ProcOfLine(StartLine, vbext_pk_Proc), _
 vbext_pk_Proc)
 Loop
 Next VBC
 MsgBox Msg
End Sub

Figure 28-4 shows the result for a workbook that has nine procedures.

Figure 28-4: The message box lists all procedures in the active workbook.

This example, named list all procedures.xlsm, is available on the companion
CD-ROM.

Chapter 28: Manipulating Visual Basic Components 879

Replacing a Module with an Updated Version
The example in this section demonstrates how to replace a VBA module with a different VBA
module. Besides demonstrating three VBComponent methods (Export, Remove, and Import),
the procedure also has a practical use. For example, you might distribute a workbook to a group
of users and then later discover that a macro contains an error or needs to be updated. Because
the users could have added data to the workbook, replacing the entire workbook isn’t practical.
The solution, then, is to distribute another workbook that contains a macro that replaces the VBA
module with an updated version stored in a file.

This example consists of two workbooks:

 UserBook.xlsm: Contains a module (Module1) that needs to be replaced.

 UpdateUserBook.xlsm: Contains VBA procedures to replace Module1 in
UserBook.xlsm with a later version of Module1 (which is stored in
UpdateUserBook.xlsm).

The BeginUpdate procedure follows. This macro is contained in the UpdateUserBook.xlsm
workbook, which would be distributed to users of UserBook.xlsm. This procedure ensures that
UserBook.xlsm is open. It then informs the user of what is about to happen with the message
shown in Figure 28-5.

Figure 28-5: This message box informs the user that a module will be replaced.

Sub BeginUpdate()
 Dim Filename As String
 Dim Msg As String
 Filename = “UserBook.xlsm”

‘ Activate workbook
 On Error Resume Next
 Workbooks(Filename).Activate
 If Err <> 0 Then
 MsgBox Filename & “ must be open.”, vbCritical
 Exit Sub
 End If
 Msg = “This macro will replace Module1 in UserBook.xlsm “
 Msg = Msg & “with an updated Module.” & vbCrLf & vbCrLf

Part VII: Other Topics880

 Msg = Msg & “Click OK to continue.”
 If MsgBox(Msg, vbInformation + vbOKCancel) = vbOK Then
 Call ReplaceModule
 Else
 MsgBox “Module not replaced,”, vbCritical
 End If
End Sub

When the user clicks OK to confirm the replacement, the ReplaceModule procedure is called.
This procedure replaces Module1 in the UserBook.xlsm with the copy of Module1 in the
UpdateUserBook.xlsm file:

Sub ReplaceModule()
 Dim ModuleFile As String
 Dim VBP As VBIDE.VBProject
‘ Export Module1 from this workbook
 ModuleFile = Application.DefaultFilePath & “\tempmodxxx.bas”
 ThisWorkbook.VBProject.VBComponents(“Module1”) _
 .Export ModuleFile

‘ Replace Module1 in UserBook
 Set VBP = Workbooks(“UserBook.xlsm”).VBProject
 On Error GoTo ErrHandle
 With VBP.VBComponents
 .Remove VBP.VBComponents(“Module1”)
 .Import ModuleFile
 End With

‘ Delete the temporary module file
 Kill ModuleFile
 MsgBox “The module has been replaced.”, vbInformation
 Exit Sub
ErrHandle:
‘ Did an error occur?
 MsgBox “ERROR. The module may not have been replaced.”, _
 vbCritical
End Sub

This procedure performs the following actions:

 1. It exports Module1 (the updated module) to a file.

 The file has an unusual name to reduce the likelihood of overwriting an existing file.

 2. It removes Module1 (the old module) from UserBook.xlsm, using the Remove
method of the VBComponents collection.

 3. It imports the module (saved in Step 1) to UserBook.xlsm.

Chapter 28: Manipulating Visual Basic Components 881

 4. It deletes the file saved in Step 1.

 5. It reports the action to the user.

 General error handling is used to inform the user that an error occurred.

This example is available on the companion CD-ROM. It requires two workbooks:
UserBook.xlsm and UpdateUserBook.xlsm.

Using VBA to Write VBA Code
The example in this section demonstrates how you can write VBA code that writes more VBA
code. The AddButtonAndCode procedure does the following:

 1. Inserts a new worksheet.

 2. Adds an ActiveX CommandButton control to the worksheet.

 3. Adjusts the position, size, and caption of the CommandButton.

 4. Inserts an event-handler procedure for the CommandButton named CommandButton1_
Click in the sheet’s code module.

 This procedure simply activates Sheet1.

The AddButtonAndCode procedure follows.

Sub AddButtonAndCode()
 Dim NewSheet As Worksheet
 Dim NewButton As OLEObject

‘ Add the sheet
 Set NewSheet = Sheets.Add

‘ Add a CommandButton
 Set NewButton = NewSheet.OLEObjects.Add _
 (“Forms.CommandButton.1”)
 With NewButton
 .Left = 4
 .Top = 4
 .Width = 100
 .Height = 24
 .Object.Caption = “Return to Sheet1”
 End With

‘ Add the event handler code
 Code = “Sub CommandButton1_Click()” & vbCrLf

Part VII: Other Topics882

 Code = Code & “ On Error Resume Next” & vbCrLf
 Code = Code & “ Sheets(“”Sheet1””).Activate” & vbCrLf
 Code = Code & “ If Err <> 0 Then” & vbCrLf
 Code = Code & “ MsgBox “”Cannot activate Sheet1.””” _
 & vbCrLf
 Code = Code & “ End If” & vbCrLf
 Code = Code & “End Sub”

 With ActiveWorkbook.VBProject. _
 VBComponents(NewSheet.Name).CodeModule
 NextLine = .CountOfLines + 1
 .InsertLines NextLine, Code
 End With
End Sub

Figure 28-6 shows the worksheet and the CommandButton control that were added by the
AddButtonAndCode procedure.

This example is available on the companion CD-ROM. The filename is add button and
code.xlsm.

Figure 28-6: This sheet, the CommandButton, and its event handler were added by using VBA.

The tricky part of this procedure is inserting the VBA code into the code module for the new
worksheet. The code is stored in a variable named Code, with each instruction separated by a
carriage return and linefeed sequence. The InsertLines method adds the code to the code
module for the inserted worksheet.

The NextLine variable stores the number of existing lines in the module incremented by one.
This ensures that the procedure is added to the end of the module. If you simply insert the code
beginning at line 1, it causes an error if the user’s system is set up to add an Option Explicit
statement to each module automatically.

Figure 28-7 shows the procedure that is created by the AddButtonAndCode procedure in its
new home in the code window.

Chapter 28: Manipulating Visual Basic Components 883

Figure 28-7: VBA generated this event-handler procedure.

Adding Controls to a UserForm at Design Time
If you’ve spent any time developing UserForms, you probably know that it can be quite tedious
to add and adjust the controls so that they’re aligned and sized consistently. Even if you take full
advantage of the VBE formatting commands, it can still take a considerable amount of time to
get the controls to look just right.

The UserForm shown in Figure 28-8 contains 100 CommandButtons, all of which are identical in
size and positioned precisely on the form. Furthermore, each CommandButton has its own event-
handler procedure. Adding these buttons manually and creating their event handlers would take
some time — lots of time. Adding them automatically at design time by using a VBA procedure
takes less than a second.

Figure 28-8: A VBA procedure added the CommandButtons on this UserForm.

Part VII: Other Topics884

Design-time versus runtime UserForm manipulations
It’s important to understand the distinction between manipulating UserForms or controls at design
time and manipulating these objects at runtime. Runtime manipulations are apparent when the
UserForm is shown, but the changes made aren’t permanent. For example, you might write code
that changes the Caption property of the UserForm before the form is displayed. The new cap-
tion appears when the UserForm is shown, but when you return to the VBE, the UserForm displays
its original caption. Runtime manipulation is very common, and Part IV of this book contains many
examples of code that perform runtime manipulation of UserForms and controls.

Design-time manipulations, on the other hand, are permanent — just as if you made the changes
manually by using the tools in the VBE. Normally, you perform design-time manipulations as a
way to automate some of the tedious chores in designing a UserForm. to make design-time
manipulations, you access the Designer object for the UserForm.

To demonstrate the difference between design-time and runtime manipulations, I developed two
simple procedures that add a CommandButton to a UserForm. One procedure adds the button at
runtime; the other adds it at design time.

The following RunTimeButton procedure is very straightforward. When used in a general
(non-UserForm) module, it adds a CommandButton to the UserForm, changes a few of the
CommandButton’s properties, and then displays the UserForm. The CommandButton appears on
the form when the form is shown, but when you view the form in the VBE, the CommandButton
isn’t there.

Sub RunTimeButton()
‘ Adds a button at runtime
 Dim Butn As CommandButton
 Set Butn = UserForm1.Controls.Add(“Forms.CommandButton.1”)
 With Butn
 .Caption = “Added at runtime”
 .Width = 100
 .Top = 10
 End With
 UserForm1.Show
End Sub

Following is the DesignTimeButton procedure. Unlike the previous example, this procedure
uses the Designer object, which is contained in the VBComponent object. Specifically, it uses
the Add method to add the CommandButton control. Because the Designer object was used,
the CommandButton is added to the UserForm just as if you did it manually in the VBE.

Sub DesignTimeButton()
‘ Adds a button at design time
 Dim Butn As CommandButton
 Set Butn = ThisWorkbook.VBProject. _
 VBComponents(“UserForm1”) _

Chapter 28: Manipulating Visual Basic Components 885

 .Designer.Controls.Add(“Forms.CommandButton.1”)
 With Butn
 .Caption = “Added at design time”
 .Width = 120
 .Top = 40
 End With
End Sub

Adding 100 CommandButtons at design time
The example in this section demonstrates how to take advantage of the Designer object to
help you design a UserForm. In this case, the code adds 100 CommandButtons (perfectly spaced
and aligned), sets the Caption property for each CommandButton, and also creates 100 event-
handler procedures (one for each CommandButton).

Sub Add100Buttons()
 Dim UFvbc As VBComponent
 Dim CMod As CodeModule
 Dim ctl As Control
 Dim cb As CommandButton
 Dim n As Long, c As Long, r As Long
 Dim code As String

 Set UFvbc = ThisWorkbook.VBProject.VBComponents(“UserForm1”)
‘ Delete all controls, if any
 For Each ctl In UFvbc.Designer.Controls
 UFvbc.Designer.Controls.Remove ctl.Name
 Next ctl
‘ Delete all VBA code
 UFvbc.CodeModule.DeleteLines 1, UFvbc.CodeModule.CountOfLines
‘ Add 100 CommandButtons
 n = 1
 For r = 1 To 10
 For c = 1 To 10
 Set cb = UFvbc.Designer. _
 Controls.Add(“Forms.CommandButton.1”)
 With cb
 .Width = 22
 .Height = 22
 .Left = (c * 26) - 16
 .Top = (r * 26) - 16
 .Caption = n
 End With
‘ Add the event handler code
 With UFvbc.CodeModule
 code = “”
 code = code & “Private Sub CommandButton” & n & _

Part VII: Other Topics886

 “_Click” & vbCr
 code = code & “Msgbox “”This is CommandButton” & n & _
 “””” & vbCr
 code = code & “End Sub”
 .InsertLines .CountOfLines + 1, code
 End With
 n = n + 1
 Next c
 Next r
End Sub

This example is available on the companion CD-ROM. The file is named add 100
buttons.xlsm.

The Add100Buttons procedure requires a UserForm named UserForm1. You’ll need to make
the UserForm a bit larger than its default size so that the buttons will fit. The procedure starts by
deleting all controls on the form by using the Remove method of the Controls collection and
then deleting all the code in the code module by using the DeleteLines method of the
CodeModule object. Next, the CommandButtons are added, and the event-handler procedures
are created within two For-Next loops. These event handlers are very simple. Here’s an exam-
ple of such a procedure for CommandButton1:

Private Sub CommandButton1_Click()
 MsgBox “This is CommandButton1”
End Sub

If you’d like to show the form after adding the controls at design time, you need to add the fol-
lowing instruction right before the End Sub statement:

 VBA.UserForms.Add(“UserForm1”).Show

It took me quite a while to figure out how to actually display the UserForm. When VBA generates
the 100-button UserForm, it indeed exists in VBA’s memory, but it isn’t officially part of the proj-
ect yet. So you need the Add method to formally enroll UserForm1 into the collection of user-
Forms. The return value of this method is a reference to the form itself, which is why the Show
method can be appended to the end of the Add method. So, as a rule, the UserForm must be
added to the UserForms collection before it can be used.

Creating UserForms Programmatically
The final topic in this chapter demonstrates how to use VBA code to create UserForms at run-
time. I present two examples. One is relatively simple, and the other is quite a bit more complex.

Chapter 28: Manipulating Visual Basic Components 887

A simple runtime UserForm example
The example in this section isn’t all that useful — in fact, it’s completely useless. But it does dem-
onstrate some useful concepts. The MakeForm procedure performs several tasks:

 1. It creates a temporary UserForm in the active workbook by using the Add method of the
VBComponents collection.

 2. It adds a CommandButton control to the UserForm by using the Designer object.

 3. It adds an event-handler procedure to the UserForm’s code module (CommandButton1_
Click).

 This procedure, when executed, simply displays a message box and then unloads the
form.

 4. It displays the UserForm.

 5. It deletes the UserForm.

The net result is a UserForm that’s created on the fly, put to use, and then deleted. This example
and the one in the next section both blur the distinction between modifying forms at design time
and modifying forms at runtime. The form is created by using design-time techniques, but it all
happens at runtime.

The following shows the MakeForm procedure:

Sub MakeForm()
 Dim TempForm As Object
 Dim NewButton As Msforms.CommandButton
 Dim Line As Integer
 Application.VBE.MainWindow.Visible = False
‘ Create the UserForm
 Set TempForm = ThisWorkbook.VBProject. _
 VBComponents.Add(3) ‘vbext_ct_MSForm
 With TempForm
 .Properties(“Caption”) = “Temporary Form”
 .Properties(“Width”) = 200
 .Properties(“Height”) = 100
 End With
‘ Add a CommandButton
 Set NewButton = TempForm.Designer.Controls _
 .Add(“Forms.CommandButton.1”)
 With NewButton
 .Caption = “Click Me”
 .Left = 60
 .Top = 40
 End With
‘ Add an event-hander sub for the CommandButton
 With TempForm.CodeModule

Part VII: Other Topics888

 Line = .CountOfLines
 .InsertLines Line + 1, “Sub CommandButton1_Click()”
 .InsertLines Line + 2, “ MsgBox “”Hello!”””
 .InsertLines Line + 3, “ Unload Me”
 .InsertLines Line + 4, “End Sub”
 End With
‘ Show the form
 VBA.UserForms.Add(TempForm.Name).Show
‘
‘ Delete the form
 ThisWorkbook.VBProject.VBComponents.Remove TempForm
End Sub

This example, named create userform on the fly.xlsm, is available on the com-
panion CD-ROM.

The MakeForm procedure creates and shows the simple UserForm shown in Figure 28-9.

Figure 28-9: This UserForm and its underlying code were generated on the fly.

The workbook that contains the MakeForm procedure doesn’t need a reference to the
VBA Extensibility Library because it declares TempForm as a generic Object (not spe-
cifically as a VBComponent object). Moreover, it doesn’t use any built-in constants.

Notice that one of the first instructions hides the VBE window by setting its Visible property
to False. This eliminates the on-screen flashing that might occur while the form and code are
being generated.

A useful (but not so simple) dynamic UserForm example
The example in this section is both instructive and useful. It consists of a function named
GetOption that displays a UserForm. Within this UserForm are a number of OptionButtons
whose captions are specified as arguments to the function. The function returns a value that cor-
responds to the OptionButton selected by the user.

The example in this section is available on the companion CD-ROM. The filename is
‘getoption function.xlsm’.

Chapter 28: Manipulating Visual Basic Components 889

The GetOption function procedure follows.

Function GetOption(OpArray, Default, Title)
 Dim TempForm As Object
 Dim NewOptionButton As Msforms.OptionButton
 Dim NewCommandButton1 As Msforms.CommandButton
 Dim NewCommandButton2 As Msforms.CommandButton
 Dim i As Integer, TopPos As Integer
 Dim MaxWidth As Long
 Dim Code As String

‘ Hide VBE window to prevent screen flashing
 Application.VBE.MainWindow.Visible = False
‘ Create the UserForm
 Set TempForm = _
 ThisWorkbook.VBProject.VBComponents.Add(3)
 TempForm.Properties(“Width”) = 800

‘ Add the OptionButtons
 TopPos = 4
 MaxWidth = 0 ‘Stores width of widest OptionButton
 For i = LBound(OpArray) To UBound(OpArray)
 Set NewOptionButton = TempForm.Designer.Controls. _
 Add(“Forms.OptionButton.1”)
 With NewOptionButton
 .Width = 800
 .Caption = OpArray(i)
 .Height = 15
 .Accelerator = Left(.Caption, 1)
 .Left = 8
 .Top = TopPos
 .Tag = i
 .AutoSize = True
 If Default = i Then .Value = True
 If .Width > MaxWidth Then MaxWidth = .Width
 End With
 TopPos = TopPos + 15
 Next i

‘ Add the Cancel button
 Set NewCommandButton1 = TempForm.Designer.Controls. _
 Add(“Forms.CommandButton.1”)
 With NewCommandButton1
 .Caption = “Cancel”
 .Cancel = True
 .Height = 18
 .Width = 44
 .Left = MaxWidth + 12
 .Top = 6
 End With
‘ Add the OK button

Part VII: Other Topics890

 Set NewCommandButton2 = TempForm.Designer.Controls. _
 Add(“Forms.CommandButton.1”)
 With NewCommandButton2
 .Caption = “OK”
 .Default = True
 .Height = 18
 .Width = 44
 .Left = MaxWidth + 12
 .Top = 28
 End With
‘ Add event-hander subs for the CommandButtons
 Code = “”
 Code = Code & “Sub CommandButton1_Click()” & vbCrLf
 Code = Code & “ GETOPTION_RET_VAL=False” & vbCrLf
 Code = Code & “ Unload Me” & vbCrLf
 Code = Code & “End Sub” & vbCrLf
 Code = Code & “Sub CommandButton2_Click()” & vbCrLf
 Code = Code & “ Dim ctl” & vbCrLf
 Code = Code & “ GETOPTION_RET_VAL = False” & vbCrLf
 Code = Code & “ For Each ctl In Me.Controls” & vbCrLf
 Code = Code & “ If TypeName(ctl) = “”OptionButton””” _
 & “ Then” & vbCrLf
 Code = Code & “ If ctl Then GETOPTION_RET_VAL = “ _
 & “ctl.Tag” & vbCrLf
 Code = Code & “ End If” & vbCrLf
 Code = Code & “ Next ctl” & vbCrLf
 Code = Code & “ Unload Me” & vbCrLf
 Code = Code & “End Sub”
 With TempForm.CodeModule
 .InsertLines .CountOfLines + 1, Code
 End With

‘ Adjust the form
 With TempForm
 .Properties(“Caption”) = Title
 .Properties(“Width”) = NewCommandButton1.Left + _
 NewCommandButton1.Width + 10
 If .Properties(“Width”) < 160 Then
 .Properties(“Width”) = 160
 NewCommandButton1.Left = 106
 NewCommandButton2.Left = 106
 End If
 .Properties(“Height”) = TopPos + 24
 End With
‘ Show the form
 VBA.UserForms.Add(TempForm.Name).Show
‘ Delete the form
 ThisWorkbook.VBProject.VBComponents.Remove VBComponent:=TempForm

‘ Pass the selected option back to the calling procedure
 GetOption = GETOPTION_RET_VAL
End Function

Chapter 28: Manipulating Visual Basic Components 891

The GetOption function is remarkably fast, considering all that’s going on behind the scenes.
On my system, the form appears almost instantaneously. The UserForm is deleted after it has
served its purpose.

Using the GetOption function
The GetOption function takes three arguments:

 OpArray: A string array that holds the items to be displayed in the form as
OptionButtons.

 Default: An integer that specifies the default OptionButton that is selected when the
UserForm is displayed. If 0, none of the OptionButtons are selected (the user clicks
Cancel).

 Title: The text to display in the title bar of the UserForm.

How GetOption works
The GetOption function performs the following operations:

 1. Hides the VBE window to prevent any flashing that could occur when the UserForm is
created or the code is added.

 2. Creates a UserForm and assigns it to an object variable named TempForm.

 3. Adds the OptionButton controls by using the array passed to the function via the
OpArray argument.

 It uses the Tag property of the control to store the index number. The Tag setting of the
chosen option is the value that’s eventually returned by the function.

 4. Adds two CommandButton controls: the OK button and the Cancel button.

 5. Creates an event handler procedure for each of the CommandButtons.

 6. Does some final cleanup work.

 It adjusts the position of the CommandButtons as well as the overall size of the
UserForm.

 7. Displays the UserForm.

 When the user clicks OK, the CommandButton1_Click procedure is executed. This
procedure determines which OptionButton is selected and also assigns a number to the
GETOPTION_RET_VAL variable (a Public variable).

 8. Deletes the UserForm after it’s dismissed.

 9. Returns the value of GETOPTION_RET_VAL as the function’s result.

Part VII: Other Topics892

A significant advantage of creating the UserForm on the fly is that the function is self-
contained in a single module and doesn’t even require a reference to the VBA
Extensibility Library. Therefore, you can export this module (which is named
modOptionsForm) and then import it into any of your workbooks, thus giving you
access to the GetOption function.

The following procedure demonstrates how to use the GetOption function. In this case, the
UserForm presents five options (contained in the Ops array).

 Sub TestGetOption()
 Dim Ops(1 To 5)
 Dim UserOption
 Ops(1) = “North”
 Ops(2) = “South”
 Ops(3) = “West”
 Ops(4) = “East”
 Ops(5) = “All Regions”
 UserOption = GetOption(Ops, 5, “Select a region”)
 Debug.Print UserOption
 MsgBox Ops(UserOption)
End Sub

The UserOption variable contains the index number of the option selected by the user. If the
user clicks Cancel (or presses Escape), the UserOption variable is set to False.

Notice that the Accelerator property is set to the first character of each option’s caption, so
the user can use an Alt+letter combination to make a choice. I made no attempt to avoid dupli-
cate Accelerator keys, so the user may need to press the key combination multiple times to make
a selection.

Figure 28-10 shows the UserForm that this function generates.

Figure 28-10: The GetOption function generated this UserForm.

The UserForm adjusts its size to accommodate the number of elements in the array
passed to it. Theoretically, the UserOption function can accept an array of any size.
Practically speaking, however, you’ll want to limit the number of options to keep the
UserForm at a reasonable size. Figure 28-11 shows how the form looks when the options
contain more text.

Chapter 28: Manipulating Visual Basic Components 893

Figure 28-11: The UserForm adjusts its height and width to accommodate the number of options and the
length of the text.

GetOption Event-Handler code
Following are the event-handler procedures for the two CommandButtons. This is the code gen-
erated within the GetOption function and placed in the code module for the temporary
UserForm.

Sub CommandButton1_Click()
 GETOPTION_RET_VAL = False
 Unload Me
End Sub
Sub CommandButton2_Click()
 Dim ctl
 GETOPTION_RET_VAL = False
 For Each ctl In Me.Controls
 If TypeName(ctl) = “OptionButton” Then
 If ctl Then GETOPTION_RET_VAL = ctl.Tag
 End If
 Next ctl
 Unload Me
End Sub

Because the UserForm is deleted after it’s used, you can’t see what it looks like in the
VBE. So, if you’d like to view the UserForm, convert the following instruction to a com-
ment by typing an apostrophe (‘) in front of it:

ThisWorkbook.VBProject.VBComponents.Remove _
 VBComponent:=TempForm

Part VII: Other Topics894

895

29
Understanding Class Modules
In This Chapter

● Introducing class modules

● Exploring some typical uses for class modules

● Seeing examples that demonstrate some key concepts related to class modules

What is a Class Module?
For many VBA programmers, the concept of a class module is a mystery, even though this fea-
ture has been available in Visual Basic for many years — it was added to Excel beginning with
Excel 97. The examples in this chapter may help to make this powerful feature less mysterious.

A class module is a special type of VBA module that you can insert into a VBA project. Basically,
a class module enables the programmer (you) to create a new object class. As you should know
by now, programming Excel really boils down to manipulating objects. A class module allows you
to create new objects, along with corresponding properties, methods, and events.

Examples in previous chapters in this book use class modules. See Chapters 15, 18, 19,
and 22.

At this point, you might be asking, “Do I really need to create new objects?” The answer is no.
You don’t need to, but you might want to after you understand some of the benefits of doing so.
In many cases, a class module simply serves as a substitute for functions or procedures, but it
could be a more convenient and manageable alternative. In other cases, however, you’ll find that
a class module is the only way to accomplish a particular task.

Following is a list of some typical uses for class modules:

 To handle events associated with embedded charts. (see Chapter 18 for an example.)

 To monitor application-level events, such as activating any worksheet. (See Chapters 19
and 22 for examples.)

Part VII: Other Topics896

 To encapsulate a Windows Application Programming Interface (API) function to make
it easier to use in your code. For example, you can create a class that makes it easy to
detect or set the state of the Num Lock or Caps Lock key. Or you can create a class that
simplifies access to the Windows Registry.

 To enable multiple objects in a UserForm to execute a single procedure. Normally, each
object has its own event handler. The example in Chapter 15 demonstrates how to use a
class module so that multiple CommandButtons have a single Click event handler
 procedure.

 To create reusable components that can be imported into other projects. After you cre-
ate a general-purpose class module, you can import it into other projects to reduce your
development time.

Example: Creating a NumLock Class
In this section, I provide step-by-step instructions for creating a useful, albeit simple, class mod-
ule. This class module creates a NumLock class that has one property (Value) and one method
(Toggle).

Detecting or changing the state of the Num Lock key requires several Windows API functions. As
you see, detecting the state of a particular toggle key is fairly complicated. The purpose of this
class module is to simplify things. All the API declarations and code are contained in a class mod-
ule (not in a normal VBA module). The benefits? Your code will be much easier to work with, and
you can reuse this class module in your other projects.

After the class is created, your VBA code can determine the current state of the Num Lock key
by using an instruction such as the following, which displays the Value property:

MsgBox NumLock.Value

Or your code can change the state of the Num Lock key by changing the Value property. The
following instruction, for example, turns on the Num Lock key:

NumLock.Value = True

In addition, your code can toggle the Num Lock key by using the Toggle method:

NumLock.Toggle

It’s important to understand that a class module contains the code that defines the object, includ-
ing its properties and methods. You can then create an instance of this object in your VBA gen-
eral code modules and manipulate its properties and methods.

Chapter 29: Understanding Class Modules 897

To better understand the process of creating a class module, you might want to follow the
instructions in the next sections. Start with an empty workbook.

Inserting a class module
Activate the Visual Basic Editor (VBE) and choose Insert➜Class Module. This adds an empty class
module named Class1. If the Properties window isn’t displayed, press F4 to display it. Then
change the name of the class module to NumLockClass (see Figure 29-1).

Figure 29-1: An empty class module named NumLockClass.

Adding VBA code to the class module
In this step, you create the code for the Value property. to detect or change the state of the
Num Lock key, the class module needs the required Windows API declarations that are used to
detect and set the Num Lock key. That code follows.

The VBA code for this example was adapted from an example at the Microsoft Web
site. The code shown here works only for Excel 2010. The version on the CD-ROM is
compatible with previous versions of Excel.

‘ Type declaration
Private Type OSVERSIONINFO
 dwOSVersionInfoSize As Long

Part VII: Other Topics898

 dwMajorVersion As Long
 dwMinorVersion As Long
 dwBuildNumber As Long
 dwPlatformId As Long
 szCSDVersion As String * 128
End Type
‘ API declarations
Private Declare PtrSafe Function GetVersionEx Lib “Kernel32” _
 Alias “GetVersionExA” _
 (lpVersionInformation As OSVERSIONINFO) As Long
Private Declare PtrSafe Sub keybd_event Lib “user32” _
 (ByVal bVk As Byte, _
 ByVal bScan As Byte, _
 ByVal dwflags As Long, ByVal dwExtraInfo As Long)
Private Declare PtrSafe Function GetKeyboardState Lib “user32” _
 (pbKeyState As Byte) As Long
Private Declare PtrSafe Function SetKeyboardState Lib “user32” _
 (lppbKeyState As Byte) As Long
‘Constant declarations
Const VK_NUMLOCK = &H90
Const VK_SCROLL = &H91
Const VK_CAPITAL = &H14
Const KEYEVENTF_EXTENDEDKEY = &H1
Const KEYEVENTF_KEYUP = &H2

Next, you need a procedure that retrieves the current state of the Num Lock key. I’ll call this the
Value property of the object. You can use any name for the property, but Value seems like a
good choice. To retrieve the state, insert the following Property Get procedure:

Property Get Value() As Boolean
‘ Get the current state
 Dim keys(0 To 255) As Byte
 GetKeyboardState keys(0)
 Value = keys(VK_NUMLOCK)
End Property

The details of Property procedures are described later in this chapter. See
“Programming properties of objects.”

This procedure, which uses the GetKeyboardState Windows API function to determine the
current state of the Num Lock key, is called whenever VBA code reads the Value property of the
object. For example, after the object is created, a VBA statement such as this executes the
Property Get procedure:

MsgBox NumLock.Value

Chapter 29: Understanding Class Modules 899

You now need a procedure that sets the Num Lock key to a particular state: either on or off. You
can do this with the following Property Let procedure:

Property Let Value(boolVal As Boolean)
 Dim o As OSVERSIONINFO
 Dim keys(0 To 255) As Byte
 o.dwOSVersionInfoSize = Len(o)
 GetVersionEx o
 GetKeyboardState keys(0)
‘ Is it already in that state?
 If boolVal = True And keys(VK_NUMLOCK) = 1 Then Exit Property
 If boolVal = False And keys(VK_NUMLOCK) = 0 Then Exit Property
‘ Toggle it
 ‘Simulate Key Press
 keybd_event VK_NUMLOCK, &H45, KEYEVENTF_EXTENDEDKEY Or 0, 0
 ‘Simulate Key Release
 keybd_event VK_NUMLOCK, &H45, KEYEVENTF_EXTENDEDKEY Or _
 KEYEVENTF_KEYUP, 0
End Property

The Property Let procedure accepts one argument, which is either True or False. A VBA
statement such as the following sets the Value property of the NumLock object to True by
executing the Property Let procedure:

NumLock.Value = True

Finally, you need a procedure to toggle the NumLock state. I’ll call this the Toggle method.

Sub Toggle()
‘ Toggles the state
 Dim o As OSVERSIONINFO
 o.dwOSVersionInfoSize = Len(o)
 GetVersionEx o
 Dim keys(0 To 255) As Byte
 GetKeyboardState keys(0)
 ‘Simulate Key Press
 keybd_event VK_NUMLOCK, &H45, KEYEVENTF_EXTENDEDKEY Or 0, 0
 ‘Simulate Key Release
 keybd_event VK_NUMLOCK, &H45, KEYEVENTF_EXTENDEDKEY Or _
 KEYEVENTF_KEYUP, 0
End Sub

Notice that Toggle is a standard Sub procedure (not a Property Let or Property Get
procedure). A VBA statement such as the following one toggles the state of the NumLock object
by executing the Toggle procedure:

Part VII: Other Topics900

NumLock.Toggle

Using the NumLockClass class
Before you can use the NumLockClass class module, you must create an instance of the object.
The following statement, which resides in a regular VBA module (not the class module), does just
that:

Dim NumLock As New NumLockClass

Notice that the object type is NumLockClass (that is, the name of the class module). The object
variable itself can have any name, but NumLock certainly seems like a logical name for this.

The following procedure sets the Value property of the NumLock object to True, which results
in the Num Lock key being turned on:

Sub NumLockOn()
 Dim NumLock As New NumLockClass
 NumLock.Value = True
End Sub

The next procedure displays a message box that indicates the current state of the Num Lock key
(True is on; False is off):

Sub GetNumLockState()
 Dim NumLock As New NumLockClass
 MsgBox NumLock.Value
End Sub

The following procedure toggles the Num Lock key:

Sub ToggleNumLock()
 Dim NumLock As New NumLockClass
 NumLock.Toggle
End Sub

Notice that there’s another way to toggle the Num Lock key without using the Toggle method:

Sub ToggleNumLock2()
 Dim NumLock As New NumLockClass
 NumLock.Value = Not NumLock.Value
End Sub

Chapter 29: Understanding Class Modules 901

It should be clear that using the NumLock class is much simpler than using the API functions.
After you create a class module, you can reuse it in any other project simply by importing the
class module.

The completed class module for this example is available on the companion CD-ROM.
The workbook, named keyboard classes.xlsm, also contains class modules to
detect and set the state of the Caps Lock key and the Scroll Lock key.

More about Class Modules
The example in the preceding section demonstrates how to create a new object class with a sin-
gle read/write property named Value and a single method named Toggle. An object class can
contain any number of properties, methods, and events.

The name that you use for the class module in which you define the object class is also the name
of the object class. By default, class modules are named Class1, Class2, and so on. Usually,
you’ll want to provide a more meaningful name for your object class.

Programming properties of objects
Most objects have at least one property, and you can give them as many as you need. After a
property is defined and the object is created, you can use it in your code using the standard “dot”
syntax:

object.property

The VBE Auto List Members option works with objects defined in a class module. This makes it
easier to select properties or methods when writing code.

Properties for the object that you define can be read-only, write-only, or read/write. You define a
read-only property with a single procedure — using the Property Get keyword. Here’s an
example of a Property Get procedure:

Property Get FileNameOnly() As String
 FileNameOnly = “”
 For i = Len(FullName) To 1 Step -1
 Char = Mid(FullName, i, 1)
 If Char = “\” Then
 Exit Function
 Else
 FileNameOnly = Char & FileNameOnly
 End If
 Next i
End Property

Part VII: Other Topics902

You may have noticed that a Property Get procedure works like a Function procedure. The
code performs calculations and then returns a property value that corresponds to the proce-
dure’s name. In this example, the procedure’s name is FileNameOnly. The property value
returned is the filename part of a path string (contained in a Public variable named
FullName). For example, if FullName is c:\data\myfile.txt, the procedure returns a
property value of myfile.txt. The FileNameOnly procedure is called when VBA code refer-
ences the object and property.

For read/write properties, you create two procedures: a Property Get procedure (which reads
a property value) and a Property Let procedure (which writes a property value). The value
being assigned to the property is treated as the final argument (or the only argument) of a
Property Get procedure.

Two example procedures follow:

Dim XLFile As Boolean
Property Get SaveAsExcelFile() As Boolean
 SaveAsExcelFile = XLFile
End Property
Property Let SaveAsExcelFile(boolVal As Boolean)
 XLFile = boolVal
End Property

Use Property Set in place of Property Let when the property is an object data
type.

A Public variable in a class module can also be used as a property of the object. In the preced-
ing example, the Property Get and Property Let procedures could be eliminated and
replaced with this module-level declaration:

Public SaveAsExcelFile As Boolean

In the unlikely event that you need to create a write-only property, you create a single
Property Let procedure with no corresponding Property Get procedure.

The preceding examples use a Boolean module-level variable named XLFile. The Property
Get procedure simply returns the value of this variable as the property value. If the object were
named FileSys, for example, the following statement would display the current value of the
SaveAsExcelFile property:

MsgBox FileSys.SaveAsExcelFile

Chapter 29: Understanding Class Modules 903

The Property Let statement, on the other hand, accepts an argument and uses the argument
to change the value of a property. For example, you could write a statement such as the follow-
ing to set the SaveAsExcelFile property to True:

FileSys.SaveAsExcelFile = True

In this case, the value True is passed to the Property Let statement, thus changing the prop-
erty’s value.

The preceding examples use a module-level variable named XLFile that actually stores the
property value. You’ll need to create a variable that represents the value for each property that
you define within your class module.

Normal procedure-naming rules apply to property procedures, and you’ll find that VBA
won’t let you use some names if they are reserved words. So, if you get a syntax error
when creating a property procedure, try changing the name of the procedure.

Programming methods for objects
A method for an object class is programmed by using a standard Sub or Function procedure
placed in the class module. An object might or might not use methods. Your code executes a
method by using standard notation:

object.method

Like any other VBA method, a method that you write for an object class will perform some type
of action. The following procedure is an example of a method that saves a workbook in one of
two file formats, depending on the value of the XLFile variable. As you can see, there is nothing
special about this procedure.

Sub SaveFile()
 If XLFile Then
 ActiveWorkbook.SaveAs FileName:=FName, _
 FileFormat:=xlWorkbookNormal
 Else
 ActiveWorkbook.SaveAs FileName:=FName, _
 FileFormat:=xlCSV
 End If
End Sub

The CSVFileClass example in the next section should clarify the concepts of properties and
methods for object classes defined in a class module.

Part VII: Other Topics904

Class module events
Every class module has two events: Initialize and Terminate. The Initialize event
occurs when a new instance of the object is created; the Terminate event occurs when the
object is destroyed. You might want to use the Initialize event to set default property
 values.

The frameworks for these event-handler procedures are as follows:

Private Sub Class_Initialize()
‘ Initialization code goes here
End Sub
Private Sub Class_Terminate()
‘ Termination code goes here
End Sub

An object is destroyed (and the memory it uses is freed) when the procedure or module in which
it is declared finishes executing. You can destroy an object at any time by setting it to Nothing.
The following statement, for example, destroys the object named MyObject:

Set MyObject = Nothing

Example: A CSV File Class
The example presented in this section defines an object class called CSVFileClass. This class
has two properties and two methods:

 Properties:

● ExportRange: (Read/write) A worksheet range to be exported as a CSV file.

● ImportRange: (Read/write) The range into which a CSV file will be imported.

 Methods:

● Import: Imports the CSV file represented by the CSVFileName argument into the
range represented by the ImportRange property.

● Export: Exports the range represented by the ExportRange property to a CSV file
represented by the CSVFileName argument.

The example in this section is available on the companion CD-ROM. The filename is
‘csv class.xlsm’.

Chapter 29: Understanding Class Modules 905

Class module–level variables for the CSVFileClass
A class module must maintain its own private variables that mirror the property settings for the
class. The CSVFileClass class module uses two variables to keep track of the two property
settings. These variables are declared at the top of the class module:

Private RangeToExport As Range
Private ImportToCell As Range

RangeToExport is a Range object that represents the range to be exported. ImportToCell
is a Range object that represents the upper-left cell of the range into which the file will be
imported. These variables are assigned values by the Property Get and Property Let pro-
cedures listed in the next section.

Property procedures for the CSVFileClass
The property procedures for the CSVFileClass class module follow. The Property Get pro-
cedures return the value of a variable, and the Property Let procedures set the value of a
variable.

Property Get ExportRange() As Range
 Set ExportRange = RangeToExport
End Property
Property Let ExportRange(rng As Range)
 Set RangeToExport = rng
End Property
Property Get ImportRange() As Range
 Set ImportRange = ImportToCell
End Property
Property Let ImportRange(rng As Range)
 Set ImportToCell = rng
End Property

Method procedures for the CSVFileClass
The CSVFileClass class module contains two procedures that represent the two methods.
These are listed and discussed in the sections that follow.

The Export procedure
The Export procedure is called when the Export method is executed. It takes one argument:
the full name of the file receiving the exported range. The procedure provides some basic error
handling. For example, it ensures that the ExportRange property has been set by checking the
RangeToExport variable. The procedure sets up an error handler to trap other errors.

Part VII: Other Topics906

Sub Export(CSVFileName)
‘ Exports a range to CSV file
 If RangeToExport Is Nothing Then
 MsgBox “ExportRange not specified”
 Exit Sub
 End If

 On Error GoTo ErrHandle
 Application.ScreenUpdating = False
 Set ExpBook = Workbooks.Add(xlWorksheet)
 RangeToExport.Copy
 Application.DisplayAlerts = False

 With ExpBook
 .Sheets(1).Paste
 .SaveAs FileName:=CSVFileName, FileFormat:=xlCSV
 .Close SaveChanges:=False
 End With
 Application.CutCopyMode = False
 Application.ScreenUpdating = True
 Application.DisplayAlerts = True
 Exit Sub
ErrHandle:
 ExpBook.Close SaveChanges:=False
 Application.CutCopyMode = False
 Application.ScreenUpdating = True
 Application.DisplayAlerts = True
 MsgBox “Error “ & Err & vbCrLf & vbCrLf & Error(Err), _
 vbCritical, “Export Method Error”
End Sub

The Export procedure works by copying the range specified by the RangeToExport variable
to a new temporary workbook, saving the workbook as a CSV text file, and closing the file.
Because screen updating is turned off, the user doesn’t see this happening. If an error occurs —
for example, an invalid filename is specified — the procedure jumps to the ErrHandle section
and displays a message box that contains the error number and description.

The Import procedure
The Import procedure imports a CSV file specified by the CSVFileName argument and copies
its contents to a range specified by the ImportToCell variable, which maintains the
ImportRange property. The file is then closed. Again, screen updating is turned off, so the user
doesn’t see the file being opened. Like the Export procedure, the Import procedure incorpo-
rates some basic error handling.

Sub Import(CSVFileName)
‘ Imports a CSV file to a range
 If ImportToCell Is Nothing Then

Chapter 29: Understanding Class Modules 907

 MsgBox “ImportRange not specified”
 Exit Sub
 End If

 If CSVFileName = “” Then
 MsgBox “Import FileName not specified”
 Exit Sub
 End If

 On Error GoTo ErrHandle
 Application.ScreenUpdating = False
 Application.DisplayAlerts = False
 Workbooks.Open CSVFileName
 Set CSVFile = ActiveWorkbook
 ActiveSheet.UsedRange.Copy Destination:=ImportToCell
 CSVFile.Close SaveChanges:=False
 Application.ScreenUpdating = True
 Application.DisplayAlerts = True
 Exit Sub
ErrHandle:
 CSVFile.Close SaveChanges:=False
 Application.ScreenUpdating = True
 Application.DisplayAlerts = True
 MsgBox “Error “ & Err & vbCrLf & vbCrLf & Error(Err), _
 vbCritical, “Import Method Error”
End Sub

Using the CSVFileClass object
To create an instance of a CSVFileClass object in your code, start by declaring a variable as
type CSVFileClass in a standard VBA module. Here’s an example:

Dim CSVFile As New CSVFileClass

You might prefer to declare the object variable first and then create the object when needed.
This requires a Dim statement and a Set statement:

Dim CSVFile As CSVFileClass
‘ other code may go here
Set CSVFile = New CSVFileClass

The advantage of using both a Dim statement and a Set statement is that the object isn’t actu-
ally created until the Set statement is executed. You might want to use this technique to save
memory by not creating an object if it’s not needed. For example, your code might contain logic
that determines whether the object is actually created. In addition, using the Set command
enables you to create multiple instances of an object.

Part VII: Other Topics908

After creating an instance of the object, you can write other instructions to access the properties
and methods defined in the class module.

As you can see in Figure 29-2, the VBE Auto List Members feature works just like any other
object. After you type the variable name and a dot, you see a list of properties and methods for
the object.

Figure 29-2: The Auto List Members feature displays the available properties and methods.

The following procedure demonstrates how to save the current range selection to a CSV file
named temp.csv, which is stored in the same directory as the current workbook:

Sub ExportARange()
 Dim CSVFile As New CSVFileClass
 With CSVFile
 .ExportRange = ActiveWindow.RangeSelection
 .Export CSVFileName:=ThisWorkbook.Path & “\temp.csv”
 End With
End Sub

Chapter 29: Understanding Class Modules 909

Using the With-End With structure isn’t mandatory. For example, the procedure could be writ-
ten as follows:

Sub ExportARange()
 Dim CSVFile As New CSVFileClass
 CSVFile.ExportRange = ActiveWindow.RangeSelection
 CSVFile.Export CSVFileName:=ThisWorkbook.Path & “\temp.csv”
End Sub

The following procedure demonstrates how to import a CSV file, beginning at the active cell:

Sub ImportAFile()
 Dim CSVFile As New CSVFileClass
 With CSVFile
 On Error Resume Next
 .ImportRange = ActiveCell
 .Import CSVFileName:=ThisWorkbook.Path & “\temp.csv”
 End With
 If Err <> 0 Then _
 MsgBox “Cannot import “ & ThisWorkbook.Path & “\temp.csv” End Sub

Your code can work with more than one instance of an object. The following code, for example,
creates an array of three CSVFileClass objects:

Sub Export3Files()
 Dim CSVFile(1 To 3) As New CSVFileClass
 CSVFile(1).ExportRange = Range(“A1:A20”)
 CSVFile(2).ExportRange = Range(“B1:B20”)
 CSVFile(3).ExportRange = Range(“C1:C20”)
 For i = 1 To 3
 CSVFile(i).Export CSVFileName:=”File” & i & “.csv”
 Next i
End Sub

Part VII: Other Topics910

911

30
Working with Colors
In This Chapter

● Specifying colors in VBA code

● Using VBA conversion functions for various color models

● Converting colors to grayscale

● Working with document themes

● Modifying colors in Shape objects

● Modifying colors in charts

Specifying Colors
Dealing with color in Excel 2010 is no trivial matter. I’m the first to admit that it can be compli-
cated. And often, recording a macro while you change the color of a cell or object only adds to
the confusion.

One of the most significant changes introduced in Excel 2007 was the abandonment of the old
56-color workbook palette. Back in the pre–Excel 2007 days, a workbook stored a palette of
56-colors. These colors were the only ones available for cell backgrounds, cell text, and charts.
You could modify any or all of those colors, but there was no way to exceed the 56-color limit for
a workbook.

But things changed with the introduction of Excel 2007. You now have access to a virtually
unlimited number of colors in a workbook — actually, the limit is 16,777,216 colors, but that cer-
tainly qualifies as virtually unlimited in my book.

In VBA, you can specify a color as a decimal color value, which is a number between 0 and
16,777,215. For example, the VBA statement that follows changes the background color of the
active cell to a dark maroon:

ActiveCell.Interior.Color = 5911168

Part VII: Other Topics912

In addition, VBA has predefined constants for some common colors. For example, vbRed has a
value of 255 (the decimal value for pure red), and vbGreen has a value of 65,280.

No one, of course, can keep track of nearly 17 million colors, and the predefined constants are
limited. A better way to change a color is to specify the color in terms of its red, green, and blue
components — the RGB color system.

The RGB color system
The RGB color system combines various levels of three colors: red, green, and blue. Each of these
color values can range from 0 through 255. Therefore, the total number of possible colors is 256
x 256 x 256 = 16,777,216. When all three color components are 0, the color is pure black. When all
three components are 255, the color is pure white. When all three are 128 (the half-way point),
the color is middle gray. The remaining 16,777,213 possible combinations of these three values
represent other colors.

To specify a color using the RGB system in VBA, use the RGB function. This function accepts
three arguments that represent the red, blue, and green components of a color. The function
returns a decimal color value.

The statement that follows uses the RGB function to assign a color that’s exactly the same as the
one assigned in the preceding section (that dark maroon, 5911168):

ActiveCell.Interior.Color = RGB(128, 50, 90)

Table 30-1 shows the RGB values and the decimal color code of some common colors.

Table 30-1: Color Examples

Name Red Component Green Component Blue Component Color Value

Black 0 0 0 0

White 255 255 255 16777215

Red 255 0 0 255

Green 0 255 0 65280

Blue 0 0 255 16711680

Yellow 255 255 0 65535

Pink 255 0 255 16711935

Turquoise 0 255 255 16776960

Brown 153 51 0 13209

Indigo 51 51 153 10040115

80% Gray 51 51 51 3355443

Chapter 30: Working with Colors 913

The HSL color system
If you select the More Colors option when choosing a color in Excel, you see the Colors dialog
box. Click the Custom tab, and you can choose from two color models to specify your color: RGB
and HSL. Figure 30-1 shows the Colors dialog box with the HSL color model selected.

Figure 30-1: Choosing a color using the HSL color system.

In the HSL color system, colors are specified using three parameters: Hue, Saturation, and
Luminance. As with RGB colors, each of these parameters can range from 0 to 255. Each RGB
color has an equivalent HSL color, and each HSL color has an equivalent decimal color value. In
other words, you can specify any of the 16,777,216 colors by using any of the three color systems:
RGB, HSL, or decimal.

Although the Colors dialog box lets you specify a color using the HSL color model, this is actually
the only area in which Excel supports the HSL color model. For example, when you specify a
color using VBA, it must be a decimal color value. You can, of course, use the RGB function to
return a decimal color value. However, VBA doesn’t have a function that allows you to specify a
color in terms of hue, saturation, and luminance.

Converting colors
If you know a color’s red, green, and blue component values, converting the color to a decimal
color is easy. Just use VBA’s RGB function. Assume three variables (r, g, and b), each of which
represents a color component value between 0 and 255. To calculate the equivalent decimal
color value, use a statement like this:

DecimalColor = RGB(r, g, b)

Part VII: Other Topics914

To perform this conversion in a worksheet formula, create this simple VBA wrapper function:

Function RGB2DECIMAL(R, G, B) As Long
‘ Converts from RGB to decimal color
 RGB2DECIMAL = RGB(R, G, B)
End Function

The following example worksheet formula assumes the three color values are in A1:C1:

=RGB2DECIMAL(A1,B1,C1)

Converting a decimal color to its red, green, and blue components is a bit more complicated.
Here’s a function that returns a three-element array:

Function DECIMAL2RGB(ColorVal) As Variant
‘ Converts a color value to an RGB triplet
‘ Returns a 3-element variant array
 DECIMAL2RGB = Array(ColorVal \ 256 ^ 0 And 255, _
 ColorVal \ 256 ^ 1 And 255, ColorVal \ 256 ^ 2 And 255)
End Function

To use the DECIMAL2RGB function in a worksheet formula, the formula must be entered as a
three-cell array formula. For example, assume that cell A1 contains a decimal color value. To con-
vert that color value to its RGB components, select a three-cell horizontal range and then enter
the following formula. Press Ctrl+Shift+Enter to make it an array formula and don’t enter the
braces.

{=DECIMAL2RGB(A1)}

If the three-cell range is vertical, you need to transpose the array, as follows:

{=TRANSPOSE(DECIMAL2RGB(A1))}

Figure 30-2 shows the DECIMAL2RGB and DECIMAL2HSL functions in use in a worksheet.

The companion CD-ROM contains a workbook with the following color conversion func-
tions: DECIMAL2RGB, DECIMAL2HSL, HSL2RGB, RGB2DECIMAL, RGB2HSL, and
HSL2DECIMAL. The file is named color conversion functions.xlsm.

Chapter 30: Working with Colors 915

Figure 30-2: A worksheet that uses the DECIMAL2RGB and DECIMAL2HSL functions

More about decimal color values
You may be curious about how the 16,777,216 decimal color values are arranged. Color 0 is
black, and color 16,777,216 is white, but what about all those colors in between?

It might help to think of the decimal color values as being generated by nested For-Next
loops, as shown in the following code:

Sub GenerateColorValues()
 Dim Red As Long, Blue As Long, Green As Long
 Dim AllColors(0 To 16777215) As Long
 Dim ColorNum As Long
 ColorNum = 0
 For Blue = 0 To 255
 For Green = 0 To 255
 For Red = 0 To 255
 AllColors(ColorNum) = RGB(Red, Blue, Green)
 ColorNum = ColorNum + 1
 Next Red
 Next Green
 Next Blue
End Sub

After this procedure runs, the values in the AllColors array correspond exactly to the decimal
color values used by Excel.

Part VII: Other Topics916

Understanding Grayscale
When you create worksheets and charts that are intended to be printed, it’s important to remem-
ber that not everyone has a color printer. And even if your chart is printed on a color printer, it’s
possible that it may be photocopied, faxed, or viewed by someone who is color-blind (a condi-
tion that affects about 8 percent of the male population).

When content is printed on a noncolor device, colors are converted to grayscale. Sometimes
you’ll be lucky, and your colors will display nicely when converted to grayscale. Other times, you
won’t be so lucky. For example, the columns in a chart may be indistinguishable when the colors
are converted.

Every grayscale color has an equal component of red, green, and blue. Pure black is RGB(0, 0,
0). Pure white is RGB(255, 255, 255). Neutral gray is RGB(128, 128, 128). Using this
color system produces 256 shades of gray.

To create a 256-color grayscale in a range of cells, execute the procedure that follows. It colors
the background of cells in the range A1:A256, starting with black and ending with white. You
might want to zoom out on the worksheet to see the entire range.

Sub GenerateGrayScale()
 Dim r As Long
 For r = 0 To 255
 Cells(r + 1, 1).Interior.Color = RGB(r, r, r)
 Next r
End Sub

Figure 30-3 shows the result, after decreasing the row heights and making column A wider.

Converting colors to gray
One approach to grayscale conversion is to simply average the Red, Green, and Blue components
of a color and use that single value for the Red, Green, and Blue components of its grayscale
equivalent. That method, however, doesn’t take into account the fact that different colors are
perceived as varying levels of brightness. For example, green is perceived to be brighter than
red, and red is perceived to be brighter than blue.

Perceptual experiments have arrived at the following “recipe” to convert an RGB color value to a
grayscale value

 28.7% of the red component

 58.9% of the green component

 11.4% of the blue component

Chapter 30: Working with Colors 917

Figure 30-3: Cells displaying 256 shades of gray.

For example, consider color value 16751001, a shade of violet that corresponds to RGB(153,
153, 255). Applying the factors listed previously, the RGB values are

 Red: 28.7% × 153 = 44

 Green: 58.9% × 153 = 90

 Blue: 11.4% × 255 = 29

The sum of these values is 163. Therefore, the corresponding grayscale RGB value for color value
16751001 is RGB(163, 163, 163).

Following is a VBA function that accepts a decimal color value as its argument and returns the
corresponding grayscale decimal value:

Function Grayscale(color) As Long
 Dim r As Long, g As Long, b As Long
 r = (color \ 256 ^ 0 And 255) * 0.287
 g = (color \ 256 ^ 1 And 255) * 0.589
 b = (color \ 256 ^ 2 And 255) * 0.114
 Grayscale = RGB(r + g + b, r + g + b, r + g + b)
End Function

Part VII: Other Topics918

Viewing charts as grayscale
Unfortunately, Excel’s print preview feature doesn’t do grayscale conversion. For example, if you
have a black and white laser printer, previewing your print job shows colors — not the grayscale
that is actually produced by your printers.

The Sheet tab of the Page Setup dialog box (displayed by clicking the dialog box launcher in the
Page Layout➜Page Setup group), has an option labeled Black And White. When checked, your
charts are printed in true black and white, not grayscale. Colors are converted to patterns that
consist of black and white. Note that this setting applies only to charts and other graphic objects.
When printing in Black And White mode, cells colors are ignored.

Here’s a technique that lets you see how an embedded chart looks converted to grayscale:

 1. Select the chart.

 2. Press Ctrl+C to copy the chart to the Clipboard.

 3. Click a cell and choose Home➜Clipboard➜Paste➜Picture.

 4. Select the pasted picture and choose Picture Tools➜Format➜Adjust➜Color and then
choose the Grayscale color mode from the Recolor section of the drop-down gallery (see
Figure 30-4).

Figure 30-4: Converting a picture of a chart to grayscale.

Chapter 30: Working with Colors 919

These steps are automated in the macro that follows. The ShowChartAsGrayScale procedure
copies the active chart as a picture and converts the picture to grayscale. After you’ve deter-
mined whether the colors are satisfactory for grayscale printing, you can delete the picture.

Sub ShowChartAsGrayScale()
‘ Copies the active chart as a grayscale picture
‘ Embedded charts only
 If ActiveChart Is Nothing Then
 MsgBox “Select a chart.”
 Exit Sub
 End If
 ActiveChart.Parent.CopyPicture
 ActiveChart.Parent.TopLeftCell.Select
 ActiveSheet.Pictures.Paste
 ActiveSheet.Pictures(ActiveSheet.Pictures.Count). _
 ShapeRange.PictureFormat.ColorType = msoPictureGrayscale
End Sub

A workbook with this example is available on the companion CD-ROM. The filename is
chart to grayscale picture.xlsm.

Don’t overlook the built-in grayscale chart styles. The grayscales used in these styles
seem to be optimized for showing variations in chart elements.

Experimenting with Colors
Figure 30-5 shows a workbook that I created that deals with colors. If you’re at all confused
about how the RGB color model works, spending some time with this color demo workbook will
probably make it all very clear.

This workbook, named RGB color demo.xlsm, is available on the companion
CD-ROM.

Part VII: Other Topics920

Figure 30-5: This workbook demonstrates how red, green, and blue colors combine.

This workbook contains three vertical scroll bars, each of which controls the background color of
a range. Use these scroll bars to specify the red, green, and blue components for a color to values
between 0 and 255. Moving the scroll bars changes several areas of the worksheet:

 The cells above the scroll bars display the color components in hexadecimal (00–FF) and
in decimal (0–255). Hexadecimal RGB color values are often used in specifying colors for
HTML documents.

 The ranges next to each scroll bar change intensity, corresponding to the scroll bar’s
position (that is, the value of the color component).

 A range below the scroll bars depicts the combined color, determined by the RGB values
you specify.

 A cell displays the decimal color value.

 Another range depicts the color’s approximate appearance when it’s converted to
 grayscale.

 A range of cells shows the corresponding HSL color values.

Chapter 30: Working with Colors 921

Understanding Document Themes
A significant new feature introduced in Excel 2007 was document themes. With a single mouse
click, the user can change the entire look of a document. A document theme consists of three
components: colors, fonts, and effects (for graphic objects). The rationale for using themes is that
they may help users produce better-looking and more consistent documents. A theme applies to
the entire workbook, not just the active worksheet.

About document themes
Microsoft Office 2010 ships with about 40 document themes, and you can also download or cre-
ate additional themes. The Ribbon includes several style galleries (for example, the Chart Styles
gallery). The styles available in these galleries vary depending on which theme is assigned to the
document. If you apply a different theme to the document, the document changes to reflect the
new theme’s colors, fonts, and effects.

If you haven’t explored document themes, open the workbook named document
theme demo.xlsx found on the companion CD-ROM. This workbook contains a range
that shows each theme color, two shapes, text (using the headings and body fonts),
and a chart. Choose Page Layout➜Themes➜Themes Gallery to see how the worksheet
changes with each theme.

Users can also mix and match theme elements. For example, you can use the colors from one
theme, the fonts from another theme, and the effects from yet a different theme. In addition, the
user can create a new color set or a new font set. You can save these customized themes and
then apply them to other workbooks.

The concept of document themes is based on the notion that users will apply little, if
any, nontheme formatting to the document. If the user applies colors or fonts that
aren’t part of the current theme, this formatting will not be modified if a new theme is
applied to the document. Therefore, it’s still very easy to create an ugly document with
mismatched colors and too many different fonts.

Understanding document theme colors
When a user applies a color to a cell or object, the color is selected from a control like the one
shown in Figure 30-6. The control displays the 60 theme colors (10 columns by 6 rows) plus 10
additional standard colors. Clicking the More Colors option displays the Color dialog box, in which
the user can specify any of the 16,777,216 available colors.

Part VII: Other Topics922

Figure 30-6: A color-selection control.

The 60 theme colors are identified by pop-up ToolTips. For example, the color in the second row
of the sixth column is known as “Accent 2, Lighter 80%”.”

The first row in each column or colors contains the “pure” color. Below each pure color are six
“tint and shade” variations. Table 30-2 shows the color descriptions for the color picker controls.

Keep in mind that these color names remain the same, even if a different document theme is
applied. The document theme colors actually consist of the ten colors displayed in the top row
(four text/background colors and six accent colors), and each of these ten colors has five tint/
shade variations.

If you select Page Layout➜Themes ➜Colors➜Create New Theme Colors, you see that a
theme has two additional colors: Hyperlink and Followed Hyperlink. These are the col-
ors applied when a hyperlink is created, and they are not shown in the color selector
control.

You may find it enlightening to record a macro while you change the fill color and text color of a
range. Following is a macro that I recorded when a range was selected. For the fill color, I chose
“Accent 2, Darker 25%,” and for the text color, I chose “Text 2, Lighter 80%.”

Sub ChangeColors()
 With Selection.Interior
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 .ThemeColor = xlThemeColorAccent2
 .TintAndShade = -0.249977111117893
 .PatternTintAndShade = 0
 End With
 With Selection.Font
 .ThemeColor = xlThemeColorLight2
 .TintAndShade = 0.799981688894314
 End With
End Sub

Chapter 30: Working with Colors 923

Table 30-2: Them
e Color Nam

es

Row
/

Colum
n

1
2

3
4

5
6

7
8

9
10

1
B

ackground 1
Text 1

B
ackground 2

Text 2
A

ccent 1
A

ccent 2
A

ccent 3
A

ccent 4
A

ccent 5
A

ccent 6

2
D

arker 5%
Lighter
50

%
D

arker 10
%

Lighter
80

%
Lighter
80

%
Lighter
80

%
Lighter
80

%
Lighter
80

%
Lighter
80

%
Lighter
80

%

3
D

arker 15%
Lighter
35%

D
arker 25%

Lighter
80

%
Lighter
60

%
Lighter
60

%
Lighter
60

%
Lighter
60

%
Lighter
60

%
Lighter
60

%

4
D

arker 25%
Lighter
25%

D
arker 50

%
Lighter
80

%
Lighter
40

%
Lighter
40

%
Lighter
40

%
Lighter
40

%
Lighter
40

%
Lighter
40

%

5
D

arker 35%
Lighter
15%

D
arker 75%

D
arker

25%
D

arker
25%

D
arker

25%
D

arker
25%

D
arker

25%
D

arker
25%

D
arker

25%

6
D

arker 50
%

Lighter
5%

D
arker 90

%
D

arker
50

%
D

arker
50

%
D

arker
50

%
D

arker
50

%
D

arker
50

%
D

arker
50

%
D

arker
50

%

Part VII: Other Topics924

First of all, you can safely ignore the three pattern-related properties (Pattern,
PatternColorIndex, and PatternTintAndShade). These properties refer to the ugly, old-
fashioned (but still supported) cell patterns, which you can specify in the Fill tab of the Format
Cells dialog box. These statements are included to maintain any existing pattern that may exist in
the range.

The recorded macro, after I deleted the three pattern-related properties (and added comments), is

Sub ChangeColors()
 With Selection.Interior
 ‘(Accent 2, Darker 25%)
 .ThemeColor = xlThemeColorAccent2
 .TintAndShade = -0.249977111117893
 End With
 With Selection.Font
 ‘(Text 2, Lighter 80%)
 .ThemeColor = xlThemeColorLight2
 .TintAndShade = 0.799981688894314
 End With
End Sub

As you can see, each color is specified in terms of a ThemeColor property and a
TintAndShade property. The ThemeColor property is easy enough to decipher. Property val-
ues are assigned using built-in constants, and these values correspond to the column number of
the 10 x 6 theme color table. For example, xlThemColorAccent2 has a value of 6. But what
about the TintAndShade property?

The TintAndShade property can have a value between –1 and +1. A value of –1 results in black,
and a value of +1 results in white. A TintAndShade property value of 0 gives the pure color. In
other words, as the TintAndShade value goes negative, the color gets increasingly darker until
it’s pure black. As the TintAndShade value goes positive, the color gets increasingly lighter
until it’s pure white. The TintAndShade value corresponds to the color name displayed in the
color selection controls.

If the color variation is expressed “Darker,” the TintAndShade property value is negative. If the
color variation is expressed “Darker,” the TintAndShade property value is positive.

I don’t know why the TintAndShade values have such a high level of precision in
recorded macros. It’s certainly not necessary. For example, a TintAndShade property
value of –0.249977111117893 produces the same visual result as a TintAndShade prop-
erty value of –0.25.

For a demonstration of how the TintAndShade property changes a color, open the
tintandshade demo.xlsm workbook on the companion CD-ROM (see Figure 30-7).
Specify a starting color, and the macro displays that color with 50 levels of the
TintAndShade property values, ranging from –1 to +1. It also displays the decimal color
value and the red, green, and blue components of the color (which are displayed in a chart).

Chapter 30: Working with Colors 925

Figure 30-7: This workbook demonstrates how the TintAndShade property affects a color.

Displaying all theme colors
I wrote a macro that displays all 60 theme color variations in a range of cells. These 60 colors are
those that appear in the color selection controls.

Sub ShowThemeColors()
 Dim r As Long, c As Long
 For r = 1 To 6
 For c = 1 To 10
 With Cells(r, c).Interior
 .ThemeColor = c
 Select Case c
 Case 1 ‘Text/Background 1
 Select Case r
 Case 1: .TintAndShade = 0
 Case 2: .TintAndShade = -0.05
 Case 3: .TintAndShade = -0.15
 Case 4: .TintAndShade = -0.25
 Case 5: .TintAndShade = -0.35
 Case 6: .TintAndShade = -0.5
 End Select
 Case 2 ‘Text/Background 2
 Select Case r
 Case 1: .TintAndShade = 0
 Case 2: .TintAndShade = 0.5

Part VII: Other Topics926

 Case 3: .TintAndShade = 0.35
 Case 4: .TintAndShade = 0.25
 Case 5: .TintAndShade = 0.15
 Case 6: .TintAndShade = 0.05
 End Select
 Case 3 ‘Text/Background 3
 Select Case r
 Case 1: .TintAndShade = 0
 Case 2: .TintAndShade = -0.1
 Case 3: .TintAndShade = -0.25
 Case 4: .TintAndShade = -0.5
 Case 5: .TintAndShade = -0.75
 Case 6: .TintAndShade = -0.9
 End Select
 Case Else ‘Text/Background 4, and Accent 1-6
 Select Case r
 Case 1: .TintAndShade = 0
 Case 2: .TintAndShade = 0.8
 Case 3: .TintAndShade = 0.6
 Case 4: .TintAndShade = 0.4
 Case 5: .TintAndShade = -0.25
 Case 6: .TintAndShade = -0.5
 End Select
 End Select
 Cells(r, c) = .TintAndShade
 End With
 Next c
 Next r
End Sub

Figure 30-8 shows the result of executing the ShowThemeColors procedure. (It looks better in
color.) If you switch to a different document theme, the colors will be updated to reflect those in
the new theme.

This example, named generate theme colors.xlsm, is available on the companion
CD-ROM.

Earlier in this chapter, I described how to change the fill color of a range by setting the Color
property of the Interior object. As I noted, using the VBA RGB function makes this easier.
These two statements demonstrate how to change the fill color of a range (they both have the
same result):

Range(“A1:F24”).Interior.Color = 5913728
Range(“A1:F24”).Interior.Color = RGB(128, 60, 90)

Chapter 30: Working with Colors 927

Figure 30-8: A VBA macro generated these theme colors.

It’s important to understand that assigning a color in this way doesn’t make it a theme color. In
other words, if the user switches to a new document theme, range A1:F24 won’t change colors.
To change cell colors in a way that is consistent with themes, you must use the ThemeColor and
(optionally) the TintAndShade property.

Working with Shape Objects
So far, this chapter has focused exclusively on modifying the color of a range. This section pro-
vides examples of changing colors in Shape objects. In Excel, use the Insert➜Illustrations➜

Shapes group to add a shape to a worksheet.

Figure 30-9 shows a shape inserted in a worksheet. This object’s default name is Right Arrow
1. The number in the name varies, depending on how many shapes you have inserted. For exam-
ple, if you had previously inserted two other shapes (of any style), the name would be Right
Arrow 3.

Figure 30-9: A Shape object on a worksheet.

Part VII: Other Topics928

A shape’s background color
The background color of a Shape object is determined by the RGB property. So, to get the deci-
mal color value of this shape, use a statement like this:

MsgBox ActiveSheet.Shapes(“Right Arrow 1”).Fill.ForeColor.RGB

This statement may be a bit confusing, so I’ll break it down. The Fill property of the Shape
object returns a FillFormat object. The ForeColor property of the FillFormat object
returns a ColorFormat object. So the RGB property actually applies to the ColorFormat
object, and this property contains the decimal color value.

If you’re confused about the use of the ForeColor property in this example, you’re not
alone. Most people, myself included, would expect to use the BackColor property of
the FillFormat object to change the background color of an object. As it turns out,
the BackColor property is used for the second color if the object is shaded or filled
with a pattern. For an unfilled Shape with no pattern, the ForeColor property controls
the background color.

When working with Shape objects, you almost always want your code to perform multiple
actions. Therefore, it’s efficient to create an object variable. The code that follows creates an
object variable named Shp:

Dim Shp As Shape
Set Shp = ActiveSheet.Shapes(“Right Arrow 1”)
MsgBox Shp.Fill.ForeColor.RGB

An additional advantage to creating an object variable is that you can take advantage of
the VBE’s Auto List Members feature, which displays the possible properties and objects
as you type (see Figure 30-10). This is particularly helpful in the case of Shape objects
because some actions you take with Shapes are recorded by Excel’s macro recorder.

If you’ll be working only with the shape’s colors, you can create an object variable for the shape’s
ColorFormat object, like this:

Dim ShpCF As ColorFormat
Set ShpCF = ActiveSheet.Shapes(“Right Arrow 1”).Fill.ForeColor
MsgBox ShpCF.RGB

Chapter 30: Working with Colors 929

Figure 30-10: Typing a statement with the assistance of the Auto List Members feature.

The RGB property of the ColorFormat object controls the color of the shape. Following are
some additional properties. If you’re not familiar with document theme colors, see
“Understanding document theme colors,” earlier in this chapter.

 ObjectThemeColor: A number between 1 and 10 that represents the theme color (that
is, a color in the first row of the 10-x-6 theme color grid).

 SchemeColor: A number that ranges from 0 to 80 that represents the color as an index
in the current color scheme. These are colors from the old 56-color palette, and I don’t
see any need to ever use the SchemeColor property.

 TintAndShade: A number between –1 and +1 that represents the darkness or lightness
of the theme color.

 Type: A number that represents the ColorFormat object type. As far as I can tell, this
read-only property is always 1, which represents the RGB color system.

Changing the background color of a shape doesn’t affect the shape’s outline color. To modify the
color of a shape’s outline, access the ColorFormat object of the shape’s LineFormat object.
The following statements set a Shape’s background color and outline to red:

Dim Shp As Shape
Set Shp = ActiveSheet.Shapes(“Right Arrow 1”)
Shp.Fill.ForeColor.RGB = RGB(255, 0, 0)
Shp.Line.ForeColor.RGB = RGB(255, 0, 0)

Here’s an alternative way to accomplish the same effect, using object variables:

Dim Shp As Shape
Dim FillCF As ColorFormat
Dim LineCF As ColorFormat

Part VII: Other Topics930

Set Shp = ActiveSheet.Shapes(“Right Arrow 1”)
Set FillCF = Shp.Fill.ForeColor
Set LineCF = Shp.Line.ForeColor
FillCF.RGB = RGB(255, 0, 0)
LineCF.RGB = RGB(255, 0, 0)

Keep in mind that the preceding code does not produce colors that are compatible with docu-
ment themes. To specify theme-compatible colors, you must use the SchemeColor property
and (optionally) the TintAndShade property.

Shapes and theme colors
To apply theme colors to a shape, you use the ObjectThemeColor and the TintAndShade
properties of the shape’s Forecolor object. The following code sets the shape’s color to
“Accent 4, Lighter 40%.”

With ActiveSheet.Shapes(1).Fill.ForeColor
 .ObjectThemeColor = msoThemeColorAccent4
 .TintAndShade = 0.4
End With

In practice, that code doesn’t produce the same color that’s produced when you use the Fill Color
control in the Ribbon.

Unfortunately, Microsoft’s implementation of document themes isn’t perfect. For example, I dis-
covered that range theme colors don’t match up with shape theme colors. Figure 30-11 shows
range B2:D8 with a fill color of “Accent 2, Lighter 80%.” The worksheet also contains a triangle
shape, which has the default fill color.

Figure 30-11: The goal is to write code that makes the triangle the same color as the range.

The task sounds simple enough: Make the shape’s fill color the same as the range’s fill color. This
simple procedure should do the job:

Chapter 30: Working with Colors 931

Sub ColorShape()
 With ActiveSheet.Shapes(1).Fill.ForeColor
 .ObjectThemeColor = Range(“B2:D8”).Interior.ThemeColor
 .TintAndShade = Range(“B2:D8”).Interior.TintAndShade
 End With
End Sub

Figure 30-12 shows the result of running the ColorShape procedure. Although the shape’s color
is similar to the range, it’s definitely not identical. Interestingly, if you apply the “Accent 2, Lighter
80%” color to the shape by using the Fill Color control on the Ribbon, the color is exactly the
same as the range.

By the way, matching colors in the opposite direction doesn’t work either. It’s not possible to
color a range by using the properties of a shape’s Interior object.

Note that it is possible to transfer the exact color from the shape to the range by using the “old”
color object model. The following statement makes the shape exactly the same color as the
range. This color, however, doesn’t change when the document theme changes.

ActiveSheet.Shapes(1).Fill.ForeColor.RGB = _
 Range(“B1:D8”).Interior.Color

Figure 30-12: The code that should work, doesn’t work. The triangle isn’t the same color as the range.

I spent quite a bit of time experimenting with shape colors and range colors and reached the fol-
lowing conclusions:

 Excel provides 15 possible theme values for a shape, but only 12 for a range.

 The ThemeColor value of a range usually (but not always) corresponds to the
ObjectThemeColor value of a shape.

 The TintAndShade property of the FillFormat object for a shape is always 0, unless
you set it via code.

Part VII: Other Topics932

So it appears that colors used in shapes (and charts) are different than colors used in cells. It’s
more a curiosity than a problem. In actual practice, it’s rarely critical that color matches between
cells and objects be exact.

Shape examples
Shapes can also display other types of fills, such as gradients, pictures, and textures. Figure 30-13
shows a few examples of shapes generated by using VBA.

The workbook that contains the code that generates these shapes is available on the
companion CD-ROM. The filename is shape object colors.xlsm.

Figure 30-13: Shapes generated with VBA.

Chapter 30: Working with Colors 933

Modifying Chart Colors
This section describes how to change colors in a chart. The most important point is to identify the
specific chart element that you want to modify. In other words, you need to identify the object
and then set the appropriate properties.

Figure 30-14 shows a simple column chart named Chart 1. This chart has two data series, a legend,
and a chart title.

Following is a VBA statement that changes the color of the first data series to red:

ActiveSheet.ChartObjects(“Chart 1”).Chart. _
 SeriesCollection(1).Format.Fill.ForeColor.RGB = vbRed

To the uninitiated, this statement is probably confusing because so many objects are involved.
The object hierarchy is as follows.

The active sheet contains a ChartObjects collection. One object in that collection is the
ChartObject named Chart 1. The Chart property of the ChartObject object returns a
Chart object. The Chart object has a SeriesCollection collection, and one Series object
in the collection has an index number of 1. The Format property of the Series object returns a
ChartFormat object. The Fill property of the ChartFormat object returns a FillFormat
object. The ForeColor property of the FillFormat object returns a ColorFormat object.
The RGB property of the ColorFormat object is set to red.

Figure 30-14: A simple column chart.

Refer to Chapter 18 for more information about using VBA to work with charts.

Another way of writing the preceding statement, using object variables to identify the individual
objects (and, perhaps, clarify the objects’ relationships), is

Sub ChangeSeries1Color
 Dim MyChartObject As ChartObject
 Dim MyChart As Chart

Part VII: Other Topics934

 Dim MySeries As Series
 Dim MyChartFormat As ChartFormat
 Dim MyFillFormat As FillFormat
 Dim MyColorFormat As ColorFormat
‘ Create the objects
 Set MyChartObject = ActiveSheet.ChartObjects(“Chart 1”)
 Set MyChart = MyChartObject.Chart
 Set MySeries = MyChart.SeriesCollection(1)
 Set MyChartFormat = MySeries.Format
 Set MyFillFormat = MyChartFormat.Fill
 Set MyColorFormat = MyFillFormat.ForeColor
‘ Change the color
 MyColorFormat.RGB = vbRed
End Sub

The RGB property accepts a decimal color value, which I specified using a built-in VBA constant.
Other color-related properties of the ColorFormat object are

 ObjectThemeColor: An integer between 0 and 16 that represents the theme color.
VBA provides constants for these values. For example, msoThemeColorAccent3 con-
tains the value 7.

 TintAndShade: A number between –1 and +1 that represents the tint or shade of the
theme color.

In the previous section, I noted some problems in color matching between ranges and shapes.
Those same problems apply to colors used in charts.

The examples in this section are available on the companion CD-ROM. The filename is
chart colors.xlsm.

You can also specify color gradients. Here’s an example that applies a preset gradient to the sec-
ond data series in a chart. Notice that the gradient is set using the FillFormat object:

Sub AddPresetGradient()
 Dim MyChart As Chart
 Set MyChart = ActiveSheet.ChartObjects(“Chart 1”).Chart
 With MyChart.SeriesCollection(1).Format.Fill
 .PresetGradient _
 Style:=msoGradientHorizontal, _
 Variant:=1, _
 PresetGradientType:=msoGradientFire
 End With
End Sub

Chapter 30: Working with Colors 935

Working with other chart elements is similar. The procedure that follows changes the colors of
the chart’s chart area and plot area, using colors from the current document theme:

Sub RecolorChartAndPlotArea()
 Dim MyChart As Chart
 Set MyChart = ActiveSheet.ChartObjects(“Chart 1”).Chart
 With MyChart
 .ChartArea.Format.Fill.ForeColor.ObjectThemeColor = _
 msoThemeColorAccent6
 .ChartArea.Format.Fill.ForeColor.TintAndShade = 0.9
 .PlotArea.Format.Fill.ForeColor.ObjectThemeColor = _
 msoThemeColorAccent6
 .PlotArea.Format.Fill.ForeColor.TintAndShade = 0.5
 End With
End Sub

The final example in this section applies a random color to each chart element. Using this macro
virtually guarantees an ugly chart. However, this code demonstrates how to change the color for
other chart elements. The UseRandomColors procedure uses a simple function, RandomColor,
to determine the color used.

Sub UseRandomColors()
 Dim MyChart As Chart
 Set MyChart = ActiveSheet.ChartObjects(“Chart 4”).Chart
 With MyChart
 .ChartArea.Format.Fill.ForeColor.RGB = RandomColor
 .PlotArea.Format.Fill.ForeColor.RGB = RandomColor
 .SeriesCollection(1).Format.Fill.ForeColor.RGB = RandomColor
 .SeriesCollection(2).Format.Fill.ForeColor.RGB = RandomColor
 .Legend.Font.Color = RandomColor
 .ChartTitle.Font.Color = RandomColor
 .Axes(xlValue).MajorGridlines.Border.Color = RandomColor
 .Axes(xlValue).TickLabels.Font.Color = RandomColor
 .Axes(xlValue).Border.Color = RandomColor
 .Axes(xlCategory).TickLabels.Font.Color = RandomColor
 .Axes(xlCategory).Border.Color = RandomColor
 End With
End Sub
Function RandomColor()
 RandomColor = Application.RandBetween(0, RGB(255, 255, 255))
End Function

Part VII: Other Topics936

937

31
Frequently Asked Questions
about Excel Programming
In This Chapter

● Understanding Excel quirks

● Exploring FAQs about Excel programming

● Getting VBE help

Getting the Scoop on FAQs
If you like to cruise the Internet, you’re undoubtedly familiar with FAQs — lists of frequently
asked questions (and their answers) about a particular topic. FAQs are prevalent in the discussion
groups and are posted in an attempt to reduce the number of messages that ask the same ques-
tions over and over again. They rarely serve their intended purpose, however, because the same
questions keep appearing despite the FAQs.

I’ve found that people tend to ask the same questions about Excel programming, so I put
together a list of FAQs that cover the following programming topics for Excel:

 Excel quirks that you can and can’t work around

 Frequently asked questions about Excel programming

 Some help getting around in the Visual Basic Editor

Although this FAQ list certainly won’t answer all your questions, it covers many common ques-
tions and might set you straight about a thing or two.

I organized this list of questions by assigning each question to one of these categories:

 General Excel questions

 The Visual Basic Editor (VBE)

Part VII: Other Topics938

 Sub procedures

 Function procedures

 Objects, properties, methods, and events

 UserForms

 Add-ins

 Excel user interface modification

In some cases, my classifications are rather arbitrary; a question could justifiably be assigned to
other categories. Moreover, questions within each category are listed in no particular order.

By the way, most of the information in this chapter is discussed in greater detail in other chapters
in this book.

General Excel Questions
How do I record a macro? Click the little square icon in the left side of the status bar, at the bot-
tom of Excel’s window.

How do I run a macro? Choose View➜Macros➜Macros (or its shortcut key, Alt+F8). Or, choose
Developer➜Code➜Macros.

What do I do if I don’t have a Developer tab? Right-click anywhere in the Ribbon and choose
Customize the Ribbon. In the Customize Ribbon tab of the Excel Options dialog box, place a
check mark next to Developer (which is in the list labeled Main tabs).

I recorded a macro and saved my workbook. When I reopened it, the macros were gone! Where
did they go? By default, Excel proposes that you destroy your macros when you first save a new
workbook. When you save the file, read Excel’s warning very carefully and don’t accept the
default Yes button. If your workbook contains macros, you must save it as an XLSM file, not an
XLSX file.

What if my question isn’t answered here?
If this chapter doesn’t provide an answer to your question, start by checking this book’s index.
This book includes lots of information that doesn’t qualify as a frequently asked question. If you
still come up empty-handed, check out the resources listed in Appendix A.

Chapter 31: Frequently Asked Questions about Excel Programming 939

How do I hide the Ribbon so that it doesn’t take up so much space? Excel 2010 has a new
Minimize the Ribbon icon, next to the Help icon in the title bar. You can click that icon to toggle
the Ribbon display. Or, use the Ctrl+F1 shortcut key to toggle the display of the Ribbon. If you’d
like to toggle the Ribbon display using VBA, you must resort to using the Sendkeys method:

Sub ToggleRibbon()
 Application.SendKeys “^{F1}”
End Sub

By using an XLM macro, you can remove the Ribbon completely:

ExecuteExcel4Macro “SHOW.TOOLBAR(“”Ribbon””,False)”

When this statement is executed, the user can’t make the Ribbon visible. The only way to get the
Ribbon to display again is to re-run the XLM code, with the last argument set to True.

Where are my old custom toolbars? Click the Add-Ins tab, and you’ll see them in the Custom
Toolbars group.

Can I make my old custom toolbars float? No, you can’t. The old custom toolbars are fixed in
place in the Add-Ins➜Custom Toolbars group.

How can I hide the status bar in Excel 2010? You must use VBA to hide the status bar. The fol-
lowing statement will do the job:

Application.DisplayStatusBar = False

Is there a utility that will convert my Excel application into a stand-alone .exe file? No.

Why doesn’t Ctrl+A select all the cells in my worksheet? That’s probably because the cell
pointer is inside a table. When the active cell is in a table, you must press Ctrl+A three times to
select all worksheet cells. The first time selects the data cells, the second time selects the data
cells and header row, and the third time selects all cells in the worksheet.

Why is the Custom Views command disabled? That’s probably because your workbook contains
a table. Convert the table to a range, and then you can use Views➜Workbook Views➜Custom
Views. Nobody (except Microsoft) knows why that command is disabled when the workbook
contains a table.

How can I add a drop-down list to a cell so the user can choose a value from the list? This tech-
nique doesn’t require any macros. Type the list of valid entries in a single column. You can hide
this column from the user if you wish. Select the cell or cells that will display the list of entries,
choose Data➜Data Tools➜Data Validation, and then click the Settings tab in the Data Validation
dialog box. From the Allow drop-down list, select List. In the Source box, enter a range address
or a reference to the single-column list on your sheet. Make sure the In-Cell Dropdown check box
is selected. If the list is short, you can simply type the items, each separated by a comma.

Part VII: Other Topics940

Can I use this drop-down list method if my list is stored on a different worksheet in the work-
book? Yes. In previous versions of Excel you needed to create a name for the list (for example,
ListEntries). Excel 2010 allows you to use a range in any worksheet, and the worksheet can
even be in a different workbook.

I use Application.Calculation to set the calculation mode to manual. However, this seems to
affect all workbooks and not just the active workbook. The Calculation property is a mem-
ber of the Application object. Therefore, the calculation mode affects all workbooks. You
can’t set the calculation mode for only one workbook. Excel 2000 and later versions provide a
new Worksheet object property: EnableCalculation. When this property is False, the
worksheet will not be calculated, even if the user requests a calculation. Setting the property to
True will cause the sheet to be calculated.

Why doesn’t the F4 function key repeat all my operations? I don’t know. Unfortunately, the very
useful F4 key became much less useful beginning with Excel 2007. For example, if you click the
Insert Worksheet icon (in the row of sheet tabs) and then press F4, Excel does not repeat the
Insert Worksheet command. However, if you insert the worksheet by using Shift+F11, then F4
does repeat the command.

Another example: If you apply a style to a chart (using Chart Tools➜Design➜Chart Styles), press-
ing F4 doesn’t repeat the style. Rather it duplicates all of the series in the chart!

What happened to the ability to “speak” the cell contents? To use those commands, you must
customize your Quick Access toolbar or customize the Ribbon. Perform these tasks in the Excel
Options dialog box. The speech commands are listed in the Commands Not in the Ribbon cate-
gory (they all begin with the word “Speak”).

I opened a workbook, and it has only 65,546 rows. What happened? Excel 2010 worksheets
contain 1,048,576 rows and 16,384 columns. If you’re not seeing this many rows and columns,
then the workbook is in compatibility mode. When Excel opens a workbook that was saved in a
previous version’s file format, it doesn’t automatically convert it to an Excel 2010 workbook. You
need to do it manually: Save the workbook in an Excel 2010 file format, close it, and then re-open
it. You’ll then see the additional rows and columns.

How do I get my old workbook to use the new fonts? Beginning with Excel 2007, the default
font is much easier to read, and not as cramped-looking as in previous versions. To force an old
workbook to use these new fonts, press Ctrl+N to create a blank workbook. Activate your old
workbook and choose the Home tab. Click the very bottom of the vertical scroll bar in the Styles
gallery and choose Merge Styles. In the Merge Styles dialog box, double-click the new workbook
you created with Ctrl+N, and the old styles will be replaced with the new styles. But this works
only with cells that haven’t been formatted with other font attributes. For example, bold cells
retain their old fonts. For these cells, you must update the styles manually.

How do I get a print preview? In Excel 2010, print preview occurs automatically when you
choose File➜Print. Another option is to use the Page Layout view (the icon on the right side of
the status bar).

To get the old-style print preview, you need to use VBA. The following statement displays a print
preview for the active sheet:

ActiveSheet.PrintPreview

Chapter 31: Frequently Asked Questions about Excel Programming 941

When I switch to a new document template, my worksheet no longer fits on a single page.
That’s probably because the new theme uses different fonts. After applying the theme, use the
Page Layout➜Themes➜Fonts control to select your original fonts to use with the new theme. Or,
modify the font size for the Normal style. If page fitting is critical, you should choose the theme
before you do much work on the document.

How do I get rid of the annoying dotted-line page break display in Normal view mode? Open
the Excel Options dialog box, click the Advanced tab, scroll down to the Display Options for This
Worksheet section, and remove the check mark from Show Page Breaks.

Can I add that Show Page Breaks option to my Quick Access toolbar or to the Ribbon? No. For
some reason, this very useful command can’t be added to the Quick Access toolbar or Ribbon.
You can turn off the page break display by using this VBA statement:

ActiveSheet.DisplayPageBreaks = False

I’m trying to apply a table style to a table, but it has no visible effect. What can I do? That’s
probably because the table cells were formatted manually. Select the cells and set the fill color to
No Fill and the font color to Automatic. Then, applying a table style will work.

Can I change the color of the sheet tabs? Right-click the sheet tab and select Tab Color. Tab col-
ors will change if you apply a different document theme.

Can I write VBA macros that play sounds? Yes, you can play WAV and MIDI files, but it requires
Windows Application Programming Interface (API) functions (see Chapter 11). You might prefer
to take advantage of the Speech object. The following statement, when executed, greets the
user by name:

Application.Speech.Speak (“Hello” & Application.UserName)

When I open a workbook, Excel asks whether I want to update the links. I’ve searched all my
formulas and can’t find any links in this workbook. Is this a bug? Probably not. Try using the Edit
Links dialog box (choose File➜Info➜Edit Links to Files). In the Edit Links dialog box, click Break
Link. Keep in mind that links can occur in places other than formulas. If you have a chart in your
workbook, click each data series in the chart and examine the SERIES formula in the formula bar.
If the formula refers to another workbook, you’ve identified the link. To eliminate it, move the
chart’s data into the current workbook and re-create your chart.

If your workbook contains any Excel 5/95 dialog sheets, select each object in each dialog box
and examine the formula bar. If any object contains a reference to another workbook, edit or
delete that reference.

Choose Formulas➜Defined Names➜Name Manager. Scroll down the list in the Name Manager
dialog box and examine the Refers To column. Delete names that refer to another workbook or
that contain an erroneous reference (such as #REF!). This is the most common cause of “phan-
tom links.”

Part VII: Other Topics942

Why does Excel crash every time I start it? When Excel starts, it opens several files, including an
*.xlb file, which contains menu and toolbar customizations. If this file is damaged, it might
cause Excel to crash when it’s started. Also, this file might (for some reason) be very large. In
such a case, this could also cause Excel to crash. Typically, your *.xlb file should be 100K or
smaller.

If Excel crashes when it’s started, try deleting your *.xlb file. To do so, close Excel and search
your hard drive for *.xlb. (The filename and location will vary.) Create a backup copy of this
file, delete the original file, and then try restarting Excel. It’s likely that Excel will now start up
normally, and create a new *.xlb file.

Deleting your *.xlb file will also delete any toolbar or menu customizations that appear in the
Add-Ins tab.

Where can I find examples of VBA code? The Internet has thousands of VBA examples. A good
starting point is my Web site:

http://spreadsheetpage.com

Or, do a search at

http://google.com

The Visual Basic Editor
Can I use the VBA macro recorder to record all my macros? No. Recording is useful for very sim-
ple macros only. Macros that use variables, looping, or any other type of program-flow changes
can’t be recorded. In addition, you can’t record Function procedures. you can, however, often
take advantage of the macro recorder to write some parts of your code or to discover the rele-
vant properties or methods.

I have some macros that are general in nature. I would like to have these available all the time.
What’s the best way to do this? Consider storing those general-purpose macros in your Personal
Macro Workbook. This is a (normally) hidden workbook that is loaded automatically by Excel.
When you record a macro, you have the option of recording it to your Personal Macro Workbook.
The file, Personal.xlsb, is stored in your \XLStart directory.

I can’t find my Personal Macro Workbook. Where is it? The Personal.xlsb file doesn’t exist
until you record a macro to it and then close Excel.

I locked my VBA project with a password, and I forget what it was. Is there any way to unlock
it? Several third-party password-cracking products exist. Use a Web search engine to search for
Excel password. The existence of these products should tell you that Excel passwords aren’t very
secure.

Chapter 31: Frequently Asked Questions about Excel Programming 943

How can I write a macro to change the password of my project? You can’t. The protection ele-
ments of a VBA project aren’t exposed in the object model. Most likely, this was done to make it
more difficult for password-cracking software.

When I insert a new module, it always starts with an Option Explicit line. What does this mean?
If Option Explicit is included at the top of a module, it means that you must declare every
variable before you use it in a procedure (which is a good idea). If you don’t want this line to
appear in new modules, activate the VB Editor, choose Tools➜Options, click the Editor tab, and
clear the Require Variable Declaration check box. Then you can either declare your variables or
let VBA handle the data typing automatically.

Why does my VBA code appear in different colors? Can I change these colors? VBA uses color
to differentiate various types of text: comments, keywords, identifiers, statements with a syntax
error, and so on. You can adjust these colors and the font used by choosing the Tools➜Options
command (Editor Format tab) in the VBE.

Can I delete a VBA module by using VBA code? Yes. The following code deletes Module1 from
the active workbook:

With ActiveWorkbook.VBProject
 .VBComponents.Remove .VBComponents(“Module1”)
End With

This might not work, though. See the next question.

I wrote a macro that adds VBA code to the VB project. When my colleague tries to run it, he
gets an error message. What’s wrong? Excel 2002 introduced a new setting: Trust Access to
Visual Basic Project. By default, this setting is turned off. To change it, choose File➜ Options➜

Trust Center. Click the Trust Center Settings button to display the Trust Center dialog box. Click
the Macro Settings tab and place a check mark next to Trust Access to the VBA Project Object
Model.

How can I write a macro to change the user’s macro security setting? I want to avoid the secu-
rity message when my application is opened.

The ability to change the security level using VBA would pretty much render the entire macro
security system worthless. Think about it.

How does the UserInterfaceOnly option work when protecting a worksheet? When pro-
tecting a worksheet using VBA code, you can use a statement such as

ActiveSheet.Protect UserInterfaceOnly:=True

This causes the sheet to be protected, but your macros can still make changes to the sheet. It’s
important to understand that this setting isn’t saved with the workbook. When the workbook is
re-opened, you’ll need to re-execute the statement in order to reapply the
UserInterfaceOnly protection.

Part VII: Other Topics944

How can I tell whether a workbook has a macro virus? In the VB Editor, activate the project that
corresponds to the workbook. Examine all the code modules (including the ThisWorkbook
code module) and look for VBA code that isn’t familiar to you. Usually, virus code won’t be for-
matted well and will contain many unusual variable names. Another option is to use a commercial
virus-scanning program.

I’m having trouble with the concatenation operator (&) in VBA. When I try to concatenate two
strings, I get an error message. VBA is probably interpreting the ampersand as a type-declaration
character. Make sure that you insert a space before and after the concatenation operator.

I can’t seem to get the VBA line continuation character (underscore) to work. The line continua-
tion sequence is actually two characters: a space followed by an underscore.

I distributed an Excel application to many users. On some machines, my VBA error-handling
procedures don’t work. Why not? The error-handling procedures won’t work if the user has the
Break on All Errors option set. This option is available in the General tab of the Options dialog
box in the VB Editor (choose Tools➜Options). You can’t change this setting with VBA.

Procedures
What’s the difference between a VBA procedure and a macro? Nothing, really. The term macro
is a carry-over from the old days of spreadsheets. These terms are now used interchangeably.

What’s a procedure? A procedure is a grouping of VBA instructions that can be called by name.
If these instructions are to give an explicit result (such as a value) back to the instruction that
called them, they most likely belong to a Function procedure. Otherwise, they probably belong
to a Sub procedure.

What is a variant data type? Variables that aren’t specifically declared are assigned the Variant
type by default, and VBA automatically converts the data to the proper type when it’s used. This
is particularly useful for retrieving values from a worksheet cell when you don’t know in advance
what the cell contains. Generally, it’s a good idea to specifically declare your variables with the
Dim, Public, or Private statement because using variants is a bit slower and isn’t the most
efficient use of memory.

What’s the difference between a variant array and an array of variants? A variant is a unit of mem-
ory with a special data type that can contain any kind of data: a single value or an array of values
(that is, a variant array). The following code creates a variant that contains a three-element array:

Dim X As Variant
X = Array(30, 40, 50)

A normal array can contain items of a specified data type, including nontyped variants. The fol-
lowing statement creates an array that consists of three variants:

Dim X (0 To 2) As Variant

Chapter 31: Frequently Asked Questions about Excel Programming 945

Although a variant containing an array is conceptually different from an array whose elements
are of type Variant, the array elements are accessed in the same way.

What’s a type-definition character? VBA lets you append a character to a variable’s name to
indicate the data type. For example, you can declare the MyVar variable as an integer by tacking
% onto the name, as follows:

Dim MyVar%

VBA supports these type-declaration characters:

 Integer: %

 Long: &

 Single: !

 Double: #

 Currency: @

 String: $

Type-definition characters are included primarily for compatibility. Declaring variables by using
words is the standard approach.

I would like to create a procedure that automatically changes the formatting of a cell based on
the data that I enter. For example, if I enter a value greater than 0, the cell’s background color
should be red. Is this possible? It’s certainly possible, and you don’t need any programming. Use
Excel’s Conditional Formatting feature, accessed with the Home➜Styles➜Conditional Formatting
command.

The Conditional Formatting feature is useful, but I’d like to perform other types of operations
when data is entered into a cell. In that case, you can take advantage of the Change event for a
worksheet object. Whenever a cell is changed, the Change event is triggered. If the code module
for the Sheet object contains a procedure named Worksheet_Change, this procedure will be
executed automatically.

What other types of events can be monitored? Lots! Search the Help system for events to get a
complete listing.

I tried entering an event procedure (Sub Workbook_Open), but the procedure isn’t executed
when the workbook is opened. What’s wrong? You probably put the procedure in the wrong
place. Workbook event procedures must be in the code module for the ThisWorkbook object.
Worksheet event procedures must be in the code module for the appropriate Sheet object, as
shown in the VB Editor Project window.

Another possibility is that macros are disabled. Check your settings in the Trust Center dialog box
(accessible from the Excel Options dialog box).

Part VII: Other Topics946

I can write an event procedure for a particular workbook, but can I write an event procedure
that will work for any workbook that’s open? Yes, but you need to use a class module. Details
are in Chapter 19.

I’m very familiar with creating formulas in Excel. Does VBA use the same mathematical and log-
ical operators? Yes. And it includes some additional operators that aren’t valid in worksheet for-
mulas. These additional VBA operators are listed in the following table:

Operator Function

\ Division with an integer result

Eqv Returns True if both expressions are true or both are false

Imp A bitwise logical implication on two expressions (rarely used)

Is Compares two object variables

Like Compares two strings by using wildcard characters

Xor Returns True if only one expression is true

How can I execute a procedure that’s in a different workbook? Use the Run method of the
Application object. The following instruction executes a procedure named Macro1 located in
the Personal.xlsb workbook:

Run “Personal.xlsb!Macro1”

Another option is to add a reference to the workbook. Do this by choosing the Tools➜References
command in the VBE. After you’ve added a reference, you can then run the procedures in the ref-
erenced workbook without including the name of the workbook.

I’ve used VBA to create several custom functions. I like to use these functions in my worksheet
formulas, but I find it inconvenient to precede the function name with the workbook name. Is
there any way around this? Yes. Convert the workbook that holds the function definitions to an
XLAM add-in. When the add-in is open, you can use the functions in any other worksheet without
referencing the function’s filename.

In addition, if you set up a reference to the workbook that contains the custom functions, you can
use the function without preceding it with the workbook name. To create a reference, choose the
Tools➜References command in the VB Editor.

I would like a particular workbook to be loaded every time I start Excel. I would also like a macro in
this workbook to execute automatically. Am I asking too much? Not at all. To open the workbook
automatically, just store it in your \XLStart directory. To have the macro execute automatically,
create a Workbook_Open macro in the code module for the workbook’s ThisWorkbook object.

I have a workbook that uses a Workbook_Open procedure. Is there a way to prevent this from
executing when I open the workbook? Yes. Hold down Shift when you issue the File➜Open com-
mand. To prevent a Workbook_BeforeClose procedure from executing, press Shift when you
close the workbook. Using the Shift key won’t prevent these procedures from executing when
you’re opening an add-in.

Chapter 31: Frequently Asked Questions about Excel Programming 947

Can a VBA procedure access a cell’s value in a workbook that isn’t open? VBA can’t do it, but
Excel’s old XLM language can. Fortunately, you can execute XLM from VBA. Here’s a simple
example that retrieves the value from cell A1 on Sheet1 in a workbook named myfile.xlsx in
the c:\files directory:

MsgBox ExecuteExcel4Macro(“’c:\files\[myfile.xlsx]Sheet1’!R1C1”)

Note that the cell address must be in R1C1 notation.

How can I prevent the “save file” prompt from being displayed when I close a workbook from
VBA? You can use this statement:

ActiveWorkbook.Close SaveChanges:=False

Or, you can set the workbook’s Saved property to True by using a statement like this:

ActiveWorkbook.Saved = True

This statement, when executed, doesn’t actually save the file, so any unsaved changes will be lost
when the workbook is closed.

A more general solution to avoid Excel prompts is to insert the following instruction:

Application.DisplayAlerts = False

Normally, you’ll want to set the DisplayAlerts property back to True after the file is closed.

How can I set things up so that my macro runs once every hour? You need to use the OnTime
method of the Application object. This enables you to specify a procedure to execute at a
particular time of day. When the procedure ends, use the OnTime method again to schedule
another event in one hour.

How do I prevent a macro from showing in the macro list? To prevent the macro from being
listed in the Macro dialog box (displayed by using View➜Macros➜Macro), declare the procedure
by using the Private keyword:

Private Sub MyMacro()

Or you can add a dummy optional argument, declared as a specific data type:

Sub MyMacro (Optional FakeArg as Long)

Part VII: Other Topics948

Can I save a chart as a .gif file? Yes. The following code saves the first embedded chart on
Sheet1 as a .gif file named Mychart.gif:

Set CurrentChart = Sheets(“Sheet1”).ChartObjects(1).Chart
Fname = ThisWorkbook.Path & “\Mychart.gif”
CurrentChart.Export Filename:=Fname, FilterName:=”GIF”

Are variables in a VBA procedure available to other VBA procedures? What if the procedure is
in a different module? Or in a different workbook? You’re referring to a variable’s scope. The
scope of a variable can be any of three levels: local, module, and public. Local variables have the
narrowest scope and are declared within a procedure. A local variable is visible only to the proce-
dure in which it was declared. Module-level variables are declared at the top of a module, prior to
the first procedure. Module-level variables are visible to all procedures in the module. Public vari-
ables have the broadest scope, and they’re declared by using the Public keyword.

Functions
I created a VBA function for use in worksheet formulas. However, it always returns #NAME?.
What went wrong? You probably put the function in the code module for a Sheet (for example,
Sheet1) or in the ThisWorkbook module. Custom worksheet functions must reside in standard
VBA modules.

I wrote a VBA function that works perfectly when I call it from another procedure, but it doesn’t
work when I use it in a worksheet formula. What’s wrong? VBA functions called from a work-
sheet formula have some limitations. In general, they must be strictly passive. That is, they can’t
change the active cell, apply formatting, open workbooks, or change the active sheet. If the func-
tion attempts to do any of these things, the formula will return an error.

When I access a custom worksheet function with the Insert Function dialog box, it reads “No
help available.” How can I get the Insert Function dialog box to display a description of my
function? To add a description for your custom function, activate the workbook that contains the
Function procedure. Then choose View➜Macros➜Macros to display the Macro dialog box. Your
function won’t be listed, so you must type it into the Macro Name box. After typing the function’s
name, click Options to display the Macro Options dialog box. Enter the descriptive text in the
Description box.

Can I also display help for the arguments for my custom function in the Insert Function dialog
box? Yes. Excel 2010 added a new argument to the MacroOptions method. You can write a
macro to assign descriptions to your function arguments. See Chapter 10 for details.

My custom worksheet function appears in the User Defined category in the Insert Function dialog
box. How can I make my function appear in a different function category? You need to use VBA to
do this. The following instruction assigns the function named MyFunc to Category 1 (Financial):

Application.MacroOptions Macro:=”MyFunc”, Category:=1

Chapter 31: Frequently Asked Questions about Excel Programming 949

The following table lists the valid function category numbers:

Number Category

0 No category (appears only in All)

1 Financial

2 Date & Time

3 Math & Trig

4 Statistical

5 Lookup & Reference

6 Database

7 Text

8 Logical

9 Information

10 Commands (normally hidden)

11 Customizing (normally hidden)

12 Macro Control (normally hidden)

13 DDE/External (normally hidden)

14 User Defined (default)

15 Engineering

How can I create a new function category? Specify a text string for the Category argument in
the MacroOptions method. Here’s an example:

Application.MacroOptions Macro:=”MyFunc”, Category:=”XYZ Corp Functions”

I have a custom function that will be used in a worksheet formula. If the user enters arguments
that are not appropriate, how can I make the function return a true error value (#VALUE!)? If
your function is named MyFunction, you can use the following instruction to return an error
value to the cell that contains the function:

MyFunction = CVErr(xlErrValue)

In this example, xlErrValue is a predefined constant. Constants for the other error values are
listed in the Help system.

I use a Windows API function in my code, and it works perfectly. I gave the workbook to a col-
league, and he gets a compile error. What’s the problem? Most likely, your colleague uses the
64-bit version of Excel 2010. API declarations must be designated as “PtrSafe” in order to
work with 64-bit Excel. For example, the following declaration works with 32-bit Excel versions,
but causes a compile error with 64-bit Excel 2010:

Part VII: Other Topics950

Declare Function GetWindowsDirectoryA Lib “kernel32” _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long

In many cases, making the declaration compatible with 64-bit Excel is as simple as adding the
word “PtrSafe” after the Declare keyword. Adding the PtrSafe keyword works for most
commonly used API functions, but some function might require that you change the data types
for the arguments.

The following declaration is compatible with both 32-bit Excel 2010 and 64-bit Excel 2010:

Declare PtrSafe Function GetWindowsDirectoryA Lib “kernel32” _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long

However, the code will fail in Excel 2007 (and earlier versions) because the PtrSafe keyword
isn’t recognized. Here’s an example of how to use compiler directives to declare an API function
that’s compatible with 32-bit Excel (including versions prior to Excel 2010) and 64-bit Excel:

#If VBA7 And Win64 Then
 Declare PtrSafe Function GetWindowsDirectoryA Lib “kernel32” _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long
#Else
 Declare Function GetWindowsDirectoryA Lib “kernel32” _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long
#End If

The first Declare statement is used when VBA7 and Wind64 are both True — which is the case
only for 16-Bit Excel 2010. In all other versions, the second Declare statement is used.

How can I force a recalculation of formulas that use my custom worksheet function? To force a
single formula to be recalculated, select the cell, press F2, and then press Enter. To force all for-
mulas and functions to be recalculated, press Ctrl+Alt+F9.

Can I use Excel’s built-in worksheet functions in my VBA code? In most cases, yes. You access
Excel’s worksheet functions via the WorksheetFunction method of the Application object.
For example, you could access the SUM worksheet function with a statement such as the following:

Ans = Application.WorksheetFunction.Sum(Range(“A1:A3”))

This example assigns the sum of the values in A1:A3 (on the active sheet) to the Ans variable.

Generally, if VBA includes an equivalent function, you can’t use Excel’s worksheet version. For
example, because VBA has a function to compute square roots (Sqr), you can’t use the SQRT
worksheet function in your VBA code.

Chapter 31: Frequently Asked Questions about Excel Programming 951

Is there any way to force a line break in the text of a message box? Use a carriage return or a
linefeed character to force a new line. The following statement displays the message box text on
two lines (vbNewLine is a built-in constant that represents a carriage return):

MsgBox “Hello” & vbNewLine & Application.UserName

Objects, Properties, Methods, and Events
Is there a listing of the Excel objects I can use? Yes. The Help system has that information.

I’m overwhelmed with all the properties and methods available. How can I find out which meth-
ods and properties are available for a particular object? There are several ways. You can use the
Object Browser available in the VBE. Press F2 to access the Object Browser and then choose
Excel from the Libraries/Workbooks drop-down list. The Classes list (on the left) shows all the
Excel objects. When you select an object, its corresponding properties and methods appear in
the Member Of list on the right.

You can also get a list of properties and methods as you type. For example, enter the following:

Range(“A1”).

When you type the dot, you’ll see a list of all properties and methods for a Range object. If the
list doesn’t appear, choose Tools➜Options (in the VBE), click the Editor tab, and place a check
mark next to Auto List Members. Unfortunately, Auto List Members doesn’t work for all objects.
For example, you won’t see a list of properties and methods when you type this statement:

ActiveSheet.Shapes(1).

And, of course, the Help system for VBA is very extensive; it lists the properties and methods
available for most objects of importance. The easiest way to access these lists is to type the
object name into the Immediate window at the bottom of the VBE and move the cursor any-
where within the object name. Then press F1, and you’ll get the help topic appropriate for the
object.

What’s the story with collections? Is a collection an object? What are collections? A collection,
which is an object that contains a group of related objects, is designated by a plural noun. For
example, the Worksheets collection is an object that contains all the Worksheet objects in a
workbook. You can think of this as an array: Worksheets(1) refers to the first Worksheet
object in the Workbook. Rather than use index numbers, you can also use the actual worksheet
name, such as Worksheets(“Sheet1”). The concept of a collection makes it easy to work
with all related objects at once and to loop through all objects in a collection by using the For
Each-Next construct.

Part VII: Other Topics952

When I refer to a worksheet in my VBA code, I get a “subscript out of range” error. I’m not
using any subscripts. What gives? This error occurs when you attempt to access an element in a
collection that doesn’t exist. For example, the following instruction generates the error if the
active workbook doesn’t contain a worksheet named MySheet:

Set X = ActiveWorkbook.Worksheets(“MySheet”)

How can I prevent the user from scrolling around the worksheet? You can either hide the
unused rows and columns or use a VBA instruction to set the scroll area for the worksheet. The
following instruction, for example, sets the scroll area on Sheet1 so that the user can’t activate
any cells outside of B2:D50:

Worksheets(“Sheet1”).ScrollArea = “B2:D50”

To set scrolling back to normal, use a statement like this:

Worksheets(“Sheet1”).ScrollArea = “”

Keep in mind that the ScrollArea setting is not saved with the workbook. Therefore, you need
to execute the ScrollArea assignment instruction whenever the workbook is opened. This
instruction can go in the Workbook_Open event-handler procedure.

What’s the difference between using Select and Application.Goto? The Select method of the
Range object selects a range on the active worksheet only. Use Application.Goto to select a
range on any worksheet in a workbook. Application.Goto might or might not make another
sheet the active sheet. The Goto method also lets you scroll the sheet so that the range is in the
upper-left corner.

What’s the difference between activating a range and selecting a range? In some cases, the
Activate method and the Select method have exactly the same effect. But in other cases,
they produce quite different results. Assume that range A1:C3 is selected. The following state-
ment activates cell C3. The original range remains selected, but C3 becomes the active cell — that
is, the cell that contains the cell pointer.

Range(“C3”).Activate

Again, assuming that range A1:C3 is selected, the following statement selects a single cell, which
also becomes the active cell:

Range(“C3”).Select

Chapter 31: Frequently Asked Questions about Excel Programming 953

Is there a quick way to delete all values from a worksheet yet keep the formulas intact? Yes.
The following code works on the active sheet and deletes all nonformula cells. (The cell format-
ting isn’t affected.)

On Error Resume Next
Cells.SpecialCells(xlCellTypeConstants, 23).ClearContents

The second argument, 23, is the sum of the values of the following built-in constants: xlErrors
(16), xlLogical (4), xlNumbers (1), and xlTextValues (2).

Using On Error Resume Next prevents the error message that occurs if no cells qualify.

I know how to write a VBA instruction to select a range by using a cell address, but how can I
write one to select a range if I know only its row and column numbers? Use the Cells method.
The following instruction, for example, selects the cell in the 5th row and the 12th column (that is,
cell L5):

Cells(5, 12).Select

When I try to record the File➜Exit command, Excel closes down before I can see what code it
generates. Is there a VBA command to quit Excel? Use the following instruction to end Excel:

Application.Quit

How can I turn off screen updating while a macro is running? The following instruction turns off
screen updating and speeds up macros that modify the display:

Application.ScreenUpdating = False

When your procedure ends, the ScreenUpdating property is set back to True. However, you
can resume screen updating at any time by executing this statement:

Application.ScreenUpdating = False

What’s the easiest way to create a range name in VBA? If you turn on the macro recorder while
you name a range, you get code something like this:

Range(“D14:G20”).Select
ActiveWorkbook.Names.Add Name:=”InputArea”, _
 RefersToR1C1:=”=Sheet1!R14C4:R20C7”

Part VII: Other Topics954

A much simpler method is to use a statement like this:

Sheets(“Sheet1”).Range(“D14:G20”).Name = “InputArea”

How can I determine whether a particular cell or range has a name? You need to check the
Name property of the Name object contained in the Range object. The following function accepts
a range as an argument and returns the name of the range (if it has one). If the range has no
name, the function returns False.

Function RangeName(rng) As Variant
 On Error Resume Next
 RangeName = rng.Name.Name
 If Err <> 0 Then RangeName = False
End Function

Excel 2010 doesn’t seem to have a print preview window. I can see a preview in the Backstage
View (when I choose File➜Print), but I’d like the old-style preview window. The only way to
display the old print preview window is to use a VBA statement.

ActiveSheet.PrintPreview

I have a lengthy macro, and it would be nice to display its progress in the status bar. Can I dis-
play messages in the status bar while a macro is running? Yes. Assign the text to the
StatusBar property of the Application object. Here’s an example:

Application.StatusBar = “Now processing File “ & FileNum

Before your routine finishes, return the status bar back to normal with either of the following
instructions:

Application.StatusBar = False
Application.StatusBar = “”

I recorded a VBA macro that copies a range and pastes it to another area. The macro uses the
Select method. Is there a more efficient way to copy and paste? Yes. Although the macro
recorder generally selects cells before doing anything with them, selecting is not necessary and
can actually slow down your macro. Recording a very simple copy-and-paste operation gener-
ates four lines of VBA code, two of which use the Select method. Here’s an example:

Range(“A1”).Select
Selection.Copy
Range(“B1”).Select
ActiveSheet.Paste

Chapter 31: Frequently Asked Questions about Excel Programming 955

These four lines can be replaced with a single instruction, such as the following:

Range(“A1”).Copy Range(“B1”)

Notice that this instruction doesn’t use the Select method.

I have not been able to find a method to sort a VBA array. Does this mean that I have to copy
the values to a worksheet and then use the Range.Sort method? There is no built-in way to sort
an array in VBA. Copying the array to a worksheet is one method, but you can also write your
own sorting procedure. Many sorting algorithms are available, and some are quite easy to code in
VBA. This book contains VBA code for several sorting techniques.

My macro works with the selected cells, but it fails if something else (like a chart) is selected.
How can I make sure that a range is selected? You can use VBA’s TypeName function to check
the Selection object. Here’s an example:

If TypeName(Selection) <> “Range” Then
 MsgBox “Select a range!”
 Exit Sub
End If

Another approach is to use the RangeSelection property, which returns a Range object that
represents the selected cells on the worksheet in the specified window, even if a graphic object is
active or selected. This property applies to a Window object — not a Workbook object. The fol-
lowing instruction, for example, displays the address of the selected range:

MsgBox ActiveWindow.RangeSelection.Address

How can I determine if a chart is activated? Use a block of code like this:

If ActiveChart Is Nothing Then
 MsgBox “Select a chart”
 Exit Sub
End If

The message box will be displayed only if a chart isn’t activated. (This includes embedded charts
and charts on a chart sheet.)

My VBA macro needs to count the number of rows selected by the user. Using Selection.Rows.
Count doesn’t work when nonadjacent rows are selected. Is this a bug? Actually, this is the way
it’s supposed to work. The Count method returns the number of elements in only the first area
of the selection (a noncontiguous selection has multiple areas). To get an accurate row count,
your VBA code must first determine the number of areas in the selection and then count the
number of rows in each area. Use Selection.Areas.Count to count the number of areas.
Here’s an example that stores the total number of selected rows in the NumRows variable:

Part VII: Other Topics956

NumRows = 0
For Each area In Selection.Areas
 NumRows = NumRows + area.Rows.Count
Next area

By the way, this process is also relevant to counting selected columns and cells.

I use Excel to create invoices. Can I generate a unique invoice number? One way to do this is to
use the Windows Registry. The following code demonstrates:

Counter = GetSetting(“XYZ Corp”, “InvoiceNum”, “Count”, 0)
Counter = Counter + 1
SaveSetting “XYZ Corp”, “InvoiceNum”, “Count”, Counter

When these statements are executed, the current value is retrieved from the Registry, incre-
mented by one, and assigned to the Counter variable. Then this updated value is stored back to
the Registry. You can use the value of Counter as your unique invoice number.

You can adapt this technique for other purposes. For example, you can keep track of the number
of times a workbook has been opened by including similar code in a Workbook_Open procedure.

Is there a workbook property that forces an Excel workbook to always remain visible so it
won’t be hidden by another application’s window? No.

Is there a VBA instruction to select the last entry in a column or row? Normally, I can use
Ctrl+Shift+↓ or Ctrl+Shift+→ to do this, but how can I do it with a macro? The VBA equivalent
for Ctrl+Shift+↓ is the following:

Selection.End(xlDown).Select

The constants used for the other directions are xlToLeft, xlToRight, and xlUp.

How can I determine the last non-empty cell in a particular column? The following instruction
displays the address of the last non-empty cell in column A:

MsgBox ActiveSheet.Cells(Rows.Count, 1).End(xlUp).Address

But that instruction won’t work if the last cell in the column is not empty. To handle that unlikely
occurrence, use this code:

With ActiveSheet.Cells(Rows.Count, 1)
 If IsEmpty(.Value) Then
 MsgBox .End(xlUp).Address
 Else
 MsgBox .Address
 End If
End With

Chapter 31: Frequently Asked Questions about Excel Programming 957

VBA references can be very lengthy, especially when I need to fully qualify an object by refer-
encing its sheet and workbook. Can I reduce the length of these references? Yes. use the Set
statement to create an object variable. Here’s an example:

Dim MyRange as Range
Set MyRange = ThisWorkbook.Worksheets(“Sheet1”).Range(“A1”)

After the Set statement is executed, you can refer to this single-cell Range object simply as
MyRange. For example, you can assign a value to the cell with the following:

MyRange.Value = 10

Besides making it easier to refer to objects, using object variables can also help your code exe-
cute more quickly.

Can I declare an array if I don’t know how many elements it will have? Yes. You can declare a
dynamic array with the Dim statement by using empty parentheses; then allocate storage for that
array later with the ReDim statement when you know how many elements the array should have.
Use ReDim Preserve if you don’t want to lose the current array’s contents when reallocating it.

Can I let the user undo my macro? In some cases, yes — but undoing a macro can’t be done
automatically. to enable the user to undo the effects of your macro, your VBA code module must
keep track of what was changed by the macro and then be capable of restoring the original state
if the user chooses Undo.

To enable the Undo command, use the OnUndo method as the last action in your macro. This
method enables you to specify text that will appear on the Undo menu item and also to specify a
procedure to run if the user chooses Undo. Here’s an example:

Application.OnUndo “The Last Macro”, “MyUndoMacro”

Can I pause a macro so the user can enter data into a certain cell? You can use Excel’s
InputBox statement to get a value from a user and place it in a particular cell. The first instruc-
tion that follows, for example, displays an input box. When the user enters a value, that value is
placed in cell A1.

UserVal = Application.InputBox(prompt:=”Value?”, Type:=1)
If TypeName(UserVal)<>”Boolean” Then Range(“A1”) = UserVal

VBA has an InputBox function, but there’s also an InputBox method for the Application object.
Are these the same? No. Excel’s InputBox method is more versatile because it allows a user to
select a range. In addition, Excel’s InputBox method allows validation of the user’s entry. The
preceding example uses 1 (which represents a numeric value) for the Type argument of the
InputBox method. This ensures that the user enters a value into the input box.

Part VII: Other Topics958

I’m trying to write a VBA instruction that creates a formula. To do so, I need to insert a quote
character (“) within quoted text. How can I do that? Assume that you want to enter the follow-
ing formula into cell B1 with VBA:

=IF(A1=”Yes”,TRUE,FALSE)

The following instruction generates a syntax error because of the embedded quote characters:

Range(“B1”).Formula = “=IF(A1=”Yes”,TRUE,FALSE)” ‘erroneous

The solution is to use two double quotes side by side. When two quotes are embedded within
another set of quotes, Excel interprets the double quote characters as a single quote. The follow-
ing instruction produces the desired result:

Range(“B1”).Formula = “=IF(A1=””Yes””,TRUE,FALSE)”

Another approach is to use VBA’s Chr function with an argument of 34, which returns a quota-
tion mark. The following example demonstrates:

Range(“B1”).Formula = _
 “=IF(A1=” & Chr(34) & “Yes” & Chr(34) & “,TRUE,FALSE)”

Yet another technique is to compose your formula using apostrophes in place of the quote
marks. Then use VBA’s Replace function to replace the apostrophes with quote characters:

MyFormula = “=IF(A1=’Yes’,TRUE,FALSE)”
Range(“B1”).Formula = Replace(MyFormula, “’”, Chr(34))

I created an array, but the first element in that array is being treated as the second element.
What’s wrong? Unless you tell it otherwise, VBA uses 0 as the first index number for an array. If
you want all your arrays to always start with 1, insert the following statement at the top of your
VBA module:

Option Base 1

Or you can specify the upper and lower bounds of an array when you declare it. Here’s an example:

Dim Months(1 To 12) As String

Chapter 31: Frequently Asked Questions about Excel Programming 959

I heard that programming some aspects of Excel can be done only if you use the old XLM macro
language. Is that true? It was true. One of the design goals of Excel 2010 was to remove this limi-
tation and make the features available in VBA.

For example, previous versions required an XLM macro to specify descriptions for arguments in a
custom worksheet function. Excel 2010 added the ArgumentDescriptions argument for the
MacroOptions method. Another example is the new AddIns2 collection, which is comprised
of all open add-ins (not just those that are installed). In earlier versions, accessing open (but
uninstalled) add-ins required an XLM macro.

I would like my VBA code to run as quickly as possible. Any suggestions? Here are a few general
tips:

 Make sure that you declare all your variables. Use Option Explicit at the top of your
modules to force yourself to do this.

 If you reference an Excel object more than once, create an object variable for it.

 Use the With-End With construct whenever possible.

 If your macro writes information to a worksheet, turn off screen updating by using
Application.ScreenUpdating = False.

 If your application enters data into cells that are referenced by one or more formulas, set
the calculation mode to manual to avoid unnecessary calculations.

UserForms
My macro needs to get just a few pieces of information from the user, and a UserForm seems
like overkill. Are there any alternatives? Yes, check out VBA’s MsgBox function and its
InputBox function. Alternatively, you might want to use Excel’s InputBox method.

I have 12 CommandButtons on a UserForm. How can I assign a single macro to be executed
when any of the buttons is clicked? There is no easy way to do this because each
CommandButton has its own Click event procedure. One solution is to call another procedure
from each of the CommandButton_Click procedures. Another solution is to use a class module
to create a new class. This technique is described in Chapter 15.

How can I display a chart in a UserForm? There is no direct way to do this. One solution is to
write a macro that saves the chart to a GIF file and then loads the GIF file into an Image control
on the UserForm. You’ll find an example in Chapter 15.

How can I remove the “X” from the title bar of my UserForm? I don’t want the user to click that
button to close the form. Removing the close button on a UserForm’s title bar requires some
complex API functions. A simpler approach is to intercept all attempts to close the UserForm by
using a UserForm_QueryClose event procedure in the code module for the UserForm. The
following example doesn’t allow the user to close the form by clicking the close button:

Part VII: Other Topics960

Private Sub UserForm_QueryClose _
 (Cancel As Integer, CloseMode As Integer)
 If CloseMode = vbFormControlMenu Then
 MsgBox “You can’t close the form like that.”
 Cancel = True
 End If
End Sub

I created a UserForm with controls that are linked to cells on the worksheet with the
ControlSource property. Is this the best way to do this? In some cases, using links to worksheet
cells can slow your application because the worksheet is recalculated every time a control
changes the cell. In addition, if your UserForm has a Cancel button, the cells might have already
been changed when the user clicks Cancel.

Can I create a control array for a UserForm? It’s possible with Visual Basic, but I can’t figure out
how to do it with Excel VBA. You can’t create a control array, but you can create an array of
Control objects. The following code creates an array consisting of all CommandButton controls:

Private Sub UserForm_Initialize()
 Dim Buttons() As CommandButton
 Cnt = 0
 For Each Ctl In UserForm1.Controls
 If TypeName(Ctl) = “CommandButton” Then
 Cnt = Cnt + 1
 ReDim Preserve Buttons(1 To Cnt)
 Set Buttons(Cnt) = Ctl
 End If
 Next Ctl
End Sub

Is there any difference between hiding a UserForm and unloading a UserForm? Yes, the Hide
method keeps the UserForm in memory but makes it invisible. The Unload statement unloads
the UserForm, beginning the “termination” process (invoking the Terminate event for the
UserForm) and removing the UserForm from memory.

How can I make my UserForm stay open while I do other things? By default, each UserForm is
modal, which means that it must be dismissed before you can do anything else. However, you
can make a UserForm modeless by using vbModeless as the argument for the Show method.
Here’s an example:

UserForm1.Show vbModeless

I need to display a progress indicator like those you see when you’re installing software while a
lengthy process is being executed. How can I do this? You can do this with a UserForm. Chapter
15 describes several different techniques, including one in which the code gradually stretches a
shape inside a frame while the lengthy macro is running.

Chapter 31: Frequently Asked Questions about Excel Programming 961

How can I use Excel’s shapes on my UserForm? You can’t use the shapes directly with a
UserForm, but you can do so indirectly. Start by adding a shape to a worksheet. Then select the
shape and choose Home➜Clipboard➜Copy. Activate your UserForm and insert an Image object.
Press F4 to display the Properties window. Select the Picture property and press Ctrl+V to
paste the Clipboard contents to the Image control. You might also need to set the AutoSize
property to True.

How can I generate a list of files and directories into my UserForm so the user can select a file
from the list? There’s no need to do that. Use VBA’s GetOpenFilename method. This method
displays an Open dialog box in which the user can select a drive, directory, and file. This method
doesn’t open the selected file, so you need to write additional code.

I need to concatenate strings and display them in a ListBox control. But when I do so, they
aren’t aligned properly. How can I get them to display equal spacing between strings? You can
use a monospaced font such as Courier New for the ListBox. A better approach, however, is to
set up your ListBox to use two or more columns. (See Chapter 14 for details.)

Is there an easy way to fill a ListBox or ComboBox control with items? Yes, you can use an
array. The statement that follows adds three items to ListBox1:

ListBox1.List = Array(“Jan”, “Feb”, “Mar”)

Can I display a built-in Excel dialog box from VBA? Many of Excel’s dialog boxes can be dis-
played by using the Application.Dialogs method. For example, the following instruction
displays the dialog box that enables you to format numbers in cells:

Application.Dialogs(xlDialogFormatNumber).Show

However, this method isn’t reliable, and not all of Excel’s dialog boxes are available.

A better option is to execute Ribbon commands (including those that display a dialog box) by
using the ExecuteMso method along with the control name. The statement that follows, for
example, displays the dialog box that enables you to format numbers in a cell:

Application.CommandBars.ExecuteMso(“NumberFormatsDialog”)

See Chapter 22 for more information.

I tried the technique described in the preceding question and received an error message. Why
is that? The ExecuteMso method will fail if the context isn’t appropriate. For example, the fol-
lowing statement displays the Insert Cells dialog box. But if you execute this statement when a
chart is selected or the worksheet is protected, you’ll get an error message.

Application.CommandBars.ExecuteMso (“CellsInsertDialog”)

Part VII: Other Topics962

Every time I create a UserForm, I go through the steps of adding an OK button and a Cancel
button. Is there a way to get these controls to appear automatically? Yes. Set up a UserForm
with the controls that you use most often. Then choose File➜Export File to save the UserForm.
When you want to add a new form to another project, choose File➜Import File.

Can I create a UserForm without a title bar? Yes, but it requires some complex API functions.

When I click a button on my UserForm, nothing happens. What am I doing wrong? Controls
added to a UserForm do nothing unless you write event-handler procedures for them. These pro-
cedures must be located in the code module for the UserForm, and they must have the correct
name.

Can I create a UserForm whose size is always the same, regardless of the video display resolu-
tion? You can, but it’s probably not worth the effort. You can write code to determine the video
resolution and then use the Zoom property of a UserForm to change its size. The normal way to
deal with this matter is simply to design your UserForm for the lowest resolution that will be
used — probably a 1024 × 768 display.

Can I create a UserForm box that lets the user select a range in a worksheet by pointing? Yes.
Use the RefEdit control for this. See Chapter 14 for an example.

Can I change the startup position of a UserForm? Yes, you can set the UserForm’s Left and Top
properties. But for these to be effective, you need to set the UserForm’s StartUpPosition
property to 0.

I use a system with two monitors, and UserForms don’t display in the center of Excel’s window. Is
there a way to force the UserForm to be centered? Yes. Use the following code to display your
UserForm:

 With UserForm1
 .StartUpPosition = 0
 .Left = Application.Left + (0.5 * Application.Width) - (0.5 * .Width)
 .Top = Application.Top + (0.5 * Application.Height) - (0.5 * .Height)
 .Show 0
 End With

Can I make a UserForm that’s resizable by the user? Yes. See Chapter 15 for an example.

Add-Ins
Where can I get Excel add-ins? You can get Excel add-ins from a number of places:

 Excel includes several add-ins that you can use whenever you need them. Use the Add-
Ins dialog box to install them.

 You can download more add-ins from the Microsoft Office Update Web site.

 Third-party developers distribute and sell add-ins for special purposes.

Chapter 31: Frequently Asked Questions about Excel Programming 963

 Many developers create free add-ins and distribute them via their Internet sites.

 You can create your own add-ins.

How do I install an add-in? The most common way to install an add-in is by using the Add-Ins
dialog box. Choose File➜Options. In the Excel Options dialog box, select the Add-Ins tab. Then,
select Excel Add-ins from the Manage drop-down control and click Go. A quicker method to dis-
play the Add-Ins dialog box is to press Alt+TI. Or, if the Developer tab is displayed, choose
Developer➜Add-Ins➜Add-Ins.

You can also open an add-in by using the File➜Open command, but using the Add-Ins dialog box
is the preferred method. An add-in opened with File➜Open can’t be closed without using VBA.

When I install my add-in from Excel’s Add-Ins dialog box, it shows up without a name or
description. How can I give my add-in a description? Before creating the add-in, use the
File➜Info➜Properties➜Advanced Properties command to display the Properties dialog box. Click
the Summary tab. In the Title field, enter the text that you want to appear in the Add-Ins dialog
box. In the Comments field, enter the description for the add-in. Then create the add-in as usual.

I have several add-ins that I no longer use, but I can’t figure out how to remove them from the
Add-Ins Available list in the Add-Ins dialog box. What’s the story? Oddly, there is no way to
remove unwanted add-ins from the list directly from Excel. One way to remove an add-in from the
list is to move or delete the add-in file. Then, when you attempt to open the add-in from the Add-
Ins dialog box, Excel will ask whether you want to remove the add-in from the list. Answer yes.

How do I create an add-in? Activate any worksheet and then choose File➜Save As. Then select
Excel Add-in (*.xlam) from the Save as Type drop-down list. The add-in is created, and the origi-
nal workbook remains open.

I try to create an add-in, but the Save as Type drop-down box doesn’t provide Add-in as an
option. The most likely reason is that the active sheet isn’t a worksheet. An add-in must have at
least one worksheet, and a worksheet must be the active sheet when you save the file as an add-in.

Should I convert all my essential workbooks to add-ins? No! Although you can create an add-in
from any workbook, not all workbooks are suitable. When a workbook is converted to an add-in,
it’s essentially invisible. For most workbooks, being invisible isn’t a good thing.

Do I need to keep two copies of my workbook: the XLSM version and the XLAM version? No,
you can edit an add-in and even convert an add-in back to a normal workbook.

How do I modify an add-in after it has been created? If you need to modify only the VBA code,
no special action is required; you can access the code from the VB Editor and then save your
changes in the VBE. If you need to modify information on a worksheet, activate the VB Editor
(press Alt+F11) and then set the IsAddIn property of the ThisWorkbook object to False.
Make your changes to the worksheet, set the IsAddIn property to True, and resave the file.

What’s the difference between an XLSM file and an XLAM file created from an XLSM file? Is the
XLAM version compiled? Does it run faster? There isn’t a great deal of difference between the
files, and you generally won’t notice any speed differences. VBA code is always compiled before
it’s executed. This is true whether it’s in an XLSM file or an XLAM file. However, XLAM files still
contain the actual VBA code — not some special compiled code. Another difference is that the
workbook is never visible in an XLAM file.

Part VII: Other Topics964

How do I protect the code in my add-in from being viewed by others? Activate the VBE and
choose Tools➜xxxx Properties (where xxxx is the name of your project). Click the Protection tab,
select Lock Project for Viewing, and enter a password. Then save the file.

Are my add-ins safe? In other words, if I distribute an XLAM file, can I be assured that no one
else will be able to view my code? protect your add-in by locking it with a password. This pre-
vents most users from being able to access your code. Recent versions of Excel have improved
the security features, but the password still might be broken by using any of a number of utilities.
Bottom line? Don’t think of an XLAM as being a secure file.

User Interface
How do I use VBA to add a button to the Ribbon? You can’t. You must write special XML code
(known as RibbonX code) and insert the XML document into a workbook file by using third-party
tools. Or, if you’re a glutton for punishment (and know what you’re doing), you can do it by
unzipping the document and making the edits manually.

What are my options for modifying the user interface to make it easy for a user to run my mac-
ros? In Excel 2010, you have these choices:

 Modify the Ribbon by adding RibbonX code (not an easy task).

 Add your macro to the Quick Access toolbar (a manual task that’s not possible to per-
form using VBA).

 Add your macro to the Ribbon (also a manual task that’s not possible to perform
using VBA).

 Assign a shortcut key to the macro.

 Add a new menu item to a shortcut menu.

 Create an old-style toolbar or menu, which will display in the Add-Ins tab.

How do I add a macro to the Quick Access toolbar? Right-click the Quick Access toolbar and
choose Customize Quick Access Toolbar from the shortcut menu. In the Quick Access Toolbar
tab of the Excel Options dialog box, choose Macros from the drop-down list on the left. Select
your macro and click Add. To change the icon or text displayed, click the Modify button.

How do I add a macro to the Ribbon? Right-click the Ribbon and choose Customize the Ribbon from
the shortcut menu. In the Customize Ribbon tab of the Excel Options dialog box, choose Macros
from the drop-down list on the left. Select your macro and click Add. Note that you can’t add a
macro to an existing group. You must first add a new group to a tab by using the New Group button.

How do I use VBA to activate a particular tab on the Ribbon? SendKeys is your only choice.
Press the Alt key to find out the keystroke(s) required. For example, to switch to the Page Layout
tab, use this:

Application.SendKeys “%p{F6}”

Chapter 31: Frequently Asked Questions about Excel Programming 965

This statement works only when Excel is the active window. For example, you can’t execute this
statement directly from the VBE.

How can I disable all the right-click shortcut menus? The following procedure will do the job:

Sub DisableAllShortcutMenus()
 Dim cb As CommandBar
 For Each cb In CommandBars
 If cb.Type = msoBarTypePopup Then _
 cb.Enabled = False
 Next cb
End Sub

Part VII: Other Topics966

PART VIII
Appendixes
APPENDIX A
Excel Resources Online

APPENDIX B
VBA Statements and Functions Reference

APPENDIX C
VBA Error Codes

APPENDIX D
What’s on the CD-ROM

969

A
Excel Resources Online
If I’ve done my job, the information provided in this book will be very useful to you. The book,
however, can’t cover every conceivable topic about Excel. Therefore, I’ve compiled a list of addi-
tional resources that you may find helpful.

I classify these resources into four categories: Excel’s Help system, Microsoft technical support,
Internet newsgroups, and Internet Web sites.

The Excel Help System
Many users forget about an excellent source of information: the Excel Help system. This Help
information is available by clicking the question mark icon in the upper-right corner of Excel’s
window or just by pressing F1. Either of these methods displays Excel Help in a new window. You
can then type your search query and click Search.

If you’re working in the Visual Basic Editor, you can get help by using either of these methods:

 Type a search query in the box to the right of the menu bar and press Enter.

 Move the blinking cursor within any keyword, object, property, or method, and press F1.

The Excel Help system isn’t perfect — it often provides only superficial help and ignores some
topics altogether. But if you’re stuck, a quick search of the Help system may be worth a try.

Microsoft Technical Support
Technical support is the common term for assistance provided by a software vendor. In this case,
I’m talking about assistance that comes directly from Microsoft. Microsoft’s technical support is
available in several different forms.

Part VIII: Appendixes970

Support options
Microsoft’s support options are constantly changing. To find out what options are available (both
free and fee-based), go to

http://support.microsoft.com

Microsoft Knowledge Base
Perhaps your best bet for solving a problem may be the Microsoft Knowledge Base, which is the
primary Microsoft product information source. It’s an extensive, searchable database that con-
sists of tens of thousands of detailed articles containing technical information, bug lists, fix lists,
and more.

You have free and unlimited access to the Knowledge Base via the Internet. To access the
Knowledge Base, go to the following URL, enter some search terms, and click Search:

http://support.microsoft.com/search

Microsoft Excel home page
The official home page of Excel is at

www.microsoft.com/office/excel

This site contains a variety of material, such as tips, templates, answers to questions, training
materials, and links to companion products.

Microsoft Office home page
For information about Office 2010 (including Excel), try this site:

http://office.microsoft.com

You’ll find product updates, add-ins, examples, and lots of other useful information.

As you know, the Internet is a dynamic entity that changes rapidly. Web sites are often
reorganized, so a particular URL listed in this appendix may not be available when you
try to access it.

Appendix A: Excel Resources Online 971

Internet Newsgroups
Usenet is an Internet service that provides access to several thousand special interest groups and
enables you to communicate with people who share common interests. A newsgroup works like a
public bulletin board. You can post a message or questions, and (usually) others reply to your
message.

Thousands of newsgroups cover virtually every topic you can think of (and many that you
haven’t thought of). Typically, questions posed on a newsgroup are answered within 24 hours —
assuming, of course, that you ask the questions in a manner that makes others want to reply.

Accessing newsgroups by using a newsreader
You can use newsreader software to access the Usenet newsgroups. Many such programs are
available, but you probably already have one installed. Depending on your version of Windows,
it’s called Outlook Express, Windows Mail, or Windows Live Mail (a separate download).

Microsoft maintains an extensive list of newsgroups, including quite a few devoted to Excel. If
your Internet service provider doesn’t carry the Microsoft newsgroups, you can access them
directly from Microsoft’s news server. (In fact, that’s the preferred method.) You need to config-
ure your newsreader software (not your Web browser) to access Microsoft’s news server at this
address:

msnews.microsoft.com

Accessing newsgroups by using a Web browser
As an alternative to using newsreader software, you can read and post to the Microsoft news-
groups directly from your Web browser. This option is often significantly slower than using stan-
dard newsgroup software and is best suited for situations in which newsgroup access is
prohibited by network policies.

 Access thousands of newsgroups at Google Groups:

http://groups.google.com

 Access the Microsoft newsgroups (including Excel newsgroups) from this URL:

www.microsoft.com/communities/newsgroups/default.mspx

Table A-1 lists the most popular English-language Excel newsgroups found on Microsoft’s news
server (and also available at Google Groups).

Part VIII: Appendixes972

Table A-1: The Microsoft.Com Excel-Related Newsgroups

Newsgroup Topic

microsoft.public.excel General Excel topics

microsoft.public.excel.charting Building charts with Excel

microsoft.public.excel.interopoledde OLE, DDE, and other cross-application issues

microsoft.public.excel.macintosh Excel issues on the Macintosh operating
system

microsoft.public.excel.misc General topics that don’t fit one of the other
categories

microsoft.public.excel.newusers Help for newcomers to Excel

microsoft.public.excel.printing Printing with Excel

microsoft.public.excel.programming Programming Excel with VBA macros

microsoft.public.excel.templates Spreadsheet Solutions templates and other
Xlt files

microsoft.public.excel.worksheet.functions Worksheet functions

Searching newsgroups
The fastest way to find a quick answer to a question is to search past newsgroup postings. Often,
searching past newsgroup postings is an excellent alternative to posting a question to the news-
group because you can get the answer immediately. Unless your question is very obscure, there’s
an excellent chance that your question has already been asked and answered. The best source
for searching newsgroup postings is Google Groups:

http://groups.google.com

How does searching work? Suppose that you have a problem identifying unique values in a range
of cells. You can perform a search using the following keywords: Excel, Range, and Unique. The
Google search engine probably will find dozens of newsgroup postings that deal with these topics.

If the number of results is too large, refine your search by adding search terms. Sifting through
the messages may take a while, but you have an excellent chance of finding an answer to your
question. In fact, I estimate that at least 90 percent of the questions posted in the Excel news-
groups can be answered by searching Google.

Appendix A: Excel Resources Online 973

Internet Web sites
The World Wide Web has dozens of excellent sites devoted to Excel. I list a few of my favorites
here.

The Spreadsheet Page
http://spreadsheetpage.com

This is my own Web site, which contains files to download, developer tips, instructions for
accessing Excel Easter eggs, spreadsheet jokes, an extensive list of links to other Excel sites, and
information about my books.

Tips for posting to a newsgroup
If you’re new to online newsgroups, here are some pointers:

 1. Conduct a search first to make sure that your question has not already been answered.

 2. Make the subject line descriptive.

 Postings with a subject line like “Help me!” and “Another Question” are less likely to be
answered than postings with a more specific subject, such as “Sizing a Chart’s Plot Area.”

 3. Specify the Excel version that you use.

 In many cases, the answer to your question depends on your version of Excel.

 4. For best results, ask only one question per message.

 5. Make your question as specific as possible.

 6. Keep your question brief and to the point but provide enough information so that some-
one can answer it adequately.

 7. Indicate what you’ve done to try to answer your own question.

 8. Post in the appropriate newsgroup and don’t cross-post to other groups unless the ques-
tion applies to multiple groups.

 9. Don’t type in all uppercase or all lowercase; check your grammar and spelling.

 10. Don’t include a file attachment.

 11. Avoid posting in HTML format. Plain text is the preferred format.

 12. If you request an e-mail reply in addition to a newsgroup reply, don’t use an anti-spam
e-mail address that requires the responder to modify your address.

 Why cause extra work for someone doing you a favor?

Part VIII: Appendixes974

Daily Dose of Excel
http://DailyDoseOfExcel.com

This is a frequently updated Web log created by Dick Kusleika, with about a dozen contributors.
It covers a variety of topics, and readers can leave comments.

Jon Peltier’s Excel Page
http://peltiertech.com/Excel

Those who frequent the microsoft.public.excel.charting newsgroup are familiar with
Jon Peltier. Jon has an uncanny ability to solve practically any chart-related problem. His Web
site contains many Excel tips and an extensive collection of charting examples.

Pearson Software Consulting
http://peltiertech.com/Excel

This site, maintained by Chip Pearson, contains dozens of useful examples of VBA and clever for-
mula techniques.

Contextures
http://contextures.com/

This site is maintained by Deborah Dalgliesh and covers Excel and Access.

Pointy Haired Dilbert
http://chandoo.org/wp/

This is an interesting Excel blog by Chandoo.

Appendix A: Excel Resources Online 975

David McRitchie’s Excel Pages
www.mvps.org/dmcritchie/excel/excel.htm

David’s site is jam-packed with useful Excel information and is updated frequently.

Mr. Excel
www.MrExcel.com

Mr. Excel, also known as Bill Jelen, maintains an extensive site devoted to Excel. The site also fea-
tures a message board.

Part VIII: Appendixes976

977

B
VBA Statements and
Functions Reference
This appendix contains a complete listing of all Visual Basic for Applications (VBA) statements
and built-in functions. For details, consult Excel’s online help.

There are no new VBA statements in Excel 2010.

Table B-1: Summary of VBA Statements

Statement Action

AppActivate Activates an application window

Beep Sounds a tone via the computer’s speaker

Call Transfers control to another procedure

ChDir Changes the current directory

ChDrive Changes the current drive

Close Closes a text file

Const Declares a constant value

Date Sets the current system date

Declare Declares a reference to an external procedure in a Dynamic Link Library (DLL)

DefBool Sets the default data type to Boolean for variables that begin with specified letters

DefByte Sets the default data type to Byte for variables that begin with specified letters

DefCur Sets the default data type to Currency for variables that begin with specified
letters

DefDate Sets the default data type to Date for variables that begin with specified letters

DefDec Sets the default data type to Decimal for variables that begin with specified letters

continued

Part VIII: Appendixes978

Table B-1: Summary of VBA Statements (continued)

Statement Action

DefDbl Sets the default data type to Double for variables that begin with specified letters

DefInt Sets the default data type to Integer for variables that begin with specified letters

DefLng Sets the default data type to Long for variables that begin with specified letters

DefObj Sets the default data type to Object for variables that begin with specified letters

DefSng Sets the default data type to Single for variables that begin with specified letters

DefStr Sets the default data type to String for variables that begin with specified letters

DefVar Sets the default data type to Variant for variables that begin with specified letters

DeleteSetting Deletes a section or key setting from an application’s entry in the Windows Registry

Dim Declares variables and (optionally) their data types

Do-Loop Loops through a set of instructions

End Used by itself, exits the program; also used to end a block of statements that
begin with If, With, Sub, Function, Property, Type, or Select

Enum Declares a type for enumeration

Erase Re-initializes an array

Error Simulates a specific error condition

Event Declares a user-defined event

Exit Do Exits a block of Do-Loop code

Exit For Exits a block of For-Next code

Exit Function Exits a Function procedure

Exit Property Exits a property procedure

Exit Sub Exits a subroutine procedure

FileCopy Copies a file

For Each-Next Loops through a set of instructions for each member of a series

For-Next Loops through a set of instructions a specific number of times

Function Declares the name and arguments for a Function procedure

Get Reads data from a text file

GoSub...Return Branches to and returns from a procedure

GoTo Branches to a specified statement within a procedure

If-Then-Else Processes statements conditionally

Implements Specifies an interface or class that will be implemented in a class module

Input # Reads data from a sequential text file

Kill Deletes a file from a disk

Let Assigns the value of an expression to a variable or property

Line Input # Reads a line of data from a sequential text file

Load Loads an object but doesn’t show it

Appendix B: VBA Statements and Functions Reference 979

Statement Action

Lock...Unlock Controls access to a text file

Lset Left-aligns a string within a string variable

Mid Replaces characters in a string with other characters

MkDir Creates a new directory

Name Renames a file or directory

On Error Gives specific instructions for what to do in the case of an error

On...GoSub Branches, based on a condition

On...GoTo Branches, based on a condition

Open Opens a text file

Option Base Changes the default lower limit for arrays

Option Compare Declares the default comparison mode when comparing strings

Option Explicit Forces declaration of all variables in a module

Option Private Indicates that an entire module is Private

Print # Writes data to a sequential file

Private Declares a local array or variable

Property Get Declares the name and arguments of a Property Get procedure

Property Let Declares the name and arguments of a Property Let procedure

Property Set Declares the name and arguments of a Property Set procedure

Public Declares a public array or variable

Put Writes a variable to a text file

RaiseEvent Fires a user-defined event

Randomize Initializes the random number generator

ReDim Changes the dimensions of an array

Rem Specifies a line of comments (same as an apostrophe [‘])

Reset Closes all open text files

Resume Resumes execution when an error-handling routine finishes

RmDir Removes an empty directory

RSet Right-aligns a string within a string variable

SaveSetting Saves or creates an application entry in the Windows Registry

Seek Sets the position for the next access in a text file

Select Case Processes statements conditionally

SendKeys Sends keystrokes to the active window

Set Assigns an object reference to a variable or property

SetAttr Changes attribute information for a file

Static Declares variables at the procedure level so that the variables retain their values
as long as the code is running

continued

Part VIII: Appendixes980

Table B-1: Summary of VBA Statements (continued)

Statement Action

Stop Pauses the program

Sub Declares the name and arguments of a Sub procedure

Time Sets the system time

Type Defines a custom data type

Unload Removes an object from memory

While...Wend Loops through a set of instructions as long as a certain condition remains true

Width # Sets the output line width of a text file

With Sets a series of properties for an object

Write # Writes data to a sequential text file

Invoking Excel functions in VBA instructions
If a VBA function that’s equivalent to one you use in Excel isn’t available, you can use Excel’s
worksheet functions directly in your VBA code. Just precede the function with a reference to the
WorksheetFunction object. For example, VBA doesn’t have a function to convert radians to
degrees. Because Excel has a worksheet function for this procedure, you can use a VBA instruc-
tion such as the following:

Deg = Application.WorksheetFunction.Degrees(3.14)

The WorksheetFunction object was introduced in Excel 97. For compatibility with earlier ver-
sions of Excel, you can omit the reference to the WorksheetFunction object and write an
instruction such as the following:

Deg = Application.Degrees(3.14)

There are no new VBA functions in Excel 2010.

Table B-2: Summary of VBA Functions

Function Action

Abs Returns the absolute value of a number

Array Returns a variant containing an array

Asc Converts the first character of a string to its ASCII value

Atn Returns the arctangent of a number

Appendix B: VBA Statements and Functions Reference 981

Function Action

CallByName Executes a method, or sets or returns a property of an object

CBool Converts an expression to a Boolean data type

CByte Converts an expression to a Byte data type

CCur Converts an expression to a Currency data type

CDate Converts an expression to a Date data type

CDbl Converts an expression to a Double data type

CDec Converts an expression to a Decimal data type

Choose Selects and returns a value from a list of arguments

Chr Converts a character code to a string

CInt Converts an expression to an Integer data type

CLng Converts an expression to a Long data type

Cos Returns the cosine of a number

CreateObject Creates an Object Linking and Embedding (OLE) Automation object

CSng Converts an expression to a Single data type

CStr Converts an expression to a String data type

CurDir Returns the current path

CVar Converts an expression to a variant data type

CVDate Converts an expression to a Date data type (for compatibility, not recommended)

CVErr Returns a user-defined error value that corresponds to an error number

Date Returns the current system date

DateAdd Adds a time interval to a date

DateDiff Returns the time interval between two dates

DatePart Returns a specified part of a date

DateSerial Converts a date to a serial number

DateValue Converts a string to a date

Day Returns the day of the month of a date

DDB Returns the depreciation of an asset

Dir Returns the name of a file or directory that matches a pattern

DoEvents Yields execution so the operating system can process other events

Environ Returns an operating environment string

EOF Returns True if the end of a text file has been reached

Error Returns the error message that corresponds to an error number

Exp Returns the base of natural logarithms (e) raised to a power

FileAttr Returns the file mode for a text file

FileDateTime Returns the date and time when a file was last modified

continued

Part VIII: Appendixes982

Table B-2: Summary of VBA Functions (continued)

Function Action

FileLen Returns the number of bytes in a file

Filter Returns a subset of a string array, filtered

Fix Returns the integer portion of a number

Format Displays an expression in a particular format

FormatCurrency Returns an expression formatted with the system currency symbol

FormatDateTime Returns an expression formatted as a date or time

FormatNumber Returns an expression formatted as a number

FormatPercent Returns an expression formatted as a percentage

FreeFile Returns the next available file number when working with text files

FV Returns the future value of an annuity

GetAllSettings Returns a list of settings and values from the Windows Registry

GetAttr Returns a code representing a file attribute

GetObject Retrieves an OLE Automation object from a file

GetSetting Returns a specific setting from the application’s entry in the Windows Registry

Hex Converts from decimal to hexadecimal

Hour Returns the hour of a time

IIf Evaluates an expression and returns one of two parts

Input Returns characters from a sequential text file

InputBox Displays a box to prompt a user for input

InStr Returns the position of a string within another string

InStrRev Returns the position of a string within another string from the end of the string

Int Returns the integer portion of a number

IPmt Returns the interest payment for a given period of an annuity

IRR Returns the internal rate of return for a series of cash flows

IsArray Returns True if a variable is an array

IsDate Returns True if a variable is a date

IsEmpty Returns True if a variable has not been initialized

IsError Returns True if an expression is an error value

IsMissing Returns True if an optional argument was not passed to a procedure

IsNull Returns True if an expression contains a Null value

IsNumeric Returns True if an expression can be evaluated as a number

IsObject Returns True if an expression references an OLE Automation object

Join Combines strings contained in an array

LBound Returns the smallest subscript for a dimension of an array

Appendix B: VBA Statements and Functions Reference 983

Function Action

LCase Returns a string converted to lowercase

Left Returns a specified number of characters from the left of a string

Len Returns the number of characters in a string

Loc Returns the current read or write position of a text file

LOF Returns the number of bytes in an open text file

Log Returns the natural logarithm of a number

LTrim Returns a copy of a string with no leading spaces

Mid Returns a specified number of characters from a string

Minute Returns the minute of a time

MIRR Returns the modified internal rate of return for a series of periodic cash flows

Month Returns the month of a date as a number

MonthName Returns the month of a date as a string

MsgBox Displays a modal message box

Now Returns the current system date and time

NPer Returns the number of periods for an annuity

NPV Returns the net present value of an investment

Oct Converts from decimal to octal

Partition Returns a string representing a range in which a value falls

Pmt Returns a payment amount for an annuity

Ppmt Returns the principal payment amount for an annuity

PV Returns the present value of an annuity

QBColor Returns a red/green/blue (RGB) color code

Rate Returns the interest rate per period for an annuity

Replace Returns a string in which a substring is replaced with another string

RGB Returns a number representing an RGB color value

Right Returns a specified number of characters from the right of a string

Rnd Returns a random number between 0 and 1

Round Returns a rounded number

RTrim Returns a copy of a string with no trailing spaces

Second Returns the seconds portion of a specified time

Seek Returns the current position in a text file

Sgn Returns an integer that indicates the sign of a number

Shell Runs an executable program

Sin Returns the sine of a number

SLN Returns the straight-line depreciation for an asset for a period

continued

Part VIII: Appendixes984

Table B-2: Summary of VBA Functions (continued)

Function Action

Space Returns a string with a specified number of spaces

Spc Positions output when printing to a file

Split Returns a one-dimensional array containing a number of substrings

Sqr Returns the square root of a number

Str Returns a string representation of a number

StrComp Returns a value indicating the result of a string comparison

StrConv Returns a converted string

String Returns a repeating character or string

StrReverse Returns a string, reversed

Switch Evaluates a list of Boolean expressions and returns a value associated with the first
True expression

SYD Returns the sum-of-years’ digits depreciation of an asset for a period

Tab Positions output when printing to a file

Tan Returns the tangent of a number

Time Returns the current system time

Timer Returns the number of seconds since midnight

TimeSerial Returns the time for a specified hour, minute, and second

TimeValue Converts a string to a time serial number

Trim Returns a string without leading spaces and/or trailing spaces

TypeName Returns a string that describes the data type of a variable

UBound Returns the largest available subscript for a dimension of an array

UCase Converts a string to uppercase

Val Returns the number formed from any initial numeric characters of a string

VarType Returns a value indicating the subtype of a variable

Weekday Returns a number indicating a day of the week

WeekdayName Returns a string indicating a day of the week

Year Returns the year of a date

985

C
VBA Error Codes
This appendix contains a complete listing of the error codes for all trappable errors in Visual
Basic for Applications (VBA). This information is useful for error trapping. For complete details,
consult Excel’s Help system.

Error
Code

Message

3 Return without GoSub.

5 Invalid procedure call or argument.

6 Overflow (for example, value too large for an integer).

7 Out of memory. This error rarely refers to the amount of physical memory installed on your sys-
tem. Rather, it usually refers to a fixed-size area of memory used by Excel or Windows (for
example, the area used for graphics or custom formats).

9 Subscript out of range. You will also get this error message if a named item is not found in a col-
lection of objects. For example, if your code refers to Sheets(“Sheet2”), and Sheet2 does
not exist.

10 This array is fixed or temporarily locked.

11 Division by zero.

13 Type mismatch.

14 Out of string space.

16 Expression too complex.

17 Can’t perform requested operation.

18 User interrupt occurred. This error occurs if the user interrupts a macro by pressing the
Cancel key.

20 Resume without error. This error probably indicates that you forgot the Exit Sub statement
before your error handler code.

28 Out of stack space.

35 Sub or Function not defined.

47 Too many Dynamic Link Library (DLL) application clients.

48 Error in loading DLL.

continued

Part VIII: Appendixes986

Error
Code

Message (continued)

49 Bad DLL calling convention.

51 Internal error.

52 Bad filename or number.

53 File not found.

54 Bad file mode.

55 File already open.

57 Device Input/Output (I/O) error.

58 File already exists.

59 Bad record length.

61 Disk full.

62 Input past end of file.

63 Bad record number.

67 Too many files.

68 Device unavailable.

70 Permission denied.

71 Disk not ready.

74 Can’t rename with different drive.

75 Path/File access error.

76 Path not found.

91 Object variable or With block variable not set. This error occurs if you don’t use Set at the
beginning of a statement that creates an object variable. Or, it occurs if you refer to a worksheet
object (such as ActiveCell) when a chart sheet is active.

92 For loop not initialized.

93 Invalid pattern string.

94 Invalid use of Null.

96 Unable to sink events of object because the object is already firing events to the maximum num-
ber of event receivers that it supports.

97 Cannot call friend function on object that is not an instance of defining class.

98 A property or method call can’t include a reference to a private object, either as an argument or
as a return value.

321 Invalid file format.

322 Can’t create necessary temporary file.

325 Invalid format in resource file.

380 Invalid property value.

381 Invalid property array index.

382 Set not supported at runtime.

Appendix C: VBA Error Codes 987

Error
Code

Message

383 Set not supported (read-only property).

385 Need property array index.

387 Set not permitted.

393 Get not supported at runtime.

394 Get not supported (write-only property).

422 Property not found.

423 Property or method not found.

424 Object required. This error occurs if text preceding a dot is not recognized as an object.

429 ActiveX component can’t create object (might be a registration problem with a library that
you’ve referenced).

430 Class doesn’t support Automation or doesn’t support expected interface.

432 Filename or class name not found during Automation operation.

438 Object doesn’t support this property or method.

440 Automation error.

442 Connection to type library or object library for remote process has been lost.

443 Automation object doesn’t have a default value.

445 Object doesn’t support this action.

446 Object doesn’t support named arguments.

447 Object doesn’t support current locale setting.

448 Named argument not found.

449 Argument not optional.

450 Wrong number of arguments or invalid property assignment.

451 Property Let procedure not defined, and Property Get procedure did not return an
object.

452 Invalid ordinal.

453 Specified DLL function not found.

454 Code resource not found.

455 Code resource lock error.

457 Key is already associated with an element of this collection.

458 Variable uses an Automation type not supported in Visual Basic.

459 Object or class doesn’t support the set of events.

460 Invalid Clipboard format.

461 Method or data member not found.

462 Remote server machine doesn’t exist or is unavailable.

463 Class not registered on local machine.

continued

Part VIII: Appendixes988

Error
Code

Message (continued)

481 Invalid picture.

482 Printer error.

735 Can’t save file to TEMP.

744 Search text not found.

746 Replacements too long.

1004 Application-defined or object-defined error. This is a very common catch-all error message. This
error occurs when an error doesn’t correspond to an error defined by VBA. In other words, the
error is defined by Excel (or some other object) and is propagated back to VBA.

989

D
What’s on the CD-ROM
This appendix describes the contents of the CD-ROM that accompanies this book. For any last-
minute changes, please refer to the ReadMe file located at the root of the CD.

This appendix provides information on the following topics:

 System requirements

 Using the CD

 Files and software on the CD

 Troubleshooting

System Requirements
Make sure that your computer meets the minimum system requirements listed in this section. If
your computer doesn’t match up to most of these requirements, you may have a problem using
the contents of the CD.

 A Windows PC with Microsoft Excel 2010

 A CD-ROM drive

Using the CD
To install the items from the CD to your hard drive, follow these steps:

 1. Insert the CD into your computer’s CD-ROM drive.

The interface won’t launch if you have autorun disabled. In that case, choose
Start➜Run. In the dialog box that appears, type D:\start.exe. (Replace D with the
proper letter if your CD drive uses a different letter. If you don’t know the letter, see
how your CD drive is listed under My Computer [or Computer].) Click OK.

Part VIII: Appendixes990

 2. The CD-ROM interface appears.

 The interface provides a simple point-and-click way to explore the contents of the CD.

Files and Software on the CD
The following sections provide more details about the software and other materials available on
the CD.

Applications
Adobe Reader is a freeware application for viewing files in the Adobe Portable Document format.

Shareware programs are fully functional, trial versions of copyrighted programs. If you like par-
ticular programs, register with their authors for a nominal fee and receive licenses, enhanced ver-
sions, and technical support.

Freeware programs are copyrighted games, applications, and utilities that are free for personal
use. Unlike shareware, these programs do not require a fee or provide technical support.

GNU software is governed by its own license, which is included inside the folder of the GNU
product. See the GNU license for more details.

Trial, demo, or evaluation versions are usually limited either by time or functionality (such as
being unable to save projects). Some trial versions are very sensitive to system date changes. If
you alter your computer’s date, the programs will “time out” and no longer be functional.

eBook version of Excel 2010 Power Programming with VBA
The complete text of the book you hold in your hands is provided on the CD in Adobe’s Portable
Document Format (PDF). You can read and quickly search the content of this PDF file by using
Adobe’s Acrobat Reader, also included on the CD. Or, you can load the file onto an ebook reader,
such as Kindle.

Sample files for Excel 2010 Power Programming with VBA
The CD contains more than 300 files used as examples in the book. The files are organized by
chapter. With a few exceptions, the files are all Excel 2010 files that have one of the following
extensions:

 .xlsx: An Excel workbook file.

 .xlsm: An Excel workbook file that contains VBA macros.

 .xlam: An Excel add-in file that contains VBA macros.

Appendix D: What’s on the CD-ROM 991

When you open an XLSM file, Excel may display a security warning that tells you that macros
have been disabled. To enable macros, click the Options button in the security warning panel and
then select Enable This Content.

Because the files on this CD are from a trusted source, you may want to copy the files to your
hard drive and then designate the folder as a trusted location. To do so, follow these steps:

 1. Open an Explorer window and double-click the CD-ROM drive that contains the compan-
ion CD-ROM.

 2. Right-click the folder that corresponds to the root folder for the sample files and choose
Copy from the shortcut menu.

 3. Activate the folder on your hard drive where you’d like to copy the files, right-click the
directory, and choose Paste from the shortcut menu.

 The CD-ROM files will be copied to a subfolder in the folder you specified in Step 3.

To designate this new folder as a trusted location:

 1. Start Excel and choose File➜Options to display the Excel Options dialog box.

 2. In the Excel Options dialog box, click the Trust Center tab.

 3. Click the Trust Center Settings button.

 4. In the Trust Center dialog box, click the Trusted Locations tab.

 5. Click the Add New Location button to display the Microsoft Office Trusted Location dia-
log box.

 6. In the Microsoft Office Trusted Location dialog box, click the Browse button and locate
the folder that contains the files copied from the CD-ROM.

 7. Make sure you select the option labeled Subfolders of This Location Are Also Trusted.

After performing these steps, when you open XLSM files from this location, the macros are
enabled and you don’t see the security warning.

Following is a list of the sample files, along with a brief description. Examples that use multiple
files are contained in a separate subdirectory.

Some chapters don’t use any sample files.

Chapter 3
 array formula examples.xlsx: A workbook that contains various examples of

array formulas.

 counting and summing examples.xlsx: A workbook that contains examples of
counting and summing formulas.

Part VIII: Appendixes992

 megaformula.xlsm: A workbook that demonstrates intermediate formulas, a
megaformula, and a VBA function.

 named formulas.xlsx: A workbook that contains several examples of named
formulas.

 yearly calendar.xlsx: A workbook that contains a yearly calendar, generated
using array formulas.

Chapter 4
 sample.xlsm: A sample file used to demonstrate the file structure of an Excel workbook.

Chapter 6
 worksheet controls.xlsx: A workbook that demonstrates the use of ActiveX con-

trols on a worksheet (with no macros).

Chapter 7
 comment object.xlsm: A workbook that demonstrates some ways to manipulate
Comment objects using VBA.

Chapter 8
 timing test.xlsm: A workbook that demonstrates the speed advantage of declaring

variables as a specific data type.

Chapter 9
 sheet sorter.xlsm: A macro that sorts worksheets in a workbook.

Chapter 10

 array argument.xlsm: A workbook that contains an example of a function that uses
an array argument.

 commission functions.xlsm: A workbook that contains an example of a function
that uses an argument.

 draw.xlsm: A workbook that contains a function that selects a cell randomly.

 extended date functions.xlsm: A workbook that demonstrates functions to work
with pre-1900 dates.

 extended date functions help.docx: A Word document that describes the
extended data functions.

Appendix D: What’s on the CD-ROM 993

 key press.xlsm: A workbook that uses an API function to determine if the Ctrl, Shift,
or Alt key is pressed.

 month names.xlsm: A workbook that demonstrates returning an array from a function.

 mysum function.xlsm: A workbook that contains a function that simulates Excel’s
SUM function.

 no argument.xlsm: A workbook that contains functions that don’t use an argument.

 remove vowels.xlsm: A workbook that contains a function that removes the vowels
from its argument.

 upper case.xlsm: A workbook that contains a function that converts text to uppercase.

 win32api.txt: A text file that contains Windows API declarations and constants.

 windows directory.xlsm: A workbook that uses an API function to determine the
Windows directory.

Chapter 11

 about range selection.xlsm: A workbook that contains a macro that describes
the current range selection.

 \batch processing: A directory that contains files used by the batch processing
example.

 celltype function.xlsm: A workbook that contains a function that describes the
data type of its single-cell argument.

 copy multiple selection.xlsm: A workbook that contains a macro that copies a
noncontiguous range selection.

 date and time.xlsm: A workbook that contains a macro that displays the current
date and time.

 delete empty rows.xlsm: A workbook that contains a macro that deletes all empty
rows in a workbook.

 drive information.xlsm: A workbook that uses API functions to list information
about all disk drives.

 duplicate rows.xlsm: A workbook that contains a macro that duplicates rows,
based on the contents of a cell.

 efficient looping.xlsm: A workbook that demonstrates an efficient way to loop
through a range.

 file association.xlsm: A workbook that contains an API function that returns the
application associated with a particular file.

 hide rows and columns.xlsm: A workbook that contains a macro that hides all
rows and columns that are outside of the current range selection.

Part VIII: Appendixes994

 inputbox demo.xlsm: A workbook that contains a macro that demonstrates how to
prompt for a value.

 inrange function.xlsm: A workbook that contains a function that determines
whether a range is contained in another range.

 list fonts.xlsm: A workbook that contains a macro that lists all installed fonts.

 loop vs array fill range.xlsm: A workbook that contains macros that demon-
strate ways to fill a range of cells.

 next empty cell.xlsm: A workbook that contains a macro that determines the next
empty cell in a column.

 page count.xlsm: A workbook that contains a macro that counts the number of
printed pages in a workbook.

 printer info.xlsm: A workbook that contains an API function that returns informa-
tion about the active printer.

 prompt for a range.xlsm: A workbook that contains a macro that demonstrates
how to prompt for a user-selected range.

 range selections.xlsm: A workbook that contains macros that perform various
types of range selections.

 select by value.xlsm: A workbook that contains a macro that demonstrates how
to select cells based on their values.

 sorting demo.xlsm: A workbook that contains macros that demonstrate four ways to
sort an array.

 \sound.xlsm: A directory that contains files to demonstrate generating sound in Excel.

 synchronize sheets.xlsm: A workbook that contains a macro that synchronizes
worksheets.

 \value from closed workbook: A directory that includes files to demonstrate how
to use a function to retrieve a value from a closed workbook.

 variant transfer.xlsm: A workbook that contains a macro that transfers a range
to a variant array.

 vba utility functions.xlsm: A workbook that contains several useful functions
for use in your VBA code.

 video mode.xlsm: A workbook that contains an API function that determines the cur-
rent video mode.

 windows registry.xlsm: A workbook that contains macros that read from and write
to the Windows Registry.

 worksheet functions.xlsm: A workbook that contains some useful worksheet
functions created using VBA.

Appendix D: What’s on the CD-ROM 995

Chapter 12

 data form example.xlsm: A workbook that contains a macro that displays Excel’s
built-in data form.

 get directory.xlsm: A workbook that contains macros that demonstrate two ways
to prompt a user for a directory.

 inputbox method.xlsm: A workbook that contains macros that demonstrate the use
of Excel’s InputBox method.

 prompt for file.xlsm: A workbook that demonstrates how to prompt for one or
more file names.

 ribbon control names.xlsx: A workbook that lists all of the Excel 2007 and Excel
2010 Ribbon control names.

 VBA inputbox.xlsm: A workbook that contains macros that demonstrate the use of
the VBA InputBox function.

Chapter 13

 activex worksheet controls.xlsx: A workbook that demonstrates the use of
ActiveX controls on a worksheet (with no macros).

 all userform controls.xlsm: A workbook that contains a UserForm that uses all
available controls.

 get name and sex.xlsm: A workbook that contains a simple UserForm example.

 newcontrols.pag: A file that contains customized controls that can be imported into
your UserForm Toolbox as a new page.

 spinbutton and textbox.xlsm: A workbook that demonstrates the use of a paired
SpinButton control and TextBox control in a UserForm.

 spinbutton events.xlsm: A workbook that demonstrates SpinButton events.

 userform events.xlsm: A workbook that demonstrates UserForm events.

Chapter 14

 change userform size.xlsm: A workbook that demonstrates how to use VBA to
change the size of a UserForm.

 date and time picker.xlsm: A workbook that demonstrates the use of the Date
and Time Picker control.

 listbox activate sheet.xlsm: A workbook that demonstrates how to allow a
user to select a sheet by using a ListBox control.

Part VIII: Appendixes996

 listbox fill.xlsm: A workbook that demonstrates how to fill a ListBox control in
a UserForm.

 listbox item transfer.xlsm: A workbook that demonstrates how to transfer
items between two ListBox controls.

 listbox move items.xlsm: A workbook that demonstrates how to allow the user to
change the order of items in a ListBox control.

 listbox multicolumn1.xlsm: A workbook that demonstrates a range-based multi-
column ListBox control.

 listbox multicolumn2.xlsm: A workbook that demonstrates an array-based multi-
column ListBox control.

 listbox multiple lists.xlsm: A workbook that demonstrates how to display
multiple lists in a single ListBox control.

 listbox select rows.xlsm: A workbook that demonstrates how to allow a user to
select worksheet rows by using a ListBox control.

 listbox selected items.xlsm: A workbook that demonstrates how to identify the
selected item(s) in a ListBox.

 listbox unique items1.xlsm: A workbook that demonstrates how to fill a
ListBox control with unduplicated items.

 listbox unique items2.xlsm: A variation of the listbox unique items1.
xlsm example that also sorts the items.

 \mediaplayer: A folder that contains mediaplayer.xlsm (a workbook that dem-
onstrates the Media Player control), plus several MP3 audio files.

 multipage control demo.xlsm: A workbook that demonstrates the MultiPage
control in a UserForm.

 queryclose demo.xlsm: A workbook that demonstrates how to prevent a user from
closing a UserForm by clicking its Close button in the title bar.

 random number generator.xlsm: A workbook that demonstrates how to program
simple animation in a UserForm.

 range selection demo.xlsm: A workbook that demonstrates the RefEdit control
in a UserForm.

 resizable userform api.xlsm: A workbook that demonstrates how to use a
Windows API function to allow the user to change the size of a UserForm.

 splash screen.xlsm: A workbook that demonstrates how to use a UserForm as a
splash screen that displays when a workbook is opened.

 userform menus.xlsm: A workbook that demonstrates how to use a UserForm to dis-
play a menu of macros.

Appendix D: What’s on the CD-ROM 997

 zoom and scroll sheet.xlsm: A workbook that demonstrates how to zoom and
scroll a worksheet while a UserForm is displayed.

 zoom userform.xlsm: A workbook that demonstrates how to allow the user to
change the size of a UserForm.

Chapter 15

 chart in userform.xlsm: A workbook that demonstrates how to display a chart in
a UserForm.

 \dataform: This directory contains the Enhanced Data Form add-in created by the
author.

 excel lightbox.xlsm: A workbook that demonstrates how to darken the Excel win-
dow while a UserForm is displayed.

 getacolor function.xlsm: A workbook that contains a function that allows the
user to select a color by using controls on a UserForm.

 modeless userform1.xlsm: A workbook that demonstrates how to display a mode-
less UserForm to display information about the active cell.

 modeless userform2.xlsm: A more sophisticated version of modeless user-
form1.xlsm.

 move controls.xlsm: A workbook that demonstrates how to allow the user to move
controls on a UserForm.

 msgbox emulation.xlsm: A workbook that contains macros that simulate the VBA
MsgBox function.

 multiple buttons.xlsm: A workbook that demonstrates how to use a class module
to allow a single procedure to handle events for multiple controls on a UserForm.

 no title bar.xlsm: A workbook that uses API functions to display a UserForm with-
out a title bar.

 progress indicator1.xlsm: A workbook that displays a progress indicator in a
UserForm.

 progress indicator2.xlsm: A workbook that uses a MultiPage control to display
a progress indicator in a UserForm.

 progress indicator3.xlsm: A workbook that displays a progress indicator in a
UserForm by changing the size of the UserForm.

 resizable userform.xlsm: A workbook that demonstrates a UserForm that’s resiz-
able by the user.

 semitransparent userform.xlsm: A workbook that demonstrates how to display
a semitransparent UserForm.

Part VIII: Appendixes998

 simulated toolbar.xlsm: A workbook that uses a UserForm to simulate a toolbar.

 sliding tile puzzle.xlsm: A workbook that contains a UserForm with a sliding
tile puzzle.

 splash screen2.xlsm: The splash screen.xlsm example from Chapter 14, with
a UserForm that doesn’t have a title bar.

 video poker.xlsm: A workbook that displays a video poker game in a UserForm.

 wizard demo.xlsm: A workbook that uses a MultiPage control to display a simple
wizard UserForm.

Chapter 16

 simple undo demo.xlsm: A workbook that demonstrates a method to undo the
effects of a VBA macro.

 text tools.xlam: An add-in that adds text manipulation features to Excel.

 text tools.chm: The help file for text tools.xlam.

 \text tools help source: The source files used to create the texttools.chm
help file.

Chapter 17

 budget pivot table.xlsm: A workbook that contains data suitable for a pivot table.

 normalized data.xlsx: A workbook that shows the difference between normalized
data and summarized data.

 reverse pivot table.xlsm: A workbook that contains a macro that converts a
summary table into a 3-column data table.

 simple pivot table.xlsm: A workbook that contains data suitable for a pivot table.

 survey data pivot tables.xlsm: A workbook that contains a macro to generate
28 pivot tables from a range of data.

Chapter 18

 animated charts.xlsm: A workbook that demonstrates how to use VBA to animate
charts.

 chart active cell.xlsm: A workbook that contains a macro that displays a chart
that uses data based on the active cell position.

Appendix D: What’s on the CD-ROM 999

 chart image map.xlsm: A workbook that uses chart events to create a simple click-
able image map.

 chart in userform.xlsm: A workbook that displays a chart in a UserForm, using
the data based on the active cell position.

 climate data.xlsx: An interactive chart application that uses no macros.

 data labels.xlsm: A workbook that contains a macro that applies chart data labels
that are stored in a range.

 events - chart sheet.xlsm: A workbook that demonstrates events for a chart on
a chart sheet.

 events - embedded chart.xlsm: A workbook that demonstrates events for an
embedded chart.

 export all graphics.xlsm: A workbook that contains a macro that exports all
graphic objects in a workbook.

 format all charts.xlsm: A workbook that contains a macro that changes the for-
matting of all charts on a worksheet.

 get series ranges.xlsm: A workbook that contains functions that identify the
ranges used in a chart.

 hide and unhide series.xlsm: A workbook that contains check boxes that allow
a user to indicate which chart series to display.

 hypocycloid - animated.xlsm: A workbook that includes macros to display an
animated hypocycloid chart.

 mouseover event - chart sheet.xlsm: A workbook that demonstrates the
MouseOver event for a chart sheet.

 mouseover event - embedded.xlsm: A workbook that demonstrates the
MouseOver event for an embedded chart.

 scrolling chart.xlsm: A workbook that demonstrates how to create an animated
scrolling chart.

 size and align charts.xlsm: A workbook that contains a macro that sizes and
aligns all charts on a worksheet.

 sparkline report.xlsm: A workbook that generates a report that describes
Sparkline graphics on a worksheet.

 unlinked chart.xlsm: A workbook that contains macros that demonstrate two ways
to unlink a chart from its source data.

 vba clock chart.xlsm: A workbook that displays a chart that resembles an analog
clock.

Part VIII: Appendixes1000

Chapter 19

 application event tracker.xlsm: A workbook that demonstrates how to moni-
tor application-level events.

 hide columns before printing.xlsm: A workbook that uses an event both to
hide columns before printing and to unhide the columns after printing.

 log workbook open.xlsm: A workbook that demonstrates how to keep track of
every workbook that is opened by using a class module.

 make formulas bold.xlsm: A workbook that demonstrates the Worksheet
Change event.

 no shortcut menus.xlsm: A workbook that uses the Workbook_Open event to dis-
able shortcut keys and the Workbook_BeforeClose event to re-enable shortcut keys.

 onkey event demo.xlsm: A workbook that demonstrates the OnKey event.

 ontime event demo.xlsm: A workbook that demonstrates the OnTime event.

 shade active row and column.xlsm: A workbook that uses the Worksheet
SelectionChange event to apply shading to the row and column of the active cell.

 validate entry1.xlsm: A workbook that demonstrates how to validate data
entered into a cell by using VBA (uses the EnableEvents property).

 validate entry2.xlsm: A workbook that demonstrates how to validate data
entered into a cell by using VBA (uses a static variable).

 validate entry3.xlsm: A workbook that demonstrates how to validate data by
using Excel’s data validation feature — and ensuring that the data validation conditions
do not get erased.

 workbook_beforeclose workaround.xlsm: A workbook that demonstrates how
to overcome a problem with the Workbook BeforeClose event.

Chapter 20

 \automate excel: A directory that contains a Word document with macros that auto-
mate Excel.

 control panel dialogs.xlsm: A workbook that contains macros that display
Windows Control Panel dialog boxes.

 make memos.xlsm: A workbook that automates Word and creates a customized
memo.

 personalized email - outlook.xlsm: A workbook that contains a macro to
send personalized e-mail via Outlook (using early binding).

 personalized email - outlook (late binding).xlsm: A workbook that
contains a macro to send personalized e-mail via Outlook (using late binding).

Appendix D: What’s on the CD-ROM 1001

 personalized email - sendkeys.xlsm: A workbook that contains a macro to
send personalized e-mail via Windows Mail.

 send pdf via outlook.xlsm: A workbook that contains a macro that sends e-mail
with a PDF file attachment using Outlook.

 \shellexecute: A folder that contains a workbook that demonstrates the ShellExecute
API function (shellexecute examples.xlsm), plus a few ancillary files.

 start calculator.xlsm: A workbook that contains a macro that launches the
Calculator application.

Chapter 21

 check addin.xlam: A workbook that contains code to ensure that an add-in is
installed properly.

 export charts.xlsm: The Export Charts Utility workbook, which can be converted to
an add-in.

 export charts.chm: The help file for the export charts.xlsm workbook.

 \export charts help source: A directory that contains the source files that were
used to create the export charts.chm help file.

 list add-in information.xlsm: A workbook that contains a macro that lists
information about all add-ins.

Chapter 22

 dynamicmenu.xlsm: A workbook that demonstrates the dynamicMenu control.

 mso image browser.xlsm: A workbook that contains a macro that displays the
images associated with Ribbon commands.

 old-style toolbar.xlsm: A workbook that demonstrates how to create a toolbar,
used in previous versions of Excel.

 page break display.xlsm: The workbook file used to create the page break
display add-in.xlam add-in.

 page break display add-in.xlam: An add-in that adds a useful control to Excel’s
Ribbon.

 ribbon control names.xlsx: A workbook that contains the names of all Excel
2007 and 2010 Ribbon controls.

 ribbon controls demo.xlsm: A workbook that demonstrates several types of
Ribbon controls.

 ribbon modification.xlsm: A workbook that contains a simple example that modi-
fies Excel’s Ribbon.

Part VIII: Appendixes1002

Chapter 23
 add to cell shortcut.xlsm: A workbook that contains a macro that adds a new

menu item to a shortcut menu.

 context-sensitive shortcut menu.xlsm: A workbook that contains a macro
that creates a new shortcut menu that’s context-sensitive.

 make xl 2003 menus.xlsm: A workbook that contains a macro that adds a toolbar
that mimics the Excel 2003 menu.

 shortcut with submenu.xlsm: A workbook that contains a macro that adds new
menu and submenu items to a shortcut menu.

 show faceids.xlsm: A workbook that contains a macro that displays FaceId
images.

 show shortcut menu items.xlsm: A workbook that contains a macro that lists all
menu items on all shortcut menus.

 show shortcut menu names.xlsm: A workbook that contains a macro that lists the
names of all shortcut menus.

Chapter 24
 \cell comments: A directory that contains a workbook that demonstrates using cell

comments to display help information.

 \function help: A workbook that demonstrates how to display help for custom VBA
worksheet functions.

 \html help: A directory that contains files that demonstrate using compiled HTML
help.

 \mhtml file: A directory that contains files that demonstrate using an MHTML file to
display help information in Internet Explorer.

 \textbox: A directory that contains a workbook that demonstrates using a text box to
display help information.

 \userform1: A directory that contains a workbook that demonstrates using a UserForm
with a SpinButton control to display help information.

 \userform2: A directory that contains a workbook that demonstrates using a UserForm
with a scrolling Label control to display help information.

 \userform3: A directory that contains a workbook that demonstrates using a UserForm
with a ComboBox control to display help information.

 \web browser: A directory that contains files that demonstrate using a UserForm to
display help information.

 \worksheet: A directory that contains a file that demonstrates using a worksheet to
display help information.

Appendix D: What’s on the CD-ROM 1003

Chapter 25
 loan amortization wizard.xlam: An add-in used for the loan amortization wizard

example.

Chapter 26
 multilingual wizard.xlsm: A workbook used for the multilingual wizard example.

Chapter 27
 create file list.xlsm: A workbook that contains a macro that creates a list of

files contained in a directory.

 export and import csv.xlsm: A workbook that contains macros that export and
import a CSV file.

 export to HTML.xlsm: A workbook that contains a macro that exports worksheet
data to an HTML file.

 export to XML.xlsm: A workbook that contains a macro that exports worksheet data
to an XML file.

 file functions.xlsm: A workbook that contains the FileExists and
PathExists functions.

 file information.xlsm: A workbook that contains a macro that creates a list of
files and extended file information.

 \filter text file: A directory that contains files used to import selected informa-
tion from a text file.

 recursive file list.xlsm: A workbook that contains a macro that creates a list of
files contained in a directory, including all subdirectories.

 show drive info.xlsm: A workbook that contains a macro that displays information
about all disk drives.

 \simple ADO 1: A directory that contains an example of using ADO to query an
Access file.

 \simple ADO 2: A directory that contains an example of using ADO to query a CSV
text file.

 unzip a file.xlsm: A workbook that contains a macro that unzips a file.

 zip files.xlsm: A workbook that contains a macro that zips files.

Chapter 28
 add 100 buttons.xlsm: A workbook that contains a macro that adds 100
CommandButton controls and code to a UserForm at design time.

Part VIII: Appendixes1004

 add button and code.xlsm: A workbook that contains both a macro that adds a
button to a worksheet and VBA code that is executed when the button is clicked.

 create userform on the fly.xlsm: A workbook that contains a macro that cre-
ates a UserForm.

 getoption function.xlsm: A workbook that contains a function that creates a
UserForm (with OptionButton controls) on the fly and returns a value that corre-
sponds to the user’s choice.

 list all procedures.xlsm: A workbook that contains a macro that lists all VBA
procedures in a workbook.

 list VB components.xlsm: A workbook that contains a macro that lists all VB com-
ponents in a workbook.

 \update user workbook: A directory that contains a workbook that demonstrates a
macro that replaces a VBA module with a new module.

Chapter 29

 csv class.xlsm: A workbook that makes it easy to import and export a CSV file.

 keyboard class.xlsm: A workbook that contains a class module that defines a
NumLock, a CapsLock, and a ScrollLock class.

Chapter 30

 chart colors.xlsm: A workbook that contains macros that work with chart colors.

 chart to grayscale picture.xlsm: A workbook that contains a macro that cre-
ates a grayscale image from a chart.

 color conversion functions.xlsm: A workbook that contains functions that
convert between various color systems.

 document theme demo.xlsx: A workbook that contains various elements that dem-
onstrate the effects of applying a different theme.

 generate theme colors.xlsm: A workbook that contains a macro that demon-
strates theme colors.

 rgb color demo.xlsm: A workbook that contains an interactive demonstration of the
RGB color system.

 \shape object colors: A directory that contains a workbook with macros that work
with shapes.

 tintandshade demo.xlsm: A workbook that demonstrates how the TintAndShade
property works.

Appendix D: What’s on the CD-ROM 1005

Troubleshooting
If you have difficulty installing or using any of the materials on the companion CD, try the follow-
ing solutions:

 Turn off any antivirus software that you may have running. Installers sometimes mimic
virus activity and can make your computer incorrectly believe that it is being infected by
a virus. (Be sure to turn the antivirus software back on later.)

 Close all running programs. The more programs you’re running, the less memory is avail-
able to other programs. Installers also typically update files and programs; if you keep
other programs running, installation may not work properly.

 Reference the ReadMe file. Refer to the ReadMe file located at the root of the CD-ROM
for the latest product information (if any) at the time of publication.

If you still have trouble with the CD-ROM, please call the Wiley Product Technical Support phone
number at (800) 762-2974. Outside the United States, call 1(317) 572-3994. You can also contact
Wiley Product Technical Support at http://support.wiley.com. John Wiley & Sons will
provide technical support only for installation and other general quality-control items. For techni-
cal support on the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please call (877)
762-2974.

Part VIII: Appendixes1006

1007

15 - fmMousePointerSizeAll setting, MousePointer
property, 518

32-bit version, Excel 2010, 826, 830–831
64-bit version, Excel 2010, 27, 320, 826, 830–831
1904 date system, 72, 829

A
A1 notation, 56
AbortProc variable, 643
Abs function, 980
absolute cell references, 55–57, 161–162
absolute recording, 161–164
*.accdb files, 82
*.accde files, 82
accelerator keys, 432, 464
Accelerator property, 432, 436–437
access argument, Open statement, 851
Access file formats, 81
Activate event

Chart object, 611, 664
Initialize event versus, 500
stand-alone progress indicator, 502
triggering, 442, 443–444
UserForm object, 669
Workbook object, 646, 648
Worksheet object, 654

Activate method, 329
ActivateMicrosoftApp method, 682
active chart, defined, 584
active objects, 138
ActiveCell property

Application object, 180–181
End method, using with, 330

ActiveChart property, 180, 584, 590
ActivePrinter property, 389
ActiveSheet property, Application object, 180–181
ActiveWindow property, Application object, 180–181
ActiveWorkbook property, Application object, 180–181
ActiveX controls. See controls, ActiveX; names of specific

ActiveX controls

Special Characters and Numerics
- (subtraction/negation operator), 211–212
! (exclamation point), 57, 61
! type-declaration character, 205
type-declaration character, 205
wildcard character, 377–378
error value, 66, 72
$ type-declaration character, 205
% type-declaration character, 205
& (concatenation operator), 212, 944
& type-declaration character, 205
* (multiplication operator), 212
* wildcard character, 377
. (dot operator), 138, 168, 216
/ (division operator), 212
: (colon), 194
? (question mark) shortcut, 166
? wildcard character, 377
@ (each-at symbol), 38, 58
@ type-declaration character, 205
[] (square brackets), 57, 72
\ (integer division) operator, 211, 946
^ (exponentiation operator), 212
^ control, 29, 735
{ } (curly braces), 66
+ (addition operator), 212
+ (concatenation operator), 201
+ (plus sign), 38
= (assignment operator), 211
= (equal sign), 38, 148
>= (greater than or equal to operator), 225
‘ (apostrophe), 196
– (minus sign), 38
“ (quote character), 958
, (union operator), 184
‘ ‘ (single quotation marks), 57
2 - fmTabStyleNone setting, Style property, 512
3-D arrays, 214
3-D spreadsheet concept, 13, 15
3-D workbooks, 381

Index

Index1008

referencing files from, 729–730
removing, 963
security, 964
standard workbooks versus, 703–704
testing, 712
that contain worksheet functions, 108–109
verifying installation, 727–729
workbook files versus, 114
XLAM and XLSM files, 714–718

AddIns collection
adding items to, 721–722
contents of, 704
removing items from, 721–722

Add-Ins dialog box, Excel, 93, 706–707, 711
Add-Ins tab, Excel, 734, 742
AddinUninstall event, Workbook object, 646, 726
AddItem method, 456, 469
addition operator (+), 212
Additional Controls dialog box, Visual Basic, 451–452
AddPresetGradient procedure, 934
Address property, 172, 834
AddSubmenu procedure, 781–782
AddToShortcut procedure, 779
ADO (ActiveX Data Objects), 868–870
ADO_Demo procedure, 868–870
Adobe Portable Document Format (PDF), 82, 699–700
Adobe Reader, 990
aesthetics, 126–127
AfterCalculate* event, Application object, 665
AfterUpdate event, SpinButton control, 444
Alarm function, 391–392
All function category, 317
AllBold function, 371
Allways add-in, Lotus 1-2-3, 14
Alphabetic tab, Properties window, 428
alternate start-up directory, 77
Ambiguous name detected error message, 250
ambiguously named procedures, defined, 250
amortization schedule, 809. See also Loan Amortization

Wizard
Analysis ToolPak, 38, 48, 703, 706–707
analysis tools, Excel, 48–49
And operator, 212–213
AnimateChart procedure, 628
animating

charts, 625–626
Label control, 489–491

AnimationInProgress variable, 628
AP (Assistance Platform) Help, 802

ActiveX Data Objects (ADO), 868–870
Actual field, sample budget pivot table, 574
Add method

CalculatedFields collection, 574
ChartObjects collection, 588
Charts collection, 588
ListObjects collection, 581
UserForms collection, 433

Add100Buttons procedure, 885–886
AddButton_Click procedure, 475
AddButtonAndCode procedure, 881–883
AddChart method, Shapes collection, 586–587
AddComment method, Range object, 179
AddControl event, UserForm object, 669
AddFromFile method, 875
AddFromGuid method, 875
Add-In Manager, Excel, 706–707
Add-In Manager folder, Windows Registry, 96
AddIn object, 722–726
AddinInstall event, Workbook object, 646, 726
add-ins. See also Loan Amortization Wizard; Solver, Excel;

utilities
accessing as workbooks, 725–726
Add-In Manager, 706–707
AddIn object, 722–726
AddIns collection, 721–722
attaching, 50
checklist for, 713
COM, 705
converting workbooks to, 963
creating, 22, 707–708, 710, 963
descriptions for, 709, 963
distributing, 712
Excel 2007, 20
Excel start-up process, 77
Excel version, 730
FAQs, 962–964
files, 93
with Function procedures, 289
identifying procedures in, 719–720
installing, 548, 710–712, 963
Lotus 1-2-3, 13–14
modifying, 713–714, 963
optimizing performance of, 726–727
overview, 50, 703, 708–709
password-protected, 125
procedures stored in, 245, 319–320
protecting code, 964
reasons to create, 704–705

Index 1009

Array function, 302, 980
ArrayFillRange procedure, 348
arrays

assigning, 621–622
control, 960
converting range references to, 621
declaring, 213–215, 957
defined, 66, 944–945
first element treated as second, 958
Function procedures, 299–300, 302–305
of nonduplicated random integers, returning, 383–384
overview, 213
sorting, 362–363, 955
transferring, 349–350

As keyword, 288
Asc function, 980
Assign Macro dialog box, Excel, 253–254
assignment operator (=), 211
assignment statements, 210–213
Assignment to constant not permitted error

message, 207
Assistance Platform (AP) Help, 802
Atn function, 980
audio

macros that play, 941
MIDI files, 391
sound from worksheet functions, 391–392
WAV files, 390–391

auditing feature, 38
Author property, Comment object, 174
Auto Data Tips option, VBE, 156
Auto Indent option, VBE, 156
Auto List Members option, VBE

displaying available properties and methods, 908
early binding, 687
listing constants, 208
listing functions, 218
overview, 155

Auto Quick Info option, VBE, 155
Auto Syntax Check option, VBE, 154, 198
Auto Update Chart check box, Excel, 602
\automate excel directory, 1000
automate excel.docm file, 694
automation

early binding, 685–687
foreign objects using, 685
late binding, 687–688
overview, 684–685
support for, 22

API. See Windows Application Programming Interface (API)
apostrophe (‘), 196
AppActivate statement, 681–682, 977
Append mode, Open statement, 851
AppEvents_WorkbookOpen procedure, 666
Apple II, 11
Application events, defined, 640
Application object

ActiveCell property, 180–181
ActiveChart property, 180
ActivePrinter property, 389
ActiveSheet property, 180–181
ActiveWindow property, 180–181
ActiveWorkbook property, 180–181
EnableCancelKey property, 277
events, 664–669
list of members for, 155
objects contained in, 167
omitting in references, 169
properties of, 180–181
Run method, 717
ScreenUpdating property, 336, 727
Selection property, 180–181
ThisWorkbook property, 180
UserName property, 293
Workbooks method, 714

Application property, Comment object, 174
Application.Volatile statement, 376
Apply button, Text Tools utility, 549, 553
Apply Names dialog box, Excel, 59
ApplyButton_Click procedure, 553, 554
AppName function, 374
Archived Web Page (MHTML) files, 82, 799–801
Areas method, 337
AreaType function, 338
arglist keyword

declaring Function procedures, 287
declaring Sub procedures, 242

ArgumentDescriptions argument, MacroOptions
method, 807

arguments
defined, 241
event-handler procedures that use, 644–646
Function procedure, 292–308
passing ranges used in custom functions as, 298
passing to procedures, 255–259
providing descriptions for, 316
specifying for methods and properties, 171

array formulas, 66–68

Index1010

Borland International Quattro. See Quattro Pro
BoundColumn property, ListBox control, 479
Break on All Errors option, VBE, 158, 259
Break on Unhandled Errors option, VBE, 158
breakpoints, setting, 313
Bricklin, Dan, 11
bubble sort method, 270–271, 362–363
BUBBLESIZE_FROM_SERIES function, 604
BubbleSort procedure, 271
budget data.accdb file, 870
Budget field, sample budget pivot table, 574
bugs, 102, 122–123, 210
built-in dialog boxes, displaying, 413–416, 961
built-in functions, 217–220
Built-In Menus menu, Excel, 776
BuiltIn property, CommandBar object, 774
Button control

assigning procedures to, 253–254
CommandButton control versus, 425

ButtonClick procedure, 526
ButtonGroup_Click procedure, 527–528
buttons

Ribbon, 30, 743–751, 964
wizard, 508–510

buttons argument, MsgBox function, 219, 404
ButtonText argument

GetOpenFilename method, 409
GetSaveAsFilename method, 412

ByRef argument type mismatch error message, 259
Byte data type, 199
ByVal keyword, 257–258

C
c prefix, 207
CalcComm procedure, 297
Calculate event

Chart object, 611, 664
Worksheet object, 654

calculated columns, defined, 58
Calculation mode, 54
Calculation property, Application object, 940
calendar, array formula, 67–68
Call keyword

calling procedures in different workbooks, 251
executing procedures from procedures, 248

Call statement, 977
callback procedures, defined, 743
CallByName function, 981

AutoSave feature, Excel, 372
Available Templates screen, 83

B
b prefix, 207
Back button, defined, 508
BackButton control, 509
BackButton_Click procedure, 509
BackColor property, FillFormat object, 928
backstage feature, Excel, 20
bad loops, 232–233
BadLoop procedure, 233
BASIC (Beginner’s All-purpose Symbolic Instruction Code),

135–136
\batch processing directory, 993
BatchProcess procedure, 363–364
Beep statement, 977
BeforeClose event, Workbook object, 646, 652–653
BeforeDoubleClick event

Chart object, 611, 664
Worksheet object, 654, 661

BeforeDragOver event
SpinButton control, 444
UserForm object, 669

BeforeDropOrPaste event
SpinButton control, 444
UserForm object, 669

BeforePrint event, Workbook object, 645–646, 650–652
BeforeRightClick event

Chart object, 611, 664
Worksheet object, 654, 662

BeforeSave event, Workbook object, 646, 649–650
BeforeUpdate event, SpinButton control, 444
BeginGroup property, CommandBar object, 774
Beginner’s All-purpose Symbolic Instruction Code (BASIC),

135–136
BeginUpdate procedure, 879–880
beta testing, 123
*.bin (binary file format), 87, 89, 850
Binary mode, Open statement, 851
binding, 685–689
blue square icon, status bar, 150
Boeing Calc, 13
Bold button, 30
book.xltx. See default workbook template (book.xltx)
Boolean data type, 199, 207
Boolean properties, 357

Index 1011

maximum number of, 25
merged, 183
names, 59, 954
references, 55–57
retrieving information from, 186
values, 332–334, 339–341, 350–351
white-on-black appearance when selected, 96

Cells property
displaying syntax for, 155
Range object, 184–187

CellType function, 345–346
change, planning for, 114
Change Case shortcut menu item, Excel, 785
Change event

SpinButton control, 444–445
triggering, 442
Worksheet object, 654–660

ChangeColors procedure, 922, 924
ChangeFont procedures, 220–221
ChangeSeries1Color procedure, 933–934
ChangeValue procedure, 170
Characters object, 178
[!charlist] wildcard character, 377
[charlist] wildcard character, 377–378
Chart events

chart sheet, 612
defined, 639

Chart object
code module, 641
object hierarchy, 585
object model, 585–586

chart sheets
activating charts on, 589
applying changes to all, 595
contents of, 584
converting embedded charts to, 590
converting to embedded charts, 590
creating charts on, 588–589
deactivating charts on, 592
deleting, 593
object hierarchy, 586
overview, 26
in XLAM and XLSM files, 716

chart tips
defined, 622
turning on/off, 623–624

Chart_Activate procedure
function of, 612
listing, 613
turning chart tips on, 624

Cancel button, 508, 962
Cancel property, CommandButton control, 438
Cancel_OnKey procedure, 673
CancelButton control, 508–509
CancelButton_Click procedure, 461, 491, 509
Caption property

CommandBar object, 773
CommandButton control, 437–438
ControlButton control, 767
Frame control, 437
internationalization, 771
Label control, 436
OptionButton control, 437
referring to Command objects, 772–773
UserForm object, 436

case
alphabetizing and case-sensitivity, 275
automatic adjustment of, 195
shortcut keys, 119, 247

Case Else clause, 232
Categorized tab, Properties window, 428
Category field, sample budget pivot table, 574
category fields, defined, 568
Category property, local version of, 834
category_labels argument, SERIES formula, 601
cbClockType_Click procedure, 630
cbCreateTable argument, ReversePivot procedure, 581
CBool function, 981
CByte function, 981
CCur function, 981
CDate function, 981
CDbl function, 981
CDec function, 199, 981
\cell comments directory, 1002
Cell object, 169
Cell shortcut menu, Excel, 779–781
CELLHASFORMULA function, 290
cells

accessing in unopened workbooks, 947
changing data in charts based on active, 601–603
comments, 178–179, 792–793
copying to selected cells beneath, 36
counting, 336–337, 374–375
data type of, determining, 345–346
drop-down lists, adding to, 939–940
formatting, 85, 370–372, 945
last non-empty, determining, 375–377, 956
linking controls to, 425, 727, 960
locking, 42, 124–125

Index1012

selecting, 40
selecting objects in, 40
sizing and aligning ChartObject objects, 596–598
Sparkline, 635–638
unlinked, creating, 621–622

Charts collection, 593–594
charts folder, 89
chartsheets folder, 89
ChartTitle object, 585–586
ChDir command, 840, 977
ChDrive command, 840, 977
check boxes, 31
CheckBox control, 423, 751–754
Checkbox1_Change procedure, 756
CheckBox1_Click procedure

hiding series by hiding columns, 619
using events with embedded charts, 616–617

CheckForFile procedures, 263
CheckPageBreakDisplay procedure, 753
CheckVersion procedure, 730
CHM help files, 789–790, 801
CHOOSE function, 632
Choose function, 981
Chr function, 981
CInt function, 981
class modules. See also modules; Visual Basic for

Applications (VBA)
CSVFileClass object, 904–909
defined, 145
design time, 895–896
event handlers, 641
events, 904
NumLock class, 896–901
programming methods for objects, 903
programming properties of objects, 901–903
removing, 145
uses for, 895–896

Class Modules node, 144
Class_Initialize procedure, 904
Clear method, 170–171
ClearContents method, 170–171, 187
ClearOutline method, 817
ClearTextToColumns procedure, 855
client application, defined, 684
Clip Art task pane, Excel, 37
CLng function, 981
clock charts, 629–631
ClockChart object, 630
clone, Lotus 1-2-3, 13

Chart_Deactivate procedure
function of, 612
listing, 614
turning chart tips off, 624

Chart_MouseMove procedure, 623
Chart_Select procedure, 612, 614
ChartIsSelected function, 592
ChartObject object

aligning, 596–598
naming, 591
object hierarchy, 585
resizing, 596–597
sizing, 596–598

ChartObjects collection
Add method, 588
deleting charts from, 593–594
embedded charts, 586

charts
activating, 589–590, 592, 955
animating, 625–626
changing data used in, 600–603
Chart object model, 585–586
on chart sheets, creating, 588–589
clock, creating, 629–631
colors, 933–935
compatibility, 585
deactivating, using VBA, 591–592
deleting from ChartObjects or Charts collection,

593–594
determining ranges used in, using VBA, 603–606
displaying arbitrary data labels on, using VBA, 606–

608
displaying in UserForms, 531–532, 609–611, 959
displaying text with MouseOver event, 622–625
embedded, creating, 586–587
events, 611–618, 662, 664
exporting, 598–600
hiding series by hiding columns, 619–620
hypocycloid, creating, 628–629
interactive, creating without VBA, 631–634
locations of, 584
looping through, 594–596
macro recorder, 584
moving, 590–591
naming, 591
overview, 44–45, 583
printing embedded charts on full page, 619
saving as .gif files, 948
scrolling, 626–628

Index 1013

support for, 25
VBA code, 943
worksheet tabs, 941

Colors dialog box, Excel, 913
ColorShape procedure, 931
column absolute cell references, defined, 55
COLUMN function, 634
column headers, 47, 58
column sparklines, 635
ColumnCount property, ListBox control, 478
ColumnHeads property, ListBox control, 479
columns

determining last non-empty cell in, 375–377, 956
determining number of in ranges, 337
hiding, 125, 619–620, 651–652
maximum number of, 24
names, 61
number visible, 25
selecting last entry, 956

ColumnWidths property, ListBox control, 478–479
COM (Component Object Model) add-ins, 705
*.com files, 93
Combo1_Change procedure, 756
ComboBox control

displaying help through, 798–799
filling, 961

ComboBox control
overview, 423
sliding puzzle, 537–538
Text Tools utility, 549

ComboBoxOperation_Change procedure, 553
comma separated values (*.csv) files, 81, 853
CommandBar object

built-in dialog boxes, displaying, 414, 416
controls in, 772–774
overview, 735–737, 769
properties and methods, 360
referring to, 771–772
shortcut menus, 770–771, 774–777
toolbars, creating, 764–767
types of, 770

CommandBars collection
methods, 740–741
referring to CommandBar objects, 771–772

CommandButton control
adding 100, 885–886
adding to worksheets, 438
Button control versus, 425
customizing to serve as OK button, 450

Close button, 461–462, 549, 553
Close Full Screen option, Excel, 37
Close method, 146
Close statement, 977
CloseAllWorkbooks procedure, 354
CloseButton_Click procedure, 440, 553
CloseInactive procedure, 223
CloseMode argument, 462
clsChart_Activate procedure, 616
Cnt variable, 222
Code Colors option, VBE, 156
code windows, VBE

entering VBA code, 147–153
minimizing and maximizing, 146
overview, 143, 145
storing VBA code, 146–147

Col loop counter, 579
Collapse Proj. Hides Windows option, VBE, 157
collections. See also names of specific collections

concept of, 189
defined, 138, 221, 951
For Each-Next constructs, 221–223
overview, 167, 168
testing for membership in, 367
With-End With constructs, 220–221

colon (:), 194
Color property, Font object, 178
ColorFormat object, 177, 928–929, 934
ColorIndex property, Font object, 178
ColorNegative procedures, 339–341
colors

aesthetics, 127
background shading, 660–661
charts, 933–935
Code Colors option, VBE, 156
comments, 177–178
converting, 913–915
document themes, 921–927
error messages, 195
experimenting with, 919–921
FillColor function, 371
grayscale, 916–919
negative cell values, 339–341
number of available, 911
progress bars, 501
selected cells, 96–97
selecting in UserForms, 529–530
Shape object, 927–932
specifying, 911–913

Index1014

pivot tables, 570
types of, 826–827
user’s version of Excel, 113–114, 130
using new features, 827–828

compatibility mode, Excel, 24
compatibility pack, 50, 81
Compile error: Variable not defined error

message, 202
Compile settings, VBE, 158
compiled code, defined, 135
Component Object Model (COM) add-ins, 705
concatenating strings, 961
concatenation operator (&), 212, 944
concatenation operator (+), 201
conditional formatting, 27, 41, 290–291
consistency, 126
Const statement, 206, 977
constants

declaring, 206–207
names, 62–63
overview, 206
predefined, 208
scope, 207

context argument
InputBox function, 400
MsgBox function, 219, 404
MyMsgBox function, 513

Context Help dialog box, Excel, 174
Context property, control argument, 749
context-sensitive menus. See shortcut menus
contextual tabs, 29–30
Contextures, 974
ContinueProcedure function, 407
ContractAllSeries procedure, 605
control argument, 749
control arrays, 960
Control object, 772
Control Panel, Windows, 683–684
controls, ActiveX. See also names of specific ActiveX

controls
accessing, 121
copying, 438
defined, 119
embedding into worksheets, 425
finding, 773
Form controls versus, 121, 253
linking to cells, 960
listing events for, 442–443
naming, 422, 429, 443

CommandButton control (continued)
handling multiple with one event handler, 526
overview, 120, 423
properties, adjusting, 437–438
sliding puzzle, 537–538
UserForm object, creating as menu, 455–456

CommandButton1_Click procedure, 435, 438–439, 456,
886, 893

commands, Ribbon, 30–32
Commands function category, 318
Comment Block button, VBE, 197
Comment object

adding, 179
Comment property, 176–177
Comments collection, 175–176
creating, 172
determining whether cells have comments, 178–179
displaying help for, 173
methods of, 175
objects within, 177–178
overview, 172
properties of, 174

Comment Object Members link, Excel, 173
Comment property

Comment object, 176–177
Range object, 175

CommentDemo procedure, 196
comments

changing text in cells, 286
determining whether cells have, 178–179
displaying help through, 792–793
documentation, 128
overview, 195–197
useful, 196–197

Comments collection
Comment object, 175–176
Count property, 176

Comments property, AddIn object, 724
Commission functions, 296
Commission procedures, 298–299
comparison operators, 211–212
Compatibility Checker feature, Excel, 570, 827–828
Compatibility function category, 318
compatibility issues

64-bit Excel, 830–831
charts, 585
compatibility, defined, 825
international applications, 831–837
Macs, 828–829

Index 1015

COUNTA function
function of, 342
using with OKButton_Click procedure, 441

CountBetween function
example using, 375
listing, 374–375

CountButtons procedure, 449
Counter variable, 342
COUNTIF function, 70, 256
COUNTIFS function, 375
counting

cells between two values, 374–375
formulas for, 69–70
selected cells, 336–337

counting sort method
defined, 362
speed of, 363

CountLarge property
example using, 338
function of, 336

country codes, 831–832
CountSheets procedure, 222
Create Names from Selection dialog box, Excel, 59
CreateChart procedure, 587–588, 610
CreateChartSheet procedure, 588
CreateNewWorkbook procedure, 716
CreateObject function, 687, 688–689, 981
CreatePivotTable method, 568
CreatePivotTable procedure, 569, 573–574
CreateShortcut procedure, 786–787
CreateToolbar procedure, 766
CreateUnlinkedChart procedure, 621
CreateWorkRange function, 554–555, 557
Creator property, Comment object, 174
CSng function, 981
CStr function, 981
*.csv (comma separated values) files, 81, 853
CSVFileClass object

class module–level variables for, 905
method procedures for, 905–906
overview, 904
property procedures for, 905
using, 907–909

Cube function category, 318
CurDir function, 981
curly braces ({ }), 66
CurrDir argument, 844

properties, adjusting multiple, 429
selecting multiple, 426
using on worksheets, 120–122

controls, CommandBar object
properties of, 773–774
referring to, 772–773

controls, Ribbon
accessing with VBA, 738–740
creating, 755–760
demo, 754–760
displaying names of, 739
repurposing, 764

Controls collection, 449
ControlTipText property

Image control, 520
UserForm object, 796

conventions used in book
Excel commands, 2–3
keyboard, 3–4
mouse, 4
Visual Basic Editor commands, 3

ConvertChartToPicture procedure, 622
Converters folder, Windows Registry, 96
converting

colors, 913–917
workbooks to add-ins, 963

Copy method, 171, 327
CopyCurrentRegion procedure, 328
copying

cells to selected cells beneath, 36
charts as pictures, 621–623
code, 147, 153
controls, 438
modules, 145
ranges, 326–329, 352–353
simplifying, 954–955
UserForm object, 145

CopyMultipleSelection procedure, 352–353
CopyOne procedure, 171
CopyRange procedures, 327
CopySheetFromAddin procedure, 716
CopyTable procedure, 329
Cos function, 981
Count property

Comments collection, 176
defined, 267
function of, 376
Range object, 336

Index1016

\dataform directory, 997
DataIsValid function, 816
DataLabelsFromRange procedure, 607–608
Date & Time function category, 317
Date and Time dialog box, Windows, 683
Date data type

overview, 199
prefix for, 207
storage capacity, 209–210
Value2 property, 186

Date function, 237, 981
date functions, extended, 311–313
Date statement, 977
DateAdd function, 981
DateAndTime procedure, 359
DateDiff function, 981
DatePart function, 981
dates

calculating number of days between, 72
displaying, 358–360
entering, 72
Excel date bug, 210
format of, 210
internationalization, 832, 837
overview, 71–72, 209–210
pre-1900, 73, 209, 310, 829
when file was saved or printed, displaying, 372–373

DateSerial function, 237, 837, 981
DateValue function, 981
Day function, 981
*.dbf files, 82
DblClick event, UserForm object, 669
DDB function, 981
DDE/External function category, 318
Deactivate event

Chart object, 611, 664
triggering, 444
UserForm object, 669
Workbook object, 647, 650
Worksheet object, 654

dead charts, defined, 621
debugging

Auto Data Tips option, VBE, 156
Edit and Continue section, VBE, 158
functions, 313–314
Margin Indicator Bar option, VBE, 157
with MsgBox function, 219

Debug.Print statements, 255, 313–314
decimal color values, 911–915

Currency data type
overview, 199
prefix for, 207
type-declaration character for, 205
Value2 property, 186

Currency number formatting, 40
CurrentRegion property, 328, 329
CurrentTopic variable, 798
custom dialog boxes. See UserForms (custom dialog

boxes)
Custom UI Editor, Microsoft Office, 560–561, 746–751
Custom Views command, Excel, 939
Customize Quick Access toolbar option, Excel, 32
Customize Ribbon tab, Excel, 738, 739–740
Customizing function category, 318
customUI part, 748–749
customXml folder, 89
Cut method, 328
CVar function, 981
CVDate function, 981
CVErr function, 305, 981

D
d argument, XDATE function, 312–313
d prefix, 207
Daily Dose of Excel, 974
data entry, 38, 72, 105
data fields, defined, 568
data forms

displaying, 416–418
enhanced, 534–537

Data Interchange Format (DIF) files, 81
data storage and access applications, 109–110
data structure, 113
Data tab, Excel

overview, 734
SendKeys argument for, 742

data types
defining, 198–200
determining, 201–202
type-declaration characters, 205
user-defined, 216–217

Data Validation feature, Excel, 632–633
database access, 46–47
database front ends, 110
Database function category, 318
database tables (lists), defined, 109

Index 1017

Design contextual tab, Excel, 29–30
design mode, Excel, 425, 439
design time

adding controls to UserForms, 883–886
adding items to ListBox control, 883–886

DesignTimeButton procedure, 884–885
Developer tab, Excel

displaying, 141
overview, 734
revealing, 938
SendKeys argument for, 742

developers
spreadsheet applications, 102–104
users versus, 104
why Excel 2010 is good for, 20–22

development team, defined, 102
diagrams folder, 89
dialog boxes. See also UserForms (custom dialog boxes)

custom, 22, 35
overview, 35
types of, 35

dialog launchers, 31–32
Dialogs collection, 414
dictator applications. See turnkey applications
DIF (Data Interchange Format) files, 81
Dim statement

declaring local variables, 203–204
declaring module-wide variables, 205
defined, 203

Dir function, 840, 842–843, 981
directories, prompting for, 413
DisableAllShortcutMenus procedure, 778
DisableHideMenuItems procedure, 778
Discount procedures, 228, 230–231
disk drives, 387–388, 847–848
DisplayAlarm procedure, 670–671
DisplayDataForm procedure, 418
DisplayFormat object, 371
DisplayFormulaBar property, 741
DisplayGridlines property, 212
DisplayVideoInfo procedure, 389–390
distribution, 128
#DIV/0! error value, 65, 306, 310
Division field, sample budget pivot table, 574
division operator (/), 212
DLL (Dynamic Link Library) files, 320, 386–394
Do Until loops, 239–240, 401
Do While loops, 237–239
Docking tab, Options dialog box, VBE, 158–159

Decimal data type, 199
Decimal separator setting, 835
DECIMAL2HSL function, 914–915
DECIMAL2RGB function, 914
declarations, defined, 146
Declare statement, 977
Default argument

GetOption function, 891
Inputbox method, 402

default argument, InputBox function, 400
Default property, CommandButton control, 437
Default to Full Module View option, VBE, 156
default workbook template (book.xltx)

changing defaults, 85
overriding, 85
overview, 84
reverting to, 85

default worksheet template (sheet.xltx), 84, 85–86
DefaultPrinterInfo procedure, 388
DefBool statement, 977
DefByte statement, 977
DefCur statement, 977
DefDate statement, 977
DefDbl statement, 978
DefDec statement, 977
DefInt statement, 978
DefLng statement, 978
DefObj statement, 978
DefSng statement, 978
DefStr statement, 978
DefVar statement, 978
Delete method, Comment object, 175
DeleteEmptyRows procedure, 342
DeleteFromShortcut procedure, 780
DeleteLines method, 886
DeleteRows procedures, 235
DeleteSetting statement, 978
DeleteShortcutMenuItems procedure, 653
DeleteSubmenu procedure, 782
DeleteToolbar procedure

listing, 767
TOOLBAR constant, 767

demo programs, 990
Department field, sample budget pivot table, 574
dependencies, programming in wizards, 510–511
Dependents property, 497
DescribeFunction procedure, 316
Description box, VBE, 165
Deselect method, 591

Index1018

EIS (executive information system), 110
Else clause, 225–226
e-mail

opening and addressing with ShellExecute function,
681

sending attachments from Excel, 698–700
sending via Outlook, 695–698

embedded charts
activating, 589
applying changes to all, 594–595
chart events, 615–618
converting chart sheets to, 590
converting to chart sheets, 590
creating, 586–587
deactivating, 592
deleting, 593
printing on full page, 619

empty parentheses, 293
EmptyCount function, 447
EnableCancelKey property, Application object, 277
Enabled property

disabling shortcut menus, 778
function of, 774

Encrypt Document dialog box, Excel, 43
End Function statement, 287
End method

function of, 376
selecting ranges, 330
using with ActiveCell property, 330

End statement
module-wide variables, 205
overview, 978
scrolling charts, 628

End Sub statement, 242
end users

audience for applications, 104–105
classifying, 104
installed version of Excel, 129–130
language of, 130
needs of, 112–115
overview, 102
system speed, 130
video modes, 130–131

Engineering function category, 318
Enhanced Data Form

Excel Data Form versus, 536
installing, 537
overview, 534–535

Enter event, SpinButton control, 444–445

docking windows, 158–159
docProps folder, 89
document themes

colors for, 921–927
function of, 25
overview, 921

documentation, 128
DoEvents function, 491, 626, 981
Do-Loop statement, 679, 978
dot operator (.), 138, 168, 216
Double data type, 199, 205, 207
DoubleCell procedure, 298
DoUntilDemo procedure, 240
DoWhileDemo procedure, 238
draft mode, 27
Drag-and-Drop Text Editing option, VBE, 156
drawing layer

function of, 25
selecting objects in, 39
UserForm ActiveX controls, adding to, 120

drawings folder, 89
DrawMenuBar function, 518
DrawOne function, 301
drop-down lists

adding to cells, 939–940
function of, 30

d/t prefix, 207
dual-monitor system

determining display information, 389–390
position of displayed UserForm, 514
recommended, 2

DupeRows procedure, 343
dynamic arrays, 214–215
Dynamic Link Library (DLL) files, 320, 386–394
dynamicMenu control, 761–763
dynamicMenuContent procedure, 762–763

E
/e switch, 78
each-at symbol (@), 38, 58
early binding, 685–687
Edit and Continue section, VBE, 158
Edit DWORD Value dialog box, Registry Editor, 96
editBox control, 756
EditBox1_Change procedure, 756
Editor Format tab, Options dialog box, VBE, 156–157
Editor tab, Options dialog box, VBE, 154–156

Index 1019

disabling, 642–643
enabling, 642
event-handler procedures, 640–641, 643–646
FAQs, 951–959
listing, 442–443
locating with Object Browser, 663–664
monitoring, 945
not associated with objects, 670–676
older versions of Excel, 642
overview, 139
sequences of, 640
shortcut menus, 783–788
Sub procedures, executing when occur, 254
types of, 639–640
UserForm object, 442–448, 669–670
Workbook-level, 646–653
Worksheet-level, 654–662

Excel 2.0, 16
Excel 2.1, 16
Excel 2.1d, 16
Excel 2.20, 17
Excel 3, 17
Excel 4, 17–18. See also XLM macro language
Excel 5

developers, 115
dialog sheets, 28
release of, 18–19

Excel 7 (Excel 95), 18–19, 28
Excel 8. See Excel 97 (Excel 8)
Excel 12. See Excel 2007 (Excel 12)
Excel 14. See Excel 2010 (Excel 14); Help systems
Excel 95 (Excel 7), 18–19, 28
Excel 97 (Excel 8)

developers, 115
release of, 19

Excel 2000, 19
Excel 2002 (Excel XP)

compatibility pack, 50
release of, 19

Excel 2003
compatibility pack, 50
displaying menus from, 776
release of, 19
toolbars and menu bars, 736

Excel 2007 (Excel 12)
CommandBar object, 735
developers, 115
release of, 19–20

EnterDates procedures, 237–240
entering code, 194–195
EntryIsValid function, 658–659
Enum statement, 978
Environ function, 981
EOF function, 238, 981
equal sign (=), 38, 148
Equation editor, Excel, 27
Eqv operator, 212, 946
Erase statement, 978
EraseRange procedure, 403–404
Err object, 260, 262
error codes, VBA, 985–988
Error event

SpinButton control, 445
UserForm object, 669

Error function, 981
Error statement, 978
Error Trapping settings, VBE, 158
ErrorDemo procedure, 262
errors

application planning, 114
checking, 38–39, 56, 65, 96, 154, 195
compile, 949–950
defined, 102
determining error number, 260–261
Error Trapping settings, VBE, 158
formula, 65–66
Function procedures that return error values, 305–306
handling procedures, 259–263, 944
Trust Access to Visual Basic Project setting, Excel, 943

Euro Currency Tools add-in, 707, 719
Evaluate function, 392
evaluation programs, 990
Event statement, 978
event-handler procedures

code for, 643–644
defined, 254, 639
executed when opening workbook, 945–946
naming, 443, 643
placing, 640–641
stand-alone progress indicators, 500–501
that use arguments, 644–646
UserForm object, 433–434, 440–441
writing for Chart class, 616

events
Application-level, 664–669
chart, 611–618, 662, 664

Index1020

Excel.officeUI file
displaying, 92
Excel start-up process, 77
locating, 91
overview, 91–92
sharing, 92

exclamation point (!), 57, 61
*.exe files, 939
ExecuteButton_Click procedure, 457
ExecuteMso method, 415, 740, 961
executive information system (EIS), 110
Exit Do statements, 239, 978
Exit event, SpinButton control, 445
Exit For statements, 235–236, 978
Exit Function statement, 287, 978
Exit Property statement, 978
Exit Sub statement

declaring Sub procedures, 242
function of, 224
overview, 978
scrolling charts, 628

ExitForDemo procedure, 236
ExpandAllSeries procedure, 606
experience, end user, 104–105
exponentiation operator (^), 212
\export charts help source directory, 1001
Export Charts utility, 708–713
export charts.chm file, 1001
Export method

CSVFileClass object, 904–906
saving charts, 599

Export3Files procedure, 909
ExportARange procedure, 908–909
exporting

charts, 598–600
Excel features for, 853
objects, 145
ranges, 856–857, 859–865
Toolbox pages, 450

ExportRange procedure, 856
ExportRange property, CSVFileClass object, 904
ExportToHTML procedure, 860
ExportToXML procedure, 864
expr argument, IIf function, 229
expressions, 166, 210–211
Extended Date Functions add-in, 73
extended date functions help.docx file, 313, 992
extended file information, displaying, 848–850

Excel 2010 (Excel 14). See also Help systems
add-ins, 50
analysis tools, 48–49
bugs in, 123
charts, 44–45
commands, as they appear in book, 2–3
compatibility, 825
crashes, 942
data entry, 38
database access, 46–47
developers, 20–22
display, customizing, 37
FAQs, 938–942
file formats, 50, 80–81
formatting, 40–41
formulas, 38–40
functions, 38–40
history of, 15–20
incorrect data parsing, 854–855
interaction, 677–701
Internet features, 47–48
macros, 50
names, 38–40
objects, 23–28
password system, 126
programming, 50
protecting, 42–44
quitting, 953
release of, 20
role of in Microsoft’s strategy, 22
running multiple instances or versions of, 79
runtime version, 129
selecting objects, 40
shapes, 45–46
SmartArt, 45–46
starting, 77–79
user interface, 28–37
versions of, 113–114, 129–130, 642, 730, 827
Web site, 970
Windows Registry, settings in, 94–97

Excel Options dialog box
Quick Access toolbar, customizing, 32–33
Windows Registry, 94

Excel XP. See Excel 2002 (Excel XP)
ExcelDir function, 294
excel.exe executable file

Excel start-up process, 77
location of, 78
path to, 79

Index 1021

FileNameOnly functions, 365–366
filenumber part, Open statement, 852
files

add-in, 93
ADO, 868–870
components of, 87–90
Excel.officeUI, 91–92
extended file information, displaying, 848–850
file formats, 80–82, 91
file-related statements, 840–845
FileSystemObject object, 845–848
keyboard conventions for, 4
processing series of, 363–364
referencing from add-ins, 729–730
starting Excel, 77–79
templates, 83–87
text, 850–865
unzipping, 867–868
Windows Registry, Excel settings in, 94–97
XLB, 92–93
zipping, 865–867

FileSearch object, 840
FileSys variable, 845–846
FileSystemObject object

determining whether file exists, 846
determining whether path exists, 847
listing information about all available disk drives, 847–

848
overview, 845–846

Fill property
ChartFormat object, 933
Shape object, 177, 928

FillColor function
function of, 371
listing, 372

FillDown method, 343
FillFormat object, 177, 928
Filt variable, 409
Filter function, 982
\filter text file directory, 1003
FilterFile procedure, 859
FilterIndex argument

GetOpenFilename method, 409–410
GetSaveAsFilename method, 412

filtering
rows, 47
text files, 859

FilterName argument, 599
Financial function category, 317

eXtensible Markup Language. See XML (eXtensible Markup
Language)

external databases, accessing, 47
ExtractElement function

function of, 378
listing, 379

F
FaceID property

CommandBar object, 774
ControlButton control, 767
finding images corresponding to, 783
function of, 783

falsepart argument, IIf function, 229
feature compatibility, 50
15 - fmMousePointerSizeAll setting, MousePointer

property, 518
file argument, GetValue function, 369
file associations, determining, 386–387
File button, Excel, 27
file extensions

hiding and displaying, 744
revealing hidden, 87

file formats
compatibility, 826
database, 81–82
Excel 2010, 50, 80–81
importance of, 91
text, 81

File MRU folder, Windows Registry, 96
file structure

application planning, 113
Excel, 21

file viewer, downloading, 129
FileCopy command, 840, 978
FileDateTime command, 840, 981
FileDialog object, 413
FileExists function, 365, 840–841
FileExists property, 846
FileExists3 function, 846
FileFilter argument

GetOpenFilename method, 409
GetSaveAsFilename method, 412

FileInfo procedure, 849–850
FileLen function, 840, 842, 982
filename switch, 78
FileName variable, 412

Index1022

FormHelp UserForm, Loan Amortization Wizard, 812
FormMain UserForm, Loan Amortization Wizard, 812, 815
FormMessage UserForm, Loan Amortization Wizard, 812
Forms node, 144
formula bar, visibility of, 741
Formula property

accessing, 170
determining ranges used in charts, 603
local version of, 834
retrieving information from cells, 186

FormulaLocal property, 834
FormulaR1C1 property, 834
formulas

array, 66–68
bold font, 656–657
calculating, 54
cell and range references, 55–57
conditional formatting, 290–291
counting, 69–70
custom, 75
dates and times, 71–73
displaying long, 54
errors, 65–66
Excel 2010, 38–40
hiding, 43, 125
maximum length of, 54
megaformulas, creating, 74–76
names, 58–65
overview, 53–54
protecting from being overwritten, 42–43
summing, 69–71
VBA versus, 114
worksheet, 289–290, 948–950, 953

Formulas tab, Excel, 734, 742
For-Next loops, 233–236, 270–271, 347–348, 978
for-your-eyes-only applications, 107
Frame control

adjusting properties, 437
as container for other controls, 431, 450
overview, 423
placing Label control inside, 797

Frankston, Bob, 11
FreeFile function, 982
freeware programs, 990
Full Screen option, Excel, 37
FullName property, AddIn object, 723
Function Arguments dialog box, Excel

custom functions, 317, 319
purpose of, 38, 314–315

Find & Select control, Excel, 741
FindControl method, 773
FindExecutable function, 386–387
FindWindowA function, 518–519
Finish button, 508, 510
FinishButton_Click procedure, 512
Fix function, 982
fixed-length strings, defined, 209
fixed-width font (monofont), defined, 157
floating toolbars, 735, 939
fmt argument, XDATE function, 312
focus, defined, 430
folder windows, displaying with Shell function, 680
FollowHyperlink event, Worksheet object, 654
Font object, 178
Font option, VBE, 157
Font property, 429
Font tab, Format Cells dialog box, Excel, 415
fonts

getting list of, 360–361
using new with old workbooks, 940

footers, updating, 651
For Each-Next constructs

looping, 176
MaxAllSheets function, 382–383
overview, 221–223, 978

ForeColor property, FillFormat object, 177, 928, 933
Form controls

ActiveX controls versus, 121, 253
embedding into worksheets, 425

Form Grid Settings section, VBE, 157
form letter workbook, 791–792
Format Cells dialog box, Excel

displaying, 416
displaying Font tab, 415
as example of modal dialog box, 35
hiding formulas, 125
opening, 31

Format contextual tab, Excel, 29–30
Format function, 982
Format menu, VBE, 426–427
Format xxx option, Excel, 40
FormatAllCharts procedures, 594–596
FormatCurrency function, 982
FormatCurrentRegion procedure, 331
FormatDateTime function, 982
FormatNumber function, 982
FormatPercent function, 982
formatted text (*.prn) files, 81, 853

Index 1023

GenerateColorValues procedure, 915
GenerateGrayScale procedure, 916
GenerateRandomNumbers procedure, 498, 500–501, 502
Get statement, 978
GetAColor function, 529–530
GetAFolder procedure, 413
GetAllSettings function, 982
GetAnswer procedure, 405–406
GetAttr command, 840, 982
GetChartElement method, 618, 624
GetData procedure, 334, 448–449
GetDefaults procedure, 815, 818
GetEnabled callback procedure, 752, 753
GetEnabledMso method, 740
GetExecutable function, 386–387
GetExitCodeProcess function, 679
GetHelp procedure, 730
GetImageMso method, 740–741
GetImportFileName procedures, 410–412
GetKeyboardState function, 898
GetKeyState function, 322–323
getLabel procedures, 755–756
GetLabelMso method, 740
GetName prodecure, 400
GetNumLockState procedure, 900
GetObject function, 687–689, 982
GetOpenFilename method, 409–412
GetOption function, 888–893
GetPressed callback procedure, 752, 753
GetPressedMso method, 740
GetProfileString function, 388
GetRegistry function, 393
GetSaveAsFilename method, 412
GetScreentipMso method, 741
GetSetting function

Loan Amortization Wizard, 818
overview, 395, 982
selecting colors in UserForms, 530

GetSupertipMso method, 741
GetSystemMetrics function, 389–390
GetUserRange procedure, 335
GetValue function

arguments, 369
listing, 368–369
used in worksheet formulas, 370

GetValue procedures
listing, 332–333
overview, 332–333

GetWindowLong function, 518
GetWindowsDirectoryA function, 321

\function help directory, 1002
Function keyword, 285
Function procedures. See also names of specific

Function procedures
arguments, 292–293
debugging functions, 313–314
defined, 137, 146
emulating SUM function, 308–311
examples of, 282–286, 293–308
executing, 288–291
extended date functions, 311–313
FileExists function, 365
FileNameOnly function, 365–366
GetValue function, 368–370
Insert Function dialog box, 314–319
locating, 289
macro-recorder feature, 160
naming, 288
overview, 287–288
PathExists function, 366
RangeNameExists function, 366–367
reasons to create, 282
scoping, 288
SheetExists function, 368
Sub procedures versus, 281–282
using add-ins to store, 319–320
Windows API, 320–323, 386–394
WorkbookIsOpen function, 368
worksheets, 372–386

Function statement, 978
functions

adding descriptions manually, 318–319
built-in, 217–220
debugging, 313–314
defined, 281
Excel 2010, 38–40
extended date, 311–313
FAQs, 948–951
keyboard conventions for, 4
listing, 218
recalculation of, 295
specifying categories, 317–318
storing code for, 283

FV function, 982

G
gallery controls, 758–760
General tab, Options dialog box, VBE, 157–158

Index1024

Excel 2010, 19, 51, 173, 190, 804, 969
HTML, 801–807
learning VBA through, 190
Loan Amortization Wizard, 816
online, 790
overview, 789–790
for spreadsheet application, creating, 127–128
that use Excel components, 790, 792–799
using, 173–174

Help window, Excel, 51
HelpButton_Click procedure, 554, 559
HelpContextID argument, Inputbox method, 402
helpfile argument

InputBox function, 400
MsgBox function, 219, 404

HelpFile argument, Inputbox method, 402
Helpfile argument, MyMsgBox function, 513
HelpMod module, 792
HelpSheet worksheet, 792, 812
\helpsource directory, 560
Hex function, 982
hidden names, 60
HiddenWindows procedure, 222
Hide method, 435
HideRowsAndColumns procedure, 355
Hlp files, 801
Home tab, Excel

displaying, 734–735
effect of window size on, 28–29
keytips, displaying, 33
overview, 734
SendKeys argument for, 742

hot keys
defined, 430
for Toolbox controls, 432

Hour function, 982
HTML (Hypertext Markup Language) format

displaying help through Web browser, 799–800
exporting graphic images, 599–600
exporting ranges to, 859–862
overview, 82
saving as, 47

HTML (Hypertext Markup Language) Help system
associating help files with applications, 805–807
custom, 127
Help method, 804–805
overview, 801–803

\html help directory, 1002
HTML Help Viewer, 803

GetWord prodecure, 401
GetWordVersion procedure, 688–689
*.gif files, saving charts as, 532, 948
globally unique identifier (GUID), 875
GNU software, 990
Go To Special dialog box, Excel, 261, 555
GoodLoop procedure, 235
Google Spreadsheets, 20–21
GoSub.Return statement, 978
Goto method, Application object, 952
GoTo statements, 224, 232–233, 978
GoToDemo procedure, 224
graphics and images

application aesthetics, 127
copying charts as, 621–623
displaying with comments, 792
gallery of, 759
using in UserForms, 423

grayscale, 916–919
Grayscale function, 917
greater than or equal to operator (>=), 225
GreetMe procedures, 225–227, 229–230
GreetUser procedures, 230–231
gridlines, 426
groups, Ribbon

.rels file, 749
callback procedures, 749
creating, 755
customUI part, 748–749
overview, 743–748
RibbonX code, 750–751

GUID (globally unique identifier), 875

H
HasFormula property, Range object, 170
headers, updating, 651
Height argument, AddChart method, 587
HelloWorld procedure, 744
Help button, Text Tools utility, 549, 554
Help file (text tools.chm), Text Tools utility, 559–560,

998
Help systems

Comment object, 173
control properties, 429–430
displaying in Insert Function dialog box, 948
displaying in Web browser, 799–801
events, 443

Index 1025

ImportRange procedure, 857–858
ImportRange property, CSVFileClass object, 904
ImportToCell object, 905
Include This Many Sheets option, Excel, 25
indenting

Auto Indent option, VBE, 156
examples with and without, 231–232
overview, 147–148

index numbers
declaring arrays, 213–214
declaring multidimensional arrays, 214
referring to CommandBar objects, 771–772

Index property
referring to Command objects, 772
referring to CommandBar objects, 771

infinite loops, preventing, 642–643
Info window, Excel, 496
Information function category, 318
Init procedure, 667
InitialFilename argument, GetSaveAsFilename method, 412
Initialize callback procedure, 752
Initialize event

Activate event versus, 500
triggering, 442, 443–444, 669
UserForm_Initialize procedure, 449

Input # statement, 853, 978
input boxes

breaking up, 126
InputBox function, 400–402
InputBox method, 402–404
overview, 399
video resolution, 131

Input function, 982
Input mode, Open statement, 851
Input statement, 853
InputBox function, 982

defined, 399
InputBox method versus, 957
overview, 400–402
prompting user for cell value, 332
using GoTo statement with, 224

InputBox method
codes to determine data type returned by, 402
InputBox function versus, 957
overview, 402–404
pausing macros to get user-selected ranges, 334–336
prompting for cell location, 352–353

InRange function, 344
Insert ClipArt command, Excel, 764

HTML Help Workshop, 803
hyperlinks, inserting, 47
Hypertext Markup Language. See HTML format; HTML Help

system
hypocycloid charts, 628–629

I
i prefix, 207
icons used in book, 4–5
ID property, CommandBar object, 773
Id property, control argument, 749
IDE (Integrated Development Environment), VBA, 871–876
idMso argument, 415, 740
If-Then constructs, 170, 223–228
If-Then-Else statement, 978
IIf function, 229, 982
Image control

displaying charts in UserForms, 609, 611
displaying Ribbon icon in, 742
Label control versus, 515
movable, 517
overview, 423
Picture property, 429, 532
simulating toolbars, 519–520

Image1_MouseDown procedure, 517–518
Image1_MouseMove procedure, 517–518, 521
imageMso parameter, 750–751
ImageOnSheet procedure, 741–742
images. See graphics and images
Immediate window, VBE

executing statements with, 166, 267
Function procedures, executing from, 291
learning more about objects and properties, 192
learning VBA through, 191
overview, 143
printing comments to, 176
Sub procedures, executing from, 254–255

Imp operator, 212, 946
Implements statement, 978
Import method, CSVFileClass object, 904
Import procedure, 906–907
ImportAFile procedure, 909
ImportData procedure, 854
importing

data into text files, 854–855
Excel features for, 853
objects, 145

Index1026

intuitiveness, 126–127
invoice numbers, 956
IPmt function, 982
IRR function, 982
Is operator, 178–179, 946
IsAddin property, 93, 704, 725
IsArray function, 982
IsBold function, 370–371
IsDate function, 982
IsEmpty function, 376, 982
IsError function, 982
IsInCollection function, 367
IsItalic function, 371
IsLike function, 377
IsMissing function, 301, 303, 982
IsNull function, 982
ISNUMBER function, 299
IsNumeric function, 310, 982
IsObject function, 982
ISTEXT function, 306

J
Join function, 982

K
Kapor, Mitch, 12
key argument, 470
keyboard

accessing Ribbon using, 32–34
conventions used in book, 3–4
shortcuts, 36, 119, 164, 246–247, 552, 672–676
SpinButton control events initiated by, 445

KeyDown event
SpinButton control, 445
UserForm object, 669

KeyPress event
SpinButton control, 445
UserForm object, 669

keytips, displaying, 32–33
KeyUp event

SpinButton control, 445
UserForm object, 669

Kill command, 840, 978
KillTheForm procedure, 461

Insert Function dialog box, Excel, 38–39, 283, 314–319,
948–949

Insert tab, Excel
overview, 734
SendKeys argument for, 742

InsertLines method, 882
insiders, defined, 103
InstallATP procedure, 724
Installed property, AddIn object, 724–725
InStr function, 401, 982
InStrRev function, 982
instructions

converting to comments, 197
where contained, 242

instructions keyword
declaring Function procedures, 287
declaring Sub procedures, 242

Int function, 982
Integer data type, 199–200, 205, 207
integer division (\) operator, 211, 946
Integrated Development Environment (IDE), VBA, 871–876
interacting with applications

activating applications with Excel, 681–682
automation, 684–688
controlling Excel from another application, 692–695
controlling Word from Excel, 689–692
e-mail, 695–700
GetObject versus CreateObject functions, 688–689
running Control Panel dialog boxes, 683–684
SendKeys method, 701
starting applications from Excel, 677–681

interactive charts, 631–634
interest, end user, 104–105
International property, 833, 835–836
internationalization

Caption property, 773
compatibility, 826
date and time settings, 837
local properties, 834
multilanguage applications, 832–833
overview, 831–832
system settings, identifying, 834–836
VBA language considerations, 834

Internet features, Excel 2010, 47–48
interpreted programming languages, defined, 135
Intersect method, 310, 656
intersecting names, 61
intersection operator (space character), 61, 184, 195

Index 1027

List separator setting, 835
ListAllAddIns procedure, 724–725
ListBox control

activating sheets with, 482–485
adding items to, 467–472
creating UserForms, 456–457, 522–523
determining selected items in, 472–473
filling, 961
moving items in, 476–477
multicolumn, 478–479
multiple lists in, 474
overview, 424, 466–467
selecting worksheet rows with, 480–482
transferring items in, 474–476

ListBox1_Click procedure, 484
ListBox1_DblClick procedure, 485
ListBox1_Enter procedure, 476
ListFileProperties procedure, 848–849
ListFiles procedure, 841–842
ListIndex property, ListBox control, 457, 472
ListProcedures procedure, 877–878
ListReferences procedure, 875
lists (database tables), defined, 109
ListSparklineGroups procedure, 636
ListStyle property, ListBox control, 480
Load statement, 433, 978
LoadPicture function, 531
Loan Amortization Wizard

creating, 813
default settings, saving and retrieving, 818–820
event processing while UserForm is displayed, 815
FormMain UserForm, initializing, 815
help, displaying, 816
initial message, displaying, 814–815
overview, 809–810
potential enhancements for, 820
steps of, 811–812
user interface, modifying, 813–814
using, 810–812
workbook structure, 812–813
worksheets, creating, 816–818

Loc function, 983
local constants, declaring, 207
local properties, 834
local variables, 203–204
Location method, 591
lock argument, Open statement, 851
Lock Project for Viewing check box, VBE, 44

L
l prefix, 207
Label control

adjusting properties, 436
animating, 489–491
displaying help through, 795–798
Image control versus, 515
MyMsgBox function, 515
overview, 423

labels
defined, 224
displaying on charts, using VBA, 606–608
error handling by jumping to, 262

language packs, 832
languages. See also internationalization

multilanguage applications, 832–833
spreadsheet application development, 130
VBA language considerations, 834

LastInColumn function, 375, 376
LastInRow function, 375, 376–377
LastPrinted function, 373
LastSaved functions, 372–373
late binding, 687–689
Layout event, UserForm object, 669
LBound function, 982
LCase function, 983
Left argument

AddChart method, 586
Inputbox method, 402

LEFT function, 300
Left function, 983
Len function, 983
Let statement, 978
licensing controls, 452
light-box effect, 532–534
Like operator, 285, 946
limiting access. See passwords
line breaks, forcing, 407–408, 951
line continuation (underscore) character (_), 4, 148, 171,

195, 944
Line Input # statement, 853, 978
line sparklines, 635
LineFormat object, 929
link formulas, 57
LinkedCell property, 425
links, updating, 941
List property, 470

Index1028

Macro name option, VBE, 164
Macro Options dialog box, Excel, 246–247, 319
Macro-Enabled files. See *.xlsm (Macro-Enabled) files
Macro-Enabled Template (*.xltm) files, 80, 87
MacroOptions method, 315–317, 806
macro-recorder feature, Excel

charts, 584
cleaning up recorded macros, 165–166
entering code, 147, 150–153
learning VBA through, 190
Offset property, 187–188
overview, 159–160
pivot tables, 567, 571
Record Macro dialog box options, 164–165
relative versus absolute recording, 161–164
steps for using, 160–161
uses for, 942

macros. See also macro-recorder feature, Excel; proce-
dures; Visual Basic for Applications (VBA)

adding to Quick Access toolbar, 964
adding to Ribbon, 964
allowing users to undo, 957
for changing page setup to landscape orientation,

150–151
executing, 40
lost, 938
Lotus 1-2-3, 13
making available, 942
overview, 50
pausing for user input, 334–336, 957
preventing from being displayed in macro list, 947
recording, 144, 938
replacing keyboard shortcuts with, 119
running, 938
security setting, 943
setting to run hourly, 947

Macs, compatibility issues, 826, 828–829
Main procedure, 249, 256–258
MakeForm procedure, 887–888
MakeList procedure, 300
MakeLoanTable procedure, 693–694
MakeMemos procedure, 689–691
MakePivotTables procedure, 576–579
MakeUpperCase procedure, 223
Margin Indicator Bar option, VBE, 157
Math & Trig function category, 317
mathematical operators, 211
MAX function, 236
MaxAllSheets function, 382

locking
cells, 42, 124–125
objects, 125

Lock.Unlock statement, 979
LOF function, 983
Log function, 983
LogEvent procedure, 668–669
logging Excel usage, 858–859
Logical function category, 318
logical operators, 212
Long data type

Count property, 336
overview, 199–200
prefix for, 207
type-declaration character for, 205

Lookup & Reference function category, 318
lookup table functions, 296
Lookup Wizard add-in, 718
loop counter, 234
LoopFillRange procedure, 347–348
looping

defined, 159, 232
Do Until loops, 239–240, 401
Do While loops, 237–239
For Each-Next construct, 176
For-Next loops, 233–236, 270–271, 347–348, 978
overview, 232–233
through all cells in range, 223
through charts, 594–596
through selected ranges, 339–341
transferring large amounts of data, 349
While Wend loops, 240

Lotus 1-2-3, 12–14, 80
Lset statement, 979
LTrim function, 983

M
m argument, XDATE function, 312–313
/m switch, 78
Macro Control function category, 318
Macro dialog box, Excel

add-ins, 704
custom function descriptions, 318
displaying, 279
executing procedures, 246
Function procedures, 290
private procedures, 243
Sub procedures, executing from, 245–246

Index 1029

Microsoft Windows Application Programming Interface.
See Windows Application Programming
Interface (API)

Microsoft Windows Calculator application. See Windows
Calculator application

Microsoft Windows Control Panel, 683–684
Microsoft Windows Help system (WinHelp), 801–802
Microsoft Windows Registry. See Windows Registry
Microsoft Windows Scripting Host, 845
Microsoft Windows Vista, 79
Microsoft Word, 682, 685–695
Mid function, 285, 983
Mid statement, 979
MIDI files, 391
MIME Hypertext Markup Language (MHTML) files, 82,

799–801
Mini Toolbar, Excel, 34
minus sign (–), 38
Minute function, 983
MIRR function, 983
Mr. Excel, 975
MkDir command, 840, 979
Mod operator, 211, 304
modal dialog boxes

displaying, 433
modeless dialog boxes versus, 493
MyMsgBox function, 513
overview, 35

mode part, Open statement, 851
modeless dialog boxes

displaying, 433, 461
overview, 35
Text Tools utility, 548
UserForm object, 493–497

ModifyChart procedures, 590
ModifyComment function, 286
ModifyShortcut procedure, 784
ModMain module, Loan Amortization Wizard, 812
Module window, VBE. See code windows, VBE
Module1 VBA module, Text Tools utility, 550–552
modules. See also class modules; Visual Basic for

Applications (VBA)
accessing, 141
copying, 145
deleting, 943
overview, 137
storing code, 146
verifying correct, 144

Modules node, 144

mciExecute function, 391
McRitchie, David, 975
*.mdb files, 82
*.mde files, 82
Me keyword, 434, 450
media folder, 90
megaformulas, 38, 74–76
Member Options dialog box, VBE, 806
membership, testing for in collections, 367
menu bars, 142, 735–737
menus, custom, 116–117
merged cells, 183
methods

of Comment object, 175
defined, 170
displaying available, 951
FAQs, 951–959
fast-food restaurant chain analogy, 140
object, 170–171
overview, 139
programming, 903
properties versus, 175
specifying arguments for, 171
unique to specific objects, 189

MHTML (MIME Hypertext Markup Language; Single File
Web Page; Archived Web Page) files, 82, 799–801

\mhtml file directory, 1002
Microsoft Excel. See Excel 2010 (Excel 14)
Microsoft Excel Objects node, VBE, 144
Microsoft Help 2, 802
Microsoft Knowledge Base, 970
Microsoft MultiPlan. See MultiPlan
Microsoft Office

activating with Excel, 682
automation, 688
compatibility pack, 81
Excel versions, 18–19
user interface, 28
VBA support, 22
Web site, 970

Microsoft Office Code Compatibility Inspector, 827
Microsoft Office Compatibility Pack, 827
Microsoft Office Online, 84
Microsoft Outlook, 695–698
Microsoft Query, 22
Microsoft support site, 826, 970
Microsoft Visual Studio Tools for Office (VSTO), 1
Microsoft Windows 3.0, 14
Microsoft Windows 7, 701

Index1030

msoBarTypeNormal value, CommandBar object, 770
msoBarTypePopUp value, CommandBar object, 770
multicolumn ListBox controls, 478–479
multidimensional arrays, 214
multilanguage applications, 832–833. See also internation-

alization
MultiLine procedure, 407
multilingual wizard, 833
MultiPage control

adding pages to, 486
as container for other controls, 431
displaying progress indicators with, 502–505
displaying progress indicators without, 505–506
overview, 424, 485–486
purpose of, 126
selecting when tabs are hidden, 503
setting up for wizards, 508

MultiPage1_Change procedure
Loan Amortization Wizard, 815
wizards, 510–511

MultiPlan, 15–16
multiplication operator (*), 212
MultiSelect argument, GetOpenFilename method,

409–410
MultiSelect property, ListBox control, 472–473, 480
music_list.csv file, 870
myChartClass_MouseDown procedure, 618
MyMsgBox function, 513–517
MySub procedure, 204, 206, 244, 248–249
MySum function, 308–309
myworkbook.xls file, 370

N
n argument, ExtractElement function, 378
/n filename switch, 78
#N/A error value, 65, 305–306
Name box, 59, 65
Name command, 840
#NAME? error value, 65, 283, 306, 948
Name Manager dialog box, Excel, 59, 60, 62
Name property

AddIn object, 723
CommandButton control, 437–438
local version of, 834
OptionButton control, 437
referring to CommandBar objects, 771
TextBox control, 436

Name statement, 979

module-wide constants, 207
module-wide variables, 204–205
monofont (fixed-width font), defined, 157
Month field

sample budget pivot table, 574
sample pivot table, 567

Month function, 237, 983
MonthNames function, 302–303, 983
MonthSelected procedure, 759
Mosaic Software Twin, 13
mouse

conventions used in book, 4
SpinButton control events initiated by, 445

MouseDown event
Chart object, 611, 664
UserForm object, 669

MouseDown procedure
creating resizable UserForms, 523
movable controls, 517–518
moving UserForms without title bar, 519

MouseMove event
Chart object, 611, 664
UserForm object, 670

MouseMove procedure
creating resizable UserForms, 523–524
movable controls, 517–518
moving UserForms without title bar, 519
simulating toolbars, 520–521

MouseOver event, 622–625
MousePointer property, 518
MouseUp event

Chart object, 664
UserForm object, 670

Move method, 266
MoveChart procedures, 590
MoveRange procedure, 328
MoveUpButton_Click procedure, 477
MS Excel 4 macro sheets, 26
MsgBox function

constants, 405–406
debugging functions, 313
displaying current setting of Value property with,

169–170
displaying message boxes conditionally, 170
emulating, 513–517
overview, 219–220, 404–408, 983
testing, 166, 269

MsgBoxDemo procedure, 405
msoBarTypeMenuBar value, CommandBar object, 770

Index 1031

NextButton control, 509
NextButton_Click procedure, 509
NextLine variable, 882
NextTick variable, 671–672
1904 date system, 72, 829
“No help available” message, 948
NOMIDDLE function, 75
non-relative references, 55
NonStaticRand function, 295
NoObjVar procedure, 215
NoRaise procedure, 521
NoShiftF10 procedure, 675
Not operator, 179, 212
Nothing keyword, 178
Now function, 983
NPer function, 983
NPV function, 983
#NULL! error value, 65, 306
#NUM! error value, 65, 306
Number of Bytes property, 373
Number property, Err object, 260, 262
NumberFormat property, 834
numbers, spelling out, 379–380
numeric formatting, 40–41
NumLock class, 896–901
NumLockClass class, 900–901
NumLockOn procedure, 900

O
obj prefix, 207
Object Browser, VBE

displaying available properties and methods, 951
early binding, 685–687
learning more about objects and properties, 190–191
locating events, 663–664
overview, 190–191

Object data type
overview, 199
prefix for, 207

object hierarchy
chart sheets, 586
charts, 585
defined, 23
overview, 138, 167
Range object, 373–374
Sparklines, 635

names
applying to existing references, 60–61
argument, 172
cell, 59, 64, 954
chart, 65, 591
column, 61
constant, 62–63
control, 422, 429, 443
defined, 39
event-handler procedure, 443, 643
Excel 2010, 38–40
formula, 63–64
function, 946
Function procedure, 288
hidden, 60
intersecting, 61
macro, 164
object, 65
overview, 58
procedure, 243
project, 251
property procedure, 903
range, 4, 59, 64, 329, 953–954
replacing, 61
Ribbon control, 739–740, 764
row, 61
scoping, 61–62
shortcut menu, 770–771
UserForm, 420
variable, 197, 207
workbooks based on templates, 86–87

negation operator (-), 211–212
NestedLoops procedure, 236
nesting

custom functions, 283
For-Next loops, 236
If-Then structures, 227–228
Select Case constructs, 231–232

New Formatting Rule dialog box, Excel, 290–291
New From Existing icon, Excel, 86
New Name dialog box, Excel, 59, 62–64
newcontrols.pag file, 451
newsgroups, 971–973
NewSheet event, Workbook object, 647, 649
newsreaders, 971
NewWorkbook event, Application object, 665
Next button, 508
Next method, Comment object, 175
Next reserved word, 198

Index1032

selecting worksheet rows, 482
validating data, 441–442

old-style toolbars, 764–767
OLE (Object Linking and Embedding). See also automation

defined, 684
release of, 17
VBA IDE, 871

On Error Resume Next statement
causing code to continue when errors occur, 260
ignoring errors, 263, 336, 471
preventing error messages from appearing, 262

On Error statement
example using, 341
overview, 979
StartCalc procedure, 678
trapping errors, 259–260

On events, 640
OnAction property

CommandBar object, 774
ControlButton control, 767

On.GoSub statement, 979
On.GoTo statement, 979
OnKey event

disabling shortcut menus, 675–676
example of, 672–673
key codes for, 673–675
overview, 672

online help, 790
OnTime event, 670–672
OnUndo method, 558–559
op argument, StatFunction function, 380
OpArray argument, GetOption function, 891
Open event, Workbook object, 647–648
open formats, 87, 91
Open statement, 851, 979
OpenDocument Spreadsheet (*.ods) format, 82
OpenTextFile procedure, 680–681
OpenURL procedure, 681
OperatingSystem property, Application object, 829
Operation ComboBox, Text Tools utility, 549
operators

order of precedence of, 211–212
overview, 211–212

Option Base statement, 305, 979
Option Compare statement, 979
Option Compare Text statement, 275
Option Explicit statement, 154, 202–203, 943, 979
Option Private Module statement, 242, 244
Option Private statement, 979

Object Linking and Embedding. See automation; OLE
(Object Linking and Embedding)

object models, 23, 136
object parents, 373–374
Object variable or With block variable not

set error message, 178
objects

chart sheets, 26
within Comment object, 177–178
defined, 23
For Each-Next constructs, 221–223
essential concepts, 188–189
Excel 5/95 dialog sheets, 28
exporting and importing, 145
FAQs, 951–959
fast-food restaurant chain analogy, 139–140
learning more about, 189–192
locking, 125
manipulating without selecting, 189
methods, 170–171
names, 65
overview, 23–24, 138, 167
properties, 169–170
referring to, 168–169, 189
selecting, 40
Sub procedures, executing by clicking, 253–254
variables, 215–216
With-End With constructs, 220–221
workbooks, 24
worksheets, 24–25
XLM macro sheets, 26

ObjectThemeColor property
ColorFormat object, 929, 934
Forecolor object, 930

objResizer_MouseDown procedure, 523
objResizer_MouseMove procedure, 523–524
ObjVar procedure, 216
obMonths_Click procedure, 474
Oct function, 983
*.ods (OpenDocument Spreadsheet) format, 82
Office button, Excel, 27
Offset property, 162–163, 187
OK button, 450, 962
OKButton_Click procedure

activating sheets, 484
function of, 441
listing, 441, 448, 473
Loan Amortization Wizard, 815
progress indicator, 505

Index 1033

GetRegistry function, 393
GetValue function, 369
WriteRegistry function, 394

Path property
AddIn object, 723
saving workbooks, 354

PathExists function, 366, 841
PathExists2 function, 847
pathname part, Open statement, 851
PathSep variable, 829
pattern argument, IsLike function, 377
Pattern property, 924
PatternColorIndex property, 924
patterns, matching strings to, 377–378
PatternTintAndShade property, 924
PctDone variable, 501–502
PDF (Adobe Portable Document Format), 82, 699–700
Pearson Software Consulting, 974
Peltier, Jon, 974
performance, 114
period. See dot operator (.)
Personal Macro Workbook (Personal.xlsb), 164–165,

268, 942
Personal.xlsb. See Personal Macro Workbook

(Personal.xlsb)
PgDn_Sub procedure, OnKey event, 672–673
PgUp_Sub procedure, OnKey event, 672–673
Picture property

CommandBar object, 774
function of, 783
Image control, 429, 532

pie charts, 26
pivot charts, 44
pivot tables

appropriate data for, 568
compatibility issues, 570
complex, 571–576
formatting options, 27
multiple, creating, 576–579
overview, 49
reverse, creating, 579–581
simple, 565–569, 571

PivotCache object, 569
PivotCaches collection, 568
PivotFields collection, 568
PivotItems collection, 568
PivotTables collection, 568
PivotTableUpdate event, Worksheet object, 654
PlayButton_Click procedure, 488

Optional keyword, 300–301
OptionButton control

adjusting properties, 437
creating, 632
interactive charts, 632
overview, 424
Properties window, 428

Options dialog box, VBE
Docking tab, 158–159
Editor Format tab, 156–157
Editor tab, 154–156
General tab, 157–158
overview, 153

Options folder, Windows Registry, 96
OptionsButton_Click procedure, 463–464
Or operator, 212–213
order argument, SERIES formula, 601
Orientation property, 151, 574
OS/2 Presentation Manager, 17
outlines, 48
Output mode, Open statement, 851
OutputRange argument, ReversePivot procedure, 581
OutRow variable, 581
outsiders, defined, 103

P
/p directory switch, 78
page breaks

hiding, 941
toggling display of, 751–754

Page Layout tab, 734, 742
PageCount procedure, 358
Paperback Software VP Planner series, 13
ParamArray keyword, 307
Parent property, 174, 176, 345
Partition function, 983
passwords

applying to workbooks, 43
assigning, 125, 172
changing, 943
forgotten, 942
protecting VBA code with, 43–44
security of, 126, 709

paste preview feature, 27
Paste Special dialog box, Excel, 741
pasting code, 147, 153
Path argument

Index1034

Function procedures, 284, 289
length of, 241
naming, 243
overview, 137, 241–242
passing arguments to, 255–259
scoping, 243–244
storing, 146–147
Sub procedures, executing from, 248–252
testing, 245
undoing, 559

Process procedure, 257
ProcessFiles procedure, 364
programming, overview of, 50
Progress bar, Text Tools utility, 549
progress indicators

displaying using MultiPage controls, 502–505, 960
displaying without using MultiPage controls, 505–506
overview, 497–498
stand-alone, 498–502

PROGRESSTHRESHOLD constant, 551
Project Explorer window, VBE, 143–145
Project Properties dialog box, Excel, 43–44, 251
projects, VBE

defined, 143
naming, 251
overview, 143

prompt argument
Inputbox function, 400
MsgBox function, 219, 404

Prompt argument, Inputbox method, 402
properties

of Application object, 180–181
of Comment object, 174
displaying available, 951
FAQs, 951–959
fast-food restaurant chain analogy, 140
learning more about, 189–192
local versions of, 834
methods versus, 175
object, 169–170
overview, 138–139
programming, 901–903
referencing objects through, 189
specifying arguments for, 171
of Toolbox controls, 426–430
unique to specific objects, 189

Properties window, UserForm object, 420–421, 428–429
Property Get procedure, 898, 901–902, 905
Property Get statement, 979

PlayMIDI procedure, 391
PlaySound function, 391–392
PlayWAV procedure, 391
PlotOrder property, Series object, 605
plus sign (+), 38
PMT function, 256
Pmt function, 983
pname argument, 841
point mode, Refers To box, Excel, 64
points, defined, 478
Pointy Haired Dilbert, 974
Pope, Andy, 521
Power Utility Pak (PUP) software

as collection of utility applications, 108
custom menus and toolbars, 116–117
offer for, 7, 50
origin of, 544
replacing names, 61

Ppmt function, 983
Precedents property, 497
predefined constants, 208
pre-1900 dates, 73, 209, 310, 829
Previous method, Comment object, 175
Print # statement, 854, 979
Print method, 270
PrintEmbeddedCharts procedure, 619
printer information, determining default, 388–389
printing

determining number of printed pages, 358
embedded charts on full page, 619
hiding columns before, 651–652
print preview, 940, 954

PrintMod module, 792
Private keyword

declaring Function procedures, 287–288, 315
declaring Sub procedures, 242–243

private procedures, 243–244, 249
Private statement, 979
*.prn (formatted text) files, 81, 853
Proc1 ComboBox, Text Tools utility, 549
Proc2 ComboBox, Text Tools utility, 549
Procedure Separator option, VBE, 156
procedures. See also Function procedures; macros; Sub

procedures
available to other procedures, 948
calling other, 252
defined, 241, 944
error-handling techniques, 259–263
FAQs, 944–948

Index 1035

question mark (?), 166
Quick Access toolbar, Excel

adding commands to, 416–417, 534
adding macros to, 964
customizing, 32–33
displaying below Ribbon, 32
overview, 32
tracking changes to, 743

quick sort method, 362–363
quick-and-dirty applications, 106–107
quote character (“), 958

R
/r filename switch, 78
R1C1 notation, 56
RaiseEvent statement, 979
random file access, 850
Random mode, Open statement, 851
RandomIntegers function, 383–384
Randomize statement, 979
randomizing ranges, 384–386
Range object

Address property, 172
Cells property, 184–187
Clear method, 170–171
ClearContents method, 170–171
Comment property, 175
Copy method, 171
Count property, 336
Formula property, 170
HasFormula property, 170
Offset property, 187
overview, 182
Range property, 182, 184
Value property, 169–170, 181

Range property, Range object, 182, 184
RangeDescription procedure, 338
RangeNameExists function, 366–367
RangeRandomize function, 384–386
ranges

activating, 952
in charts, determining using VBA, 603–606
copying, 326–329, 352–353
counting selected cells, 336–337
creating, 633–634
deleting all empty rows, 342
determining data type of cell, 345–346
determining type of selected, 337–339

Property Let procedure, 899, 902–903, 905
Property Let statement, 979
Property procedures, 146
Property Set procedure, 902
Property Set statement, 979
Protect method, 171–172
Protect Sheet dialog box, Excel, 42, 124–125
Protect Structure and Windows dialog box, Excel, 43,

171–172
protecting

formulas from being overwritten, 42–43
overview, 22, 124–125
passwords, 43–44
relative nature of, 114
spreadsheet application, 124–125
testing for protected workbook structure, 276
workbook structure, 43

Protection tab, Excel, 44
PT variable, 569
PtrSafe keyword, 320
public Chart object, declaring, 615
public constants, 207
Public keyword

declaring Function procedures, 287–288
declaring public variables, 206
declaring Sub procedures, 242–244

public procedures, scoping, 243
Public statement, 979
public variables

AnimationInProgress variable, 628
Chart object, 615
MyMsgBox function, 515
overview, 206
passing arguments to procedures versus, 258
storing user choices in UserForms, 434

PUP software. See Power Utility Pak (PUP) software
Put statement, 979
puzzles, on UserForms, 537–538
PV function, 983

Q
Q+E program, 17
QBColor function, 983
Quattro, 14
Quattro Pro, 14–15, 80
QueryClose event

monitoring, 462
triggering, 434, 444, 670

Index1036

RegCreateKey function, 393
regedit.exe (Registry Editor program), Windows, 94,

95–96
RegEntry argument

GetRegistry function, 393
WriteRegistry function, 394

Region field, sample pivot table, 566
Regional Settings option, Windows Control Panel, 210
Registry. See Windows Registry
Registry Editor program (regedit.exe), Windows, 94,

95–96
RegOpenKey function, 392
RegQueryValueEx function, 393
RegSetValueEx function, 392
RegVal argument, WriteRegistry function, 394
relative cell references

defined, 55
link formulas, 57
macro-recorder feature, 162–163, 187–188
R1C1 notation, 56

relative recording, 161–164
.rels files, 745–746, 749
_rels folder, 88–89
Rem keyword, 196
Rem statement, 979
RemoveButton_Click procedure, 475
RemoveControl event, UserForm object, 670
RemoveDuplicates procedure, 471
RemoveVowels functions, 283, 285–286, 305–306
Repaint method, 502
repairing damaged workbook files, 91
Replace function, 983
ReplaceModule procedure, 880
repurposing controls, 764
Require Variable Declaration option, VBE, 154–155, 202
reserved words, 198
Reset method, 777
Reset statement, 979
ResetAll procedure, 777
ResetCellMenu procedures, 777
Resiliency folder, Windows Registry, 96
Resize event

Chart object, 611, 664
UserForm object, 670

restored windows, 131
RestoreShortcut procedure, 784–785
Resume statement, 979
returnedVal argument, 753
reusability, 114

ranges (continued)
determining whether contained in another range,

344–345
duplicating rows, 342–344
entering values in next empty cell, 333–334
exporting, 856–857, 859–865
looping through selected, 339–341
moving, 328
names, 4, 59, 953–954
overview, 326
pausing macros to get user-selected, 334–336
prompting for cell value, 332–333
randomizing, 384–386
reading, 346–347
references, 55–57, 621
selecting, 330–331, 457–459, 952–953, 955
selecting cells by value, 350–351
tips for working with, 329
transferring one-dimensional arrays, 349
transferring to variant arrays, 349–350
writing, 346–349

RangeSelection property, ActiveWindow object, 591
RangeToExport object, 905
RangeToVariant procedures, 349–350
Rate function, 983
read-only recommended designation, 125
Recent Templates folder, Windows Registry, 96
reclength part, Open statement, 852
RecolorChartAndPlotArea procedure, 935
Record Macro dialog box, VBE, 164–165
RecordedMacro procedure, 567
RecursiveDir procedure, 843–845
ReDim Preserve statement, 215
ReDim statement, 214–215, 979
Redo button, VBE, 148
ref argument, GetValue function, 369
#REF! error value

constant for, 306
meaning of, 66

RefEdit control
overview, 424
selecting ranges, 457–459

References collection, 875–876
References dialog box, Excel, 250, 871–872
References node, 144, 251
Refers To box, Excel, 62–64
RefersTo property, 834
RefersToR1C1 property, 834
RegCloseKey function, 392

Index 1037

row absolute cell references, 55
rows

counting, 955–956
deleting all empty, 342
determining last non-empty cell in, 375–377
determining number of in ranges, 337
duplicating, 342–344
filtering, 47
hiding, 125
maximum number of, 24
names, 61
number of, 940
number visible, 25
selecting last entry, 956
selecting with ListBox control, 480–482
sorting, 47

Rows property, 337
RowSource property, 467–469
RSet statement, 979
RTrim function, 983
Run dialog box, Windows, 78
Run method

calling custom functions from procedures, 288
calling procedures in different workbooks, 250, 252
executing procedures from procedures, 248–249
executing procedures in add-ins, 717

Run Sub/UserForm menu command, Excel, 245
rundll32.exe application, 683–684
runtime

adding controls to UserForms, 884–885
adding items to ListBoxes at, 468–470
adjusting control properties during, 426
creating UserForms programmatically, 887–888
errors, 259–264

runtime version, defined, 129
RunTimeButton procedure, 884

S
s prefix, 207
/s switch, 78
Sachs, Jonathan, 12
Sales field, sample pivot table, 567
SalesRep field, sample pivot table, 566
save file prompt, preventing, 947
SaveAllGraphics procedure, 599–600
SaveAllWorkbooks procedure, 354
SaveAsExcelFile property, 902

reverse pivot tables, 579–581
ReversePivot procedure, 581
Review tab, Excel, 734, 742
RGB function, 912–913, 983
RGB property, ColorFormat object, 177
RGB2DECIMAL function, 914–915
Ribbon, Excel

accessing by using keyboard, 32–34
adding buttons to, 964
adding commands to, 279
adding groups to, 560–561
adding macros to, 964
customizing, 27, 31, 118, 743–764
groups, creating, 743–754
hiding, 29, 735, 939
hiding groups, 764
hiding tabs, 763
old-style toolbars, 764–767
overview, 2, 28–29, 733–735
Quick Access toolbar, 32
release of, 19
Sub procedures, executing from, 247
tabs, 29–30, 964–965
tracking changes to, 743
types of commands on, 30–32
using VBA with, 737–743
width of, 734–735
window size, effect of, 28–29

Ribbon icon, displaying in Image control, 742
RibbonX code

CheckBox control, 751–752
defined, 743
Ribbon buttons, 750–751
Text Tools utility, 560–561

Right function, 983
ripple effect, defined, 65
RmDir command, 840
RmDir statement, 979
Rnd function, 294, 983
rng argument

LastInColumn function, 376
StatFunction function, 380

Rng argument, CreateWorkRange function, 554
ROMAN function, 219
RootKey argument

GetRegistry function, 393
WriteRegistry function, 394

Round function, 983
round-trip file format, defined, 47

Index1038

SelectCurrentRegion procedure, 330
Selected property, ListBox control, 482
SelectFormulas procedures, 261–262
Selection Demo menu, range selections.xlsm work-

book, 330–331
Selection object, 165
Selection pane, Excel, 741
Selection property, Application object, 180–181
SelectionChange event, 602, 654, 660–661
SelectionType procedure, 231–232
SelectNegative procedure, 223
SelectNoneButton_Click procedure, 481
semitransparent UserForms, 532–534
Sendasheet procedure, 699
SendEmail procedure, 695–696
SendKeys method, 701, 742
SendKeys statement, 979
SendMail method, 695–696, 698–700
SendOneSheet procedure, 699
SendSheetAsPDF procedure, 699
SendWorkbook procedure, 698
Separator argument, ExtractElement function, 378
separator bars, displaying, 156
sequential file access, defined, 850
serial number date system, 71–72
SERIES formula, 600–601, 604, 621
Series object, 600
series_name argument, SERIES formula, 601
SeriesChange event, Chart object, 611, 664
SERIESNAME_FROM_SERIES function, 604
server application, defined, 684
Service Packs (SPs), 130
service releases (SRs), 130
Set keyword, 215–216
Set statement, 979
SetAlarm procedure, 670–671
SetAttr command, 840, 979
SetOptions procedure, 806–807
SetSourceData method, 587
SetToLandscape procedure, 208
Setup_OnKey procedure, 672–673
SetupNoShiftF10 procedure, 675–676
SetWindowLong function, 518
Sgn function, 983
Sh argument, Workbook_SheetActivate procedure, 645
Shape gallery, accessing, 45
Shape object

colors, 177, 927–932
overview, 45–46
using in UserForms, 961

SaveChartAsGIF procedure, 599
SaveDefaults procedure, 818, 819
SaveFile procedure, 903
SaveForUndo procedure, 557
SaveSetting function, 395, 530, 820
SaveSetting statement, 979
SayHello procedure, 148–149
SayIt function, 372
SchemeColor property, 178, 929, 930
scoping

constants, 207
Function procedures, 288
names, 61–62
procedures, 243–244
variables, 203–206

screen capture, 27
screen updating

InputBox method, 336
turning on/off, 275, 953

ScreenUpdating property, 336, 435, 727
Scroll event, 466, 670
ScrollArea property, 794, 952
ScrollBar control, 424, 464–466, 529
ScrollBarColumns_Change procedure, 466
ScrollBarRed_Change procedure, 529
ScrollBarZoom control, 466
ScrollBarZoom_Change procedure, 466
ScrollHeight property, Frame control, 798
scrolling

charts, 626–628
preventing, 952
sheets, from UserForms, 464–466

Search button, Help window, Excel, 51
Second function, 983
security

add-ins, 964
application planning, 114
enhancements to, 27
macro security setting, 943
updates, 130
VBA, 872–873

Security folder, Windows Registry, 96
Seek function, 983
Seek statement, 979
Select Case statement, 229–232, 979
Select event, Chart object, 611, 664
Select method, 166, 952
SelectAllButton_Click procedure, 481
SelectByValue procedure, 350–351

Index 1039

Shell function
displaying folder windows, 680
exporting graphic images, 600
overview, 983
starting applications from Excel using, 677–679

\shellexecute folder, 1001
ShellExecute function, 680–681
Shortcut key option, VBE, 164
shortcut keys. See keyboard
shortcut menus

CommandBar object, 769–777
customizing, 22, 34, 118
defined, 735
disabling, 675–676, 965
displaying names of, 770–771
events, 783–788
hiding, 40
overview, 34
for sheets, 24
Sub procedures, executing from, 247
using VBA to customize, 777–783
VBE, 142

Show Add-in User Interface Errors check box, Excel, 744
Show Page Breaks option, 941
Show ToolTips check box, VBE, 157
ShowCalculator procedure, 756
ShowCaption procedure, 772
ShowCaptions procedure, 772
ShowChart procedure, 609–611
ShowChartAsGrayScale procedure, 919
ShowComponents procedure, 876–877
ShowDataForm method, 418
ShowDateTimeDlg procedure, 683
ShowDialog procedure, 527–528
ShowDriveInfo procedure, 847–848
ShowForm procedure, 432
ShowGraphic procedure, 680
ShowHelpContents procedure, 804
ShowInstalledFonts procedure, 360–361
ShowMyShortcutMenu procedure, 788
ShowPageCount procedure, 358
ShowRange procedure, 408
ShowRoman procedure, 220
ShowRoot procedure, 218
ShowShortcutMenuItems procedure, 774–775
ShowShortcutMenuNames procedure, 770
ShowTextToolsDialog procedure, 548, 551–552
ShowThemeColors procedure, 925–926
ShowToday procedure, 759

\shape object colors directory, 1004
Shape property, Comment object, 174, 177
Shapes collection

AddChart method, 586–587
deleting embedded charts, 593
embedded charts, 586

shareware programs, 990
sheet argument, GetValue function, 369
Sheet objects, 641
SheetActivate event

Application object, 665
example using, 494–495
triggering, 497, 640
Workbook object, 644, 647, 648–649

SheetBeforeDoubleClick event
Application object, 665
Workbook object, 647

SheetBeforeRightClick event
Application object, 665
Workbook object, 647

SheetCalculate event
Application object, 665
Workbook object, 647

SheetChange event
Application object, 665
Workbook object, 647

SheetDeactivate event
Application object, 640, 665
Workbook object, 647

SheetExists function, 368
SheetFollowHyperlink event

Application object, 665
Workbook object, 647

SheetName function, 374
SheetOffset function, 381
SheetPivotTableUpdate event

Application object, 665
Workbook object, 647

sheets. See also chart sheets; worksheets
activating, 24
active, defined, 24
creating utility to alphabetize, 264
hiding, 125
names, changing, 24
shortcut menu for, 24
types of, 24

Sheets object, 168
SheetSelectionChange event, 494–495, 497, 647, 665
sheet.xltx (default worksheet template), 84, 85–86

Index1040

SparklineGroup objects, 635
SparklineGroups collection, 635
SparklineReport procedure, 636–638
Spc function, 984
Speak method, 372
SpecialCells method, 261, 351
SpecialCells property, CreateWorkRange function,

555
speech commands, 940
SpeedBars, Quattro Pro, 15
Spell Checker folder, Windows Registry, 96
SPELLDOLLARS function, 379–380
SpinButton control

displaying help text, 795–796
overview, 424, 444–445
pairing with TextBox control, 446–448

SpinButton1_Change procedure, 446, 796
SpinDown event, 445
spinners, 31
SpinUp event, 442, 445
splash screen, creating, 459–461
split buttons, 31
Split function, 365, 379, 984
spreadsheet applications

characteristics of, 101–102
developers, 102–104
development of, 111–131
end users, 102, 104–105
overview, 101–102
solving problems with, 105–106
types of, 106–110

Spreadsheet Page, 973
SPs (Service Packs), 130
Sqr function, 218, 984
square brackets ([]), 57, 72
SRs (service releases), 130
stand-alone progress indicators, 498–502
Standard toolbar, VBE, 142
StarOffice, 20
StartAmortizationWizard procedure, 813
StartCalc procedures, 677–679
StartCalculator procedure, 682
StartClock procedure, 630
StartEmail procedure, 681
startFromScratch attribute, 754
StartStopButton_Click procedure, 490–491
StartTextTools procedure, 548, 560
StartWord procedure, 682
StatFunction function, 380

ShowUser procedure, 294
ShowUserForm procedure, 469, 501, 502
ShowValue procedure, 169
ShowValueRange procedure, 605
ShowWindowsDir procedure, 321
signatures, digital, 128
\simple ADO 1 directory, 1003
\simple ADO 2 directory, 1003
SimpleAnimation procedure, 625
SimpleSum function, 307
simplicity, 126
Sin function, 983
Single data type

overview, 199
prefix for, 207
type-declaration character for, 205

Single File Web Page (MHTML) files, 82, 799–801
single quotation marks (‘ ‘), 57
single-block budgets, 109
single-user applications, 107
64-bit version, Excel 2010, 27, 320, 826, 830–831
Size and Properties dialog box, Excel, 125
Size setting, VBE, 157
SizeAndAlignCharts procedure, 596–597
sizes argument, SERIES formula, 601
slicers, 27
*.slk (Symbolic Link) files, 81
SLN function, 983
Smart Tags, 36
SmartArt, 45–46
snapping to grid, 426
Solver, Excel

hidden names, 60
overview, 49
release of, 17, 27

Sort method, 268
sorting

arrays, 362–363
merged cells, 183
rows, 47

SortSheets procedure, 269, 272–274, 277–278
SortTester procedure, 271
sound. See audio
space character, 61, 184, 195
Space function, 984
spaghetti applications, 107–108
spaghetti code, 233
Sparkline charts, 20, 27, 44–45, 583, 635–638
Sparkline objects, 635

Index 1041

SUM function, 256, 300, 307–311
SumArray function, 299–300
SUMIF function, 70–71
SummaryTable argument, ReversePivot procedure, 581
summing formulas, 69–71
SumOddSquareRoots, 235
SumSquareRoots, 233
SuperCalc, 11–12
Surpass, 15
Switch function, 984
SYD function, 984
synchronizing worksheets, 356–357
SynchSheets procedure, 356

T
/t filename switch, 78
tab character, 407–408
Tab function, 984
Tab Order dialog box, VBA, 431
tab-and-Ribbon interface. See Ribbon, Excel
tabbed dialog boxes, 35
TabIndex property, 431, 436–438
tables, 46–47. See also pivot tables
tables folder, 90
TabOrientation property, MultiPage control, 486
tabs

Ribbon, 742–743, 754, 964–965
worksheet, 941

TabStrip control, 425, 486
Tag property, 447, 749
talking worksheets, 372
Tan function, 984
task identification number, 678
task panes, 36–37
technical support, 128
template (*.xltx) files, 80
templates

creating, 84–87, 452
custom, 84, 87
document, 941
overview, 83
viewing, 83–84

Templates folder, 84
Terminate event, 434, 444, 670
Test procedure, 267
TestGetOption procedure, 892
TestGetValue procedures, 369

Static Boolean variable, 643
Static keyword

declaring Function procedures, 287
declaring static variables, 206
declaring Sub procedures, 242

Static statement, 979
static variables, 206
StaticRand function, 294
Statistical function category, 317
status bar, Excel, 498, 939, 954
StatusBar folder, Windows Registry, 96
Step value, 234–235, 579
Stop statement, 980
StopClock procedure, 630, 672
StopMIDI procedure, 391
Store Macro In option, VBE, 164
Str function, 984
str prefix, 207
StrComp function, 984
StrConv function, 984
strictly-typed programming languages, defined, 198
String data type

overview, 199
prefix for, 207
specifying length, 209
type-declaration character for, 205

String function, 984
strings

extracting nth element from, 378–379
matching to patterns, 377–378
overview, 209

StrReverse function, 984
Structure check box, Excel, 43
structured programming, 234
structured referencing, 58
Style property, MultiPage control, 486, 512
styles, table, 941
stylistic formatting, 40
Sub keyword, 242
Sub procedures

declaring, 242
defined, 137, 146
example using, 264–280
executing, 244–255
Function procedures versus, 281–282

Sub statement, 980
submenus, 781–783
“subscript out of range” error, 952
subtraction operator (-), 211–212

Index1042

Text Tools Utility dialog box, 546, 550
text01.txt file, 364
text02.txt file, 364
text03.txt file, 364
TextAlign property, 428
TextBox control

adjusting properties, 436
displaying help through, 793–794
overview, 425
pairing with SpinButton control, 446–448

\textbox directory, 1002
TextBox1_Change procedure, 447
TextFrame object, 178
TextOnly argument, CreateWorkRange function, 555
text tools.chm (Help file), Text Tools utility, 559–560,

998
text-to-speech generator, 372
theme folder, 90
ThemeColor property, 924, 927
themes

document, 921–927
Shape object, 930–932

32-bit version, Excel 2010, 826, 830–831
ThisWorkbook module, Loan Amortization Wizard, 812
ThisWorkbook object

code module, 641, 644
IsAddin property, 704
purpose of, 144

ThisWorkbook property, 180
Thousands separator setting, 835
3-D arrays, 214
3-D spreadsheet concept

origin of, 13
Quattro Pro, 15

3-D workbooks, 381
time

displaying, 358–360
entering, 72
internationalization, 832, 837
overview, 71–72
representing duration, 72
when file was printed or previewed, displaying, 373
when file was saved, displaying, 372

Time data type, 207
Time function, 984
Time statement, 980
Timer function, 984
TimeSerial function, 984
TimeValue function, 460, 984

testing
add-ins, 712
beta, 123
code, 268
Export Charts utility, 712
expressions, 166
for membership in collections, 367
procedures, 245
for protected workbook structure, 276
spreadsheet applications, 122–124
Sub procedures, 274–275
UserForms, 432, 439–440

TestKeys procedure, 701
text (*.txt) files

determining or setting position, 853
exporting ranges, 856–857, 859–865
filtering, 859
getting file number, 852–853
importing data into, 854–855
importing to ranges, 857–858
logging Excel usage, 858–859
opening, 680–681, 851–852
overview, 81, 850–851
reading, 852–854
writing, 852–854

text argument, IsLike function, 377
Text box, Text Tools utility, 549
text constants, 62
Text function category, 318
Text Import Wizard, Excel, 81, 853
Text method, Comment object, 175
Text property, 186
Text to Columns Wizard, Excel, 853–855
\text tools help source file, 998
Text Tools utility

adding RibbonX code, 560–561
background for, 546
displaying Help file, 559–560
function of, 548
goals for, 547, 562
learning about, 562–563
making efficient, 554–555
Module1 VBA module, 550–552
overview, 545–546
saving settings, 555–557
Undo feature, 557–559
UserForm for, 548–550
UserForm1 code module, 552–554
workbook, 547–548

Index 1043

trial programs, 990
truepart argument, IIf function, 229
Trust Access to Visual Basic Project setting, Excel, 943
Trust Center dialog box, Excel, 872–873
turnkey applications, 110
TurnOffNoShiftF10 procedure, 675–676
2 - fmTabStyleNone setting, Style property, 512
.txt (text) files. See text (.txt) files
Txt argument, ExtractElement function, 378
Type argument

AddChart method, 586
Inputbox method, 402–403

Type property
ColorFormat object, 929
CommandBar object, 774

Type statement, 980
TypeName function

example using, 310
function of, 201–202
nested Select Case structures, 231–232
overview, 984
toggling Boolean properties, 357
used by Workbook_SheetActivate procedures, 648–

649
typography, 127

U
u prefix, 207
UBound function, 984
UCase function, 217, 275, 984
UI. See user interface
UI Builder, Quattro Pro, 15
Uncomment Block button, VBE, 197
underscore (line continuation) character, 4, 148, 171, 195,

944
Undo button, VBE, 148
Undo Change Case menu item, Excel, 558
Undo feature, 557–559, 656
UndoTextTools procedure, 552, 558
UnhideColumns procedure, 651
Union function, 345
union operator (,), 184
unlinked charts, creating, 621–622
Unload command, 434
Unload statement, 980
UnzipAFile procedure, 868
unzipping files, 867–868

TintAndShade property
ColorFormat object, 929, 934
FillFormat object, 931
Forecolor object, 930
overview, 924–925, 927

Title argument
GetOpenFilename method, 409–410
GetOption function, 891
GetSaveAsFilename method, 412
Inputbox method, 402

title argument
InputBox function, 400
MsgBox function, 219, 404

title bar
removing X button, 959–960
UserForms without, 518–519, 962

Title property, AddIn object, 723
toggle buttons, 30
Toggle Folder icon, VBE, 143
Toggle procedure, 899–900
ToggleButton control, 426
ToggleButton1_Click procedure, 756
ToggleHelp procedure, 793
ToggleNumLock procedures, 900
TogglePageBreakDisplay callback procedure, 752, 753
TogglePageBreaks procedure, 544
ToggleRibbon procedure, 939
ToggleWordWrap procedure, 779
ToggleWrapText procedure, 357
TOOLBAR constant, 767
toolbars

custom, 116–117, 736–737, 939
defined, 735
floating, 939
old-style, 764–767
resetting, 777
simulating with UserForms, 519–521
VBE, 142

Toolbox
controls, 421–432, 448–452, 517–518, 526–528
customizing, 450–452
overview, 421

ToolTips, 157
ToolTipText property, CommandBar object, 774
Top argument

AddChart method, 587
Inputbox method, 402

TransitionEffect property, MultiPage control, 486
TRANSPOSE function, 303, 349

Index1044

UserForm_QueryClose procedure, 462, 960
UserForm1 code module, Text Tools utility, 552–554
\userform1 directory, 1002
\userform2 directory, 1002
\userform3 directory, 1002
UserForms (custom dialog boxes)

as alternative to dialog sheets, 28
alternatives to, 399–418
changing size of, 462–464
charts, displaying in, 531–532, 609–611, 959
checklist for, 453
closing, 434–435
code module, 641
controls, 517–518, 727, 883–886
copying, 145
creating, 119–120, 420, 435–442, 455–457, 886–893
disabling Close button, 461–462
dismissing, 432–433, 439
displaying, 432–434
duplicating Excel dialog boxes, 453
Enhanced Data Form, 534–537
events, 442–448, 640, 669–670
Export Charts utility, 709
FAQs, 959–962
Form Grid Settings section, VBE, 157
generating list of files and directories into, 961
help, displaying through, 795–799
hiding, 435, 960
inserting new, 420–421
keeping open, 960
Label control, animating, 489–491
ListBox control examples, 466–485
modeless dialog boxes, 493–497
MultiPage control example, 485–486
MyMsgBox function, 513–517
naming, 420
with no title bar, 518–519
overview, 419–420
progress indicators, 497–506
puzzles on, 537–538
release of, 19
removing, 145
resizable, 521–525
selecting colors in, 529–530
selecting ranges from, 457–459
semitransparent, 532–534
simulating toolbars with, 519–521
splash screens, 459–461
startup position of, 962

UpCase function, 292
\update user workbook directory, 1004
UpdateBox procedure, 495
UpdateChart procedure, 602–603
UpdateClock procedure, 631, 671–672
UpdateColor procedure, 529
UpdateControls procedure, 509–510
UpdateDynamicRibbon procedure, 762
UpdateForm procedure, 799
UpdateLogFile procedure, 667
UpdateProgress procedure, 501, 502, 504
updating

headers/footers, 651
spreadsheet applications, 129

UPPER function, 293
Use Relative References button, VBE, 162
UsedRange property, Worksheet object, 342
User Defined function category, 318
User function, 293, 294, 301
user interface (UI)

defined, 28
determining most appropriate, 115, 117–122
Excel 2010, 19–20, 22, 28–37
FAQs, 964–965
Loan Amortization Wizard, 813–814

UseRandomColors procedure, 935
UserChoices array, 551
UserColor variable, 529
user-defined data types

overview, 199, 216–217
passing arguments to procedures, 258
prefix for, 207

UserForm_Activate procedure, 460, 500
UserForm_Initialize procedure

activating sheets, 482–484
creating resizable UserForms, 522–523
dialog box default size, 463
displaying charts in UserForms, 610
displaying UserForms without title bar, 518
handling multiple controls with one event handler, 528
Loan Amortization Wizard, 815
MyMsgBox function, 515
overview, 960
RefEdit control, 458
scrolling, 464–465
selecting colors in UserForms, 530
selecting worksheet rows, 480
Text Tools utility, 552
Windows Media Player control, 488

Index 1045

Range object, 169–170, 181
retrieving information from cells, 186
SpinButton control, 446, 448

Value2 property, 186
values argument, SERIES formula, 601
Values property, Series object, 600, 603–604
VALUES_FROM_SERIES function, 604, 605–606
variable declaration, 154
variable-length strings, defined, 209
variables

copying ranges, 327
declaring, 199, 201
displaying UserForms based on, 433
forcing declaration of, 202–203
naming, 197, 207
object, 215–216
overview, 139, 197–198
scoping, 203–206

Variance field, budget pivot table, 572, 574
variant arrays, defined, 944–945
Variant data type, 199, 201–202, 207, 301
variant data types, defined, 944
VariantDemo procedures, 201
variants, defined, 944–945
VarType function, 984
VBA. See Function procedures; ranges; Visual Basic for

Applications (VBA); Visual Basic for Applications
(VBA) code

VBA_Demo procedure, 193–194
vbAbort constant, MsgBox function, 406
vbAbortRetryIgnore constant, MsgBox function, 405
vbCancel constant, MsgBox function, 406
VBComponents collection, 875
vbCritical constant, MsgBox function, 405
vbCrLf constant, 298, 407
vbDefaultButton1 constant, MsgBox function, 405
vbDefaultButton2 constant, MsgBox function, 405
vbDefaultButton3 constant, MsgBox function, 405
vbDefaultButton4 constant, MsgBox function, 405
vbDirectory attribute, Dir function, 843
VBE. See Visual Basic Editor (VBE)
VBE (Visual Basic Environment), 873
vbExclamation constant, MsgBox function, 405
vbHidden attribute, Dir function, 843
VBIDE object, 871
vbIgnore constant, MsgBox function, 406
vbInformation constant, MsgBox function, 405
vbModeless argument, 494, 551
vbMsgBoxHelpButton constant, MsgBox function, 405

templates, creating, 452
testing, 432
for Text Tools utility, 548–550
Toolbox, customizing, 450–452
Toolbox controls, 422–432, 448–450, 526–528
uniform sizing, 962
unloading, 960
using Control tips in, 796
using Shape objects in, 960
video poker game on, 538–539
Windows Media Player control example, 486–488
wizards, creating, 507–512
zooming and scrolling sheets from, 464–466

user-friendly, defined, 104
UserInfo folder, Windows Registry, 96
UserInterfaceOnly option, 943
UserName property, Application object, 293
UserOption function, 892
user-oriented applications

checklist for, 821
defined, 809
development concepts, 820–821
Loan Amortization Wizard, 809–820
overview, 809

users. See end users
utilities

defined, 543
elements common to good utilities, 545
Export Charts, 708–713
overview, 108, 543–544
Text Tools, 545–563

V
v prefix, 207
Val function, 401, 984
validating data

monitoring specific ranges for, 657–660
user input, 332–333
UserForms, 441–442

#VALUE! error value
constant for, 306
debugging functions, 313
meaning of, 66, 293
returning, 949

\value from closed workbook directory, 994
Value property

ListBox control, 472
OptionButton control, 437

Index1046

assignment statements, 210–213
BASIC, 135–136
Boolean properties, toggling, 357
built-in functions, 217–220
charts, 589–592, 603–608
collections, 167–168, 220–223
Comment object, 172–179
comments, 195–197
components, 871–893
constants, 206–208
data types, 198–202, 216–217
date and time, 73, 209–210, 358–360
developing Excel utilities with, 543–563
displaying data forms using, 418
elements of, 193–194
enhancements to, 27
error codes, 985–988
fast-food restaurant chain analogy, 139–140
file manipulation, 363–364, 839–870
fonts, getting list of, 360–361
formulas versus, 114
functions, 977–984
future of, 137
language considerations, 834
learning, 115, 325–326
macro recorder, 159–166
Microsoft Office support for, 22
modules, 144–145, 147–153
object models, 136
objects, 167–171, 188–192, 220–223
origin of, 18–19
overview, 137–139
passwords, protecting code with, 43–44
printed pages, determining number of, 358
procedures, 241–244, 255–263
purpose of, 21
Range object, 182, 184–187
shortcut menus, 777–783
statements, 977–984
strings, 209
Sub procedures, 242, 244–255, 264–280
using with Ribbon, 737–743
variables, 197–198, 201–206, 215–216
VBE, 140–159
workbooks, 354, 368–370
worksheets, 354–357
XLM versus, 136

Visual Basic for Applications (VBA) code
as appears in book, 3–4
CheckBox control, 752–754

vbNewLine constant, MsgBox function, 407
vbNo constant, MsgBox function, 406
vbNormal attribute, Dir function, 843
vbOK constant, MsgBox function, 406
vbOKCancel constant, MsgBox function, 405
vbOKOnly constant, MsgBox function, 405
VBProject property, Workbook object, 874
VBProjects collection, 874–876
vbQuestion constant, MsgBox function, 405
vbReadOnly attribute, Dir function, 843
vbRetry constant, MsgBox function, 406
vbRetryCancel constant, MsgBox function, 405
vbSystem attribute, Dir function, 843
vbSystemModal constant, MsgBox function, 405
vbTab constant, 298, 407
vbVolume attribute, Dir function, 843
vbYes constant, MsgBox function, 406
vbYesNo constant, MsgBox function, 405
vbYesNoCancel constant, MsgBox function, 405
video

determining display information, 389–390
recommended driver, 2
spreadsheet application development, 130–131

video poker game, on UserForm, 538–539
View tab, Excel, 734, 742
ViewCustomViews control, 738
viruses, 944
Visible property

CommandBar object, 774
Comment object, 174
visibility of workbooks, 715

VisiCalc, 11–12
Visual Basic Editor (VBE)

activating, 141–142
changes to, 37
code windows, 145–153
commands, as they appear in book, 3
components of, 142–143
customizing, 153–159
displaying Developer tab, 141
FAQs, 942–944
inserting class modules, 897
overview, 140
Project Explorer window, 143–145

Visual Basic Environment (VBE), 873
Visual Basic for Applications (VBA). See also Function

procedures; ranges
Application object properties, 180–181
arrays, 213–215, 362–363

Index 1047

What You See Is What You Get (WYSIWYG) mode, Lotus
1-2-3, 14

what-if models, 109
While Wend loops, 240
While.Wend statement, 980
Width # statement, 980
Width argument, AddChart method, 587
win32api.txt file, 323, 993
WindowActivate event

Application object, 665
Workbook object, 647

WindowDeactivate event
Application object, 665
Workbook object, 647

WindowResize event
Application object, 665
Workbook object, 647

windows
arranging for macro-recorder feature, 160–161
closing automatically when collapsing projects, 157
counting number of hidden, 222
docking, 158–159

Windows 7, 701
Windows Application Programming Interface (API)

64-bit version of Excel, 320
compile errors, 949–950
creating resizable UserForms, 521
Function procedures, 320–323, 386–394

Windows Calculator application
activating, 681–682
displaying Scientific mode, 701
launching, 677–678

Windows check box, Excel, 43
Windows collection, 222
Windows Control Panel, 683–684
Windows directory, determining, 321–322
Windows Help system (WinHelp), 801–802
Windows Media Player control, 486–488
Windows Registry

accessing, 395
color values stored in, 530
Excel settings in, 94–97
Loan Amortization Wizard default values, 818–819
reading from, 392–393
rebuilding Excel Registry keys, 97
Text Tools utility settings stored in, 555–557
when updated, 95
writing to, 392–394

Windows Scripting Host, 845

colors, 943
controlling execution of, 223–240
entering in code windows, 147–153
examples of, 942
keyboard conventions used in book, 3–4
protecting with passwords, 43–44
speed, 959
SpinButton control events initiated by, 445–446
storing, 146–147

Visual Basic for Windows, release of, 135
VLOOKUP function, 296, 633–634
Volatile method, 295
VowelCount function, 313–314
VSTO (Microsoft Visual Studio Tools for Office), 1

W
WAV files, 390–391
Web browser

accessing newsgroups, 971–972
displaying help through, 799–801

\web browser directory, 1002
Web documents, 680
Web queries, creating, 48
Web sites

author’s, 8, 108
Contextures, 974
Custom UI Editor for Microsoft Office, 747
Daily Dose of Excel, 974
David McRitchie’s Excel pages, 975
file viewer, 129
HTML Help Workshop, 803
Jon Peltier’s Excel page, 974
Microsoft Excel, 970
Microsoft Knowledge Base, 970
Microsoft Office, 970
Microsoft Office compatibility pack, 81
Microsoft support, 826, 970
Mr. Excel, 975
Pearson Software Consulting, 974
Pointy Haired Dilbert, 974
Pope, Andy, 521
Spreadsheet Page, 973
VBA code examples, 942
VisiCalc, 12
Wiley Publishing, 7

Weekday function, 230, 984
WeekdayName function, 984

Index1048

workbooks
accessing add-ins as, 725–726
active, 24
add-ins versus, 703–704
automatic loading, 946
closing all, 354
closing all except active, 222–223
converting to add-ins, 707–708, 963
copying worksheets from add-ins to, 716
creating within add-ins, 716
default number of worksheets, changing, 25
defaults, using workbook template to change, 85
determining when opened, 666–667
determining whether are add-ins, 725
displaying multiple windows, 24
files, 114
hiding window containing, 24
Loan Amortization Wizard, 812–813
overview, 24
passwords, applying to, 43
protecting, 43, 125
referencing, 57
retrieving values from closed, 368–370
saving, 354, 699–700
sending as e-mail attachments, 698
Sub procedures, executing from procedures in, 250–252
templates, 85–87
for Text Tools utility, 547–548
viruses, 944
visibility of, 715

Workbooks collection, 167, 222–223
Workbooks method, Application object, 714
WorkbookSetup procedure, 641
WorkRange object, 557
worksheet databases, accessing, 46–47
\worksheet directory, 1002
Worksheet events, 639
worksheet formulas

deleting values, 953
error values, 948–949
forcing recalculation of, 949–950
Function procedures, executing in, 289–290

worksheet functions
custom, 22
playing sound from, 391–392
simplifying access to, 705

Worksheet object
Cells property, 184–187
events, 654–662

Windows Vista, 79
WindowsDir function, 322
WindowsOS function, 829
WinHelp (Windows Help system), 801–802
win/loss sparklines, 635
With statement, 980
With-End With constructs

function of, 727
improving speed with, 216
MakeMemos procedure, 691
making macros efficient with, 164–165
overview, 220–221
when changing only one property, 151

WithEvents keyword, 615–616
wizards. See also Loan Amortization Wizard

adding buttons, 508
defined, 507
overview, 507–508
performing tasks with, 512
programming buttons, 508–510
programming dependencies in, 510–511
setting up MultiPage control for, 508

Word, 682, 685–695
workaround, defined, 123
Workbook object, 167, 639, 646–653
Workbook_Activate procedure, 648
Workbook_AddInInstall procedure, 726, 728–729
Workbook_BeforeClose procedure, 672, 859
Workbook_BeforePrint procedure, 645–646, 650–651
Workbook_BeforeSave procedure, 649–650
Workbook_Deactivate procedure, 650
Workbook_NewSheet procedure, 649
Workbook_Open procedure, 814, 858, 946
Workbook_SheetActivate procedure, 495, 644, 645,

648–649, 752
Workbook_SheetSelectionChange procedure, 495
WorkbookActivate event, Application object, 665
WorkbookAddinInstall event, Application object, 665
WorkbookAddinUninstall event, Application object,

665
WorkbookBeforeClose event, Application object, 665
WorkbookBeforePrint event, Application object, 665
WorkbookBeforeSave event, Application object, 665
WorkbookDeactivate event, Application object, 665
WorkbookIsOpen function, 368
workbook-level scope, 61
WorkbookName function, 374
WorkbookNewSheet event, 640, 665
WorkbookOpen event, Application object, 665

Index 1049

WriteDate procedure, 837
WriteReadRange procedure, 346–347
WriteRegistry function, 394
WYSIWYG (What You See Is What You Get) mode, Lotus

1-2-3, 14

X
X button, 959–960
XDATEADD(xdate1,days,fmt) function, 311
XDATEDAY(xdate1) function, 311
XDATEDIF(xdate1,xdate2) function, 311
XDATEDOW(xdate1) function, 311
XDATEMONTH(xdate1) function, 311
XDATE(y,m,d,fmt) function, 311, 312
XDATEYEARDIF(xdate1,xdate2) function, 311
XDATEYEAR(xdate1) function, 311
xl folder, 89
XL_NewWorkbook procedure, 668
XL12OrLater function, 828
xl24HourClock constant, International property, 836
xl4DigitYears constant, International property, 836
*.xla files, 81, 711
xlAlternateArraySeparator constant,

International property, 835
*.xlam files. See also add-ins

accessing VBA procedures in add-ins, 717–718
creating, 963
defined, 711, 990
overview, 93
VBA collection membership, 714–715
visibility of, 715
worksheets and chart sheets in, 716

*.xlb files, 92–93
xlColumnSeparator constant, International prop-

erty, 835
xlCountryCode constant, International property, 835
xlCountrySetting constant, International

property, 835
xlCurrencyBefore constant, International

property, 836
xlCurrencyCode constant, International

property, 836
xlCurrencyDigits constant, International

property, 836
xlCurrencyLeadingZeros constant, International

property, 836

objects contained in, 167
Range property, 182, 184
UsedRange property, 342

worksheet sort method
defined, 362
speed of, 363

Worksheet_Activate procedure, 785
Worksheet_BeforeDoubleClick procedure, 661
Worksheet_BeforeRightClick procedure, 662, 675, 787
Worksheet_Change procedure, 654–660
Worksheet_Deactivate procedure, 785
Worksheet_SelectionChange procedure, 602, 660
WorksheetFunction object, 218
worksheet-level scope, 61
worksheets

activating with ListBox control, 482–485
copying from add-ins to workbooks, 716
default number of, changing, 25
defaults, using worksheet template to change, 85–86
displaying help through, 794–795
drawing layer, 25
embedding UserForm controls into, 425
Function procedures, 283–284, 370–386
hiding all but selections, 354–356
Loan Amortization Wizard, 816–818
maximum number of cells, 25
maximum number of columns and rows, 24
multiple, purpose of using, 25
overview, 24
preventing scrolling, 952
referencing, 57
restricting access to, 704
returning maximum value across all, 381–382
saving as PDF files, 699
scrolling from UserForms, 464–466
sending as e-mail attachments, 699
size of, 25
synchronizing, 356–357
templates, 85–86
using ActiveX controls on, 120–122
in XLAM and XLSM files, 716
zooming from UserForms, 464–466

Worksheets collection, 167, 222
worksheets folder, 90
workspace files, 82
wrapper functions, 294, 322, 393
wrapping text, 17
WrapText property, 357
Write # statement, 854, 980

Index1050

xlPortrait variable, 151
xlRightBrace constant, International property, 835
xlRightBracket constant, International

property, 835
xlRowSeparator constant, International

property, 835
*.xls files, 24, 80, 81
*.xlsb files, 80
xlSecondCode constant, International property, 836
*.xlsm (Macro-Enabled) files

accessing VBA procedures in add-ins, 717–718
converting XLS files to, 24
defined, 990
keeping, 963
overview, 80
parts of, 87–90
visibility of, 715
worksheets and chart sheets in, 716

XLStart directory, 77, 85
*.xlsx files, 24, 80, 990
*.xlt files, 80
xlThousandsSeparator constant, International

property, 835
xlTimeLeadingZero constant, International

property, 836
xlTimeSeparator constant, International

property, 835
*.xltm (Macro-Enabled Template) files, 80, 87
*.xltx (template) files, 80
xlUpperCaseColumnLetter constant, International

property, 835
xlUpperCaseRowLetter constant, International

property, 835
*.xlw (workspace files), 82
xlWeekdayNameChars constant, International

property, 836
xlYearCode constant, International property, 835
XML (eXtensible Markup Language)

advantages of, 91
displaying in Web browsers, 90
Excel 2003, 19
Excel 2007, 19
exporting ranges to, 863–865
as open format, 87
XLM versus, 136

XML Paper Specification (*.xps) format, 82
XML Spreadsheet (XMLSS; *.xml) format, 81
XMLSS (XML Spreadsheet) format, 81
Xor operator, 212, 946

xlCurrencyMinusSign constant, International
property, 836

xlCurrencyNegative constant, International
property, 836

xlCurrencySpaceBefore constant, International
property, 836

xlCurrencyTrailingZeros constant, International
property, 836

xlDateOrder constant, International property, 836
xlDateSeparator constant, International

property, 835
xlDayCode constant, International property, 836
xlDayLeadingZero constant, International

property, 836
xlDecimalSeparator constant, International

property, 835
xlGeneralFormatName constant, International

property, 836
xlHourCode constant, International property, 836
*.xll files, 93, 711
xlLandscape constant, 208
xlLandscape variable, 151
xlLeftBrace constant, International property, 835
xlLeftBracket constant, International property, 835
xlListSeparator constant, International

property, 835
xlLowerCaseColumnLetter constant, International

property, 835
xlLowerCaseRowLetter constant, International

property, 835
XLM macro language

GetValue function, 368
overview, 16
VBA versus, 136
XLM macro sheets, 26
XML versus, 136

xlMDY constant, International property, 836
xlMetric constant, International property, 836
xlMinuteCode constant, International property, 836
xlMonthCode constant, International property, 836
xlMonthLeadingZero constant, International

property, 836
xlMonthNameChars constant, International property,

836
xlNoncurrencyDigits constant, International

property, 836
xlNonEnglishFunctions constant, International

property, 836
xlPortrait constant, 208

Index 1051

Z
ZapRange procedure, 171
ZapTheVowels procedure, 284
*.zip (ZIP) files, 87, 90, 745
ZipFiles procedure, 865–866
zipping files, 865–867
zoom control, 37, 464–466
Zoom event, UserForm object, 670

xpos argument, InputBox function, 400
*.xps (XML Paper Specification) format, 82
XValues property, Series object, 600, 603
XVALUES_FROM_SERIES function, 604, 605

Y
y argument, XDATE function, 312
Year function, 984
ypos argument, InputBox function, 400

Index1052

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book (“Book”). This is a license agreement (“Agreement”) between
you and Wiley Publishing, Inc. (“WPI”). By opening the accompanying software packet(s), you
acknowledge that you have read and accept the following terms and conditions. If you do not
agree and do not want to be bound by such terms and conditions, promptly return the Book and
the unopened software packet(s) to the place you obtained them for a full refund.

 1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license
to use one copy of the enclosed software program(s) (collectively, the “Software”) solely
for your own personal or business purposes on a single computer (whether a standard
computer or a workstation component of a multi-user network). The Software is in use on
a computer when it is loaded into temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not expressly
granted herein.

 2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to
the compilation of the Software recorded on the physical packet included with this Book
(“Software Media”). Copyright to the individual programs recorded on the Software Media
is owned by the author or other authorized copyright owner of each program. Ownership of
the Software and all proprietary rights relating thereto remain with WPI and its licensers.

 3. Restrictions on Use and Transfer.

 (a) You may only (i) make one copy of the Software for backup or archival purposes,
or (ii) transfer the Software to a single hard disk, provided that you keep the original
for backup or archival purposes. You may not (i) rent or lease the Software, (ii) copy
or reproduce the Software through a LAN or other network system or through any
computer subscriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

 (b) You may not reverse engineer, decompile, or disassemble the Software. You may
transfer the Software and user documentation on a permanent basis, provided that the
transferee agrees to accept the terms and conditions of this Agreement and you retain
no copies. If the Software is an update or has been updated, any transfer must include
the most recent update and all prior versions.

 4. Restrictions on Use of Individual Programs. You must follow the individual require-
ments and restrictions detailed for each individual program in the “What’s on the CD-ROM”
appendix of this Book or on the Software Media. These limitations are also contained in
the individual license agreements recorded on the Software Media. These limitations may
include a requirement that after using the program for a specifi ed period of time, the user
must pay a registration fee or discontinue use. By opening the Software packet(s), you agree
to abide by the licenses and restrictions for these individual programs that are detailed in
the “About the CD” appendix and/or on the Software Media. None of the material on this
Software Media or listed in this Book may ever be redistributed, in original or modifi ed form,
for commercial purposes.

 5. Limited Warranty.

 (a) WPI warrants that the Software and Software Media are free from defects in materials
and workmanship under normal use for a period of sixty (60) days from the date of pur-
chase of this Book. If WPI receives notifi cation within the warranty period of defects in
materials or workmanship, WPI will replace the defective Software Media.

 (b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO
THE SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/
OR THE TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT WARRANT THAT THE
FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR
THAT THE OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

 (c) This limited warranty gives you specifi c legal rights, and you may have other rights
that vary from jurisdiction to jurisdiction.

 6. Remedies.

 (a) WPI’s entire liability and your exclusive remedy for defects in materials and work-
manship shall be limited to replacement of the Software Media, which may be returned
to WPI with a copy of your receipt at the following address: Software Media Fulfi llment
Department, Attn.: Excel 2010 Power Programming with VBA, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four
to six weeks for delivery. This Limited Warranty is void if failure of the Software Media
has resulted from accident, abuse, or misapplication. Any replacement Software Media
will be warranted for the remainder of the original warranty period or thirty (30) days,
whichever is longer.

 (b) In no event shall WPI or the author be liable for any damages whatsoever (including
without limitation damages for loss of business profi ts, business interruption, loss of
business information, or any other pecuniary loss) arising from the use of or inability
to use the Book or the Software, even if WPI has been advised of the possibility of such
damages.

 (c) Because some jurisdictions do not allow the exclusion or limitation of liability for
consequential or incidental damages, the above limitation or exclusion may not apply
to you.

 7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or
on behalf of the United States of America, its agencies, and/or its instrumentalities (“U.S.
Government”) is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, as applicable.

 8. General. This Agreement constitutes the entire understanding of the parties and revokes
and supersedes all prior agreements, oral or written, between them and may not be modifi ed
or amended except in a writing signed by both parties hereto that specifi cally refers to this
Agreement. This Agreement shall take precedence over any other documents that may be in
confl ict herewith. If any one or more provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other pro-
vision shall remain in full force and effect.

Special Offer . . . Save $30.00!

Power Utility Pak v7
“The Excel tools Microsoft forgot”

A $39.95 value. Yours for only $9.95.

Pro-Quality Tools

PUP v7 is a handy collection of 60 general pur-
pose Excel utilities, plus 50 new worksheet
functions. Download a trial version from the
URL at the bottom of this page. If you like it,
use this coupon and save $30 on the licensed
version.

VBA Source Code is Available

You can also get the complete VBA source files
for only $20.00 more. Learn how the utilities
and functions were written, and pick up useful
tips and programming techniques in the pro-
cess. This is a must for all VBA programmers.

YES! I want Power Utility Pak v7
Name: ___

Company: __

Address:__

City: ___State: __________ Zip: ________________

Check one:

 PUP v7 Licensed Version $9.95

 Developer’s Pak: Licensed Version ($9.95) + VBA Source ($20.00)$29.95

Upon receipt of this coupon, you will receive download instructions via e-mail. Please make

your e-mail address legible.

E-mail: ___

Credit Card: __ Expires:____________________

Make check or money order (U.S. funds only) payable to:

JWalk & Associates Inc.
P.O. Box 68797

Tucson, AZ 85737 (USA)

Download a free 30-day trial version of PUP from:

http://spreadsheetpage.com

PUP v7 is compatible only with Excel 2007 and Excel 2010. For earlier versions of Excel, use PUP v6.

• Create powerful Excel apps with VBA

• Develop user-friendly dialog boxes

• Enhance Excel with custom worksheet functions

• Write event-driven VBA code

Get more from Excel—learn to extend it with VBA
Learn to use Visual Basic for Applications (VBA),
and you can expand the already awesome power of
Excel 2010. John Walkenbach, aka Mr. Spreadsheet,
shows you how to do it in this easy-to-follow guide.

If you’re already an experienced Excel user, this
book will make you an Excel master. You'll learn
a new approach to Excel and the steps involved in
developing a new spreadsheet application. You'll also
discover how to develop VBA subroutines and
functions, use advanced programming techniques,
and more. And if you’re switching to Excel 2010
from an earlier version, there’s a section to get you
up to speed on the new features.

No one can teach you more about Excel than
Mr. Spreadsheet.

Let Mr. Spreadsheet
show you how to:

John Walkenbach, arguably the
foremost authority on Excel, has
written hundreds of articles and
created the award-winning

Power Utility Pak. His 50-plus
books include John Walkenbach's

Favorite Excel 2010 Tips & Tricks, Excel 2010
Formulas, and the bestselling Excel Bible,
all published by Wiley. Visit his popular
Spreadsheet Page at spreadsheetpage.com.

CD-ROM INCLUDES:
• More than 300 files used

as examples in the book

• Searchable PDF of the book
See Appendix D for complete system
requirements

	Excel® 2010 Power Programming with VBA
	Contents at a Glance
	Table of Contents
	Introduction
	Topics Covered
	What You Need to Know
	What You Need to Have
	Conventions in This Book
	What the Icons Mean
	How This Book Is Organized
	About the Companion CD-ROM
	About the Power Utility Pak Offer
	How to Use This Book
	Reach Out

	Part I: Some Essential Background
	Chapter 1: Excel 2010: Where It Came From
	A Brief History of Spreadsheets
	Why Excel Is Great for Developers
	Excel’s Role in Microsoft’s Strategy

	Chapter 2: Excel in a Nutshell
	Thinking in Terms of Objects
	Workbooks
	Excel’s User Interface
	Customizing the Display
	Data Entry
	Formulas, Functions, and Names
	Selecting Objects
	Formatting
	Protection Options
	Charts
	Shapes and SmartArt
	Database Access
	Internet Features
	Analysis Tools
	Add-Ins
	Macros and Programming
	File Format
	Excel’s Help System

	Chapter 3: Formula Tricks and Techniques
	About Formulas
	Calculating Formulas
	Cell and Range References
	Using Names
	Formula Errors
	Array Formulas
	Counting and Summing Techniques
	Working with Dates and Times
	Creating Megaformulas

	Chapter 4: Understanding Excel Files
	Starting Excel
	File Types
	Working with Template Files
	Inside an Excel File
	The OfficeUI File
	The XLB File
	Add-In Files
	Excel Settings in the Registry

	Part II: Excel Application Development
	Chapter 5: What Is a Spreadsheet Application?
	Spreadsheet Applications
	The Developer and the End User
	Solving Problems with Excel
	Basic Spreadsheet Types

	Chapter 6: Essentials of Spreadsheet Application Development
	Steps for Application Development
	Determining User Needs
	Planning an Application That Meets User Needs
	Determining the Most Appropriate User Interface
	Concerning Yourself with the End User
	Other Development Issues

	Part III: Understanding Visual Basic for Applications
	Chapter 7: Introducing Visual Basic for Applications
	Getting Some BASIC Background
	Delving in to VBA
	Covering the Basics of VBA
	Introducing the Visual Basic Editor
	Working with the Project Explorer
	Working with Code Windows
	Customizing the VBE Environment
	The Macro Recorder
	About Objects and Collections
	Properties and Methods
	The Comment Object: A Case Study
	Some Useful Application Properties
	Working with Range Objects
	Things to Know about Objects

	Chapter 8: VBA Programming Fundamentals
	VBA Language Elements: An Overview
	Comments
	Variables, Data Types, and Constants
	Assignment Statements
	Arrays
	Object Variables
	User-Defined Data Types
	Built-in Functions
	Manipulating Objects and Collections
	Controlling Code Execution

	Chapter 9: Working with VBA Sub Procedures
	About Procedures
	Executing Sub Procedures
	Passing Arguments to Procedures
	Error-Handling Techniques
	A Realistic Example That Uses Sub Procedures

	Chapter 10: Creating Function Procedures
	Sub Procedures versus Function Procedures
	Why Create Custom Functions?
	An Introductory Function Example
	Function Procedures
	Function Arguments
	Function Examples
	Emulating Excel’s SUM function
	Extended Date Functions
	Debugging Functions
	Dealing with the Insert Function Dialog Box
	Using Add-ins to Store Custom Functions
	Using the Windows API

	Chapter 11: VBA Programming Examples and Techniques
	Learning by Example
	Working with Ranges
	Working with Workbooks and Sheets
	VBA Techniques
	Some Useful Functions for Use in Your Code
	Some Useful Worksheet Functions
	Windows API Calls

	Part IV: Working with UserForms
	Chapter 12: Custom Dialog Box Alternatives
	Before You Create That UserForm . . .
	Using an Input Box
	The VBA MsgBox Function
	The Excel GetOpenFilename Method
	The Excel GetSaveAsFilename Method
	Prompting for a Directory
	Displaying Excel’s Built-In Dialog Boxes
	Displaying a Data Form

	Chapter 13: Introducing UserForms
	How Excel Handles Custom Dialog Boxes
	Inserting a New UserForm
	Adding Controls to a UserForm
	Toolbox Controls
	Adjusting UserForm Controls
	Adjusting a Control’s Properties
	Displaying a UserForm
	Closing a UserForm
	Creating a UserForm: An Example
	Understanding UserForm Events
	Referencing UserForm Controls
	Customizing the Toolbox
	Creating UserForm Templates
	A UserForm Checklist

	Chapter 14: UserForm Examples
	Creating a UserForm “Menu”
	Selecting Ranges from a UserForm
	Creating a Splash Screen
	Disabling a UserForm’s Close Button
	Changing a UserForm’s Size
	Zooming and Scrolling a Sheet from a UserForm
	ListBox Techniques
	Using the MultiPage Control in a UserForm
	Using an External Control
	Animating a Label

	Chapter 15: Advanced UserForm Techniques
	A Modeless Dialog Box
	Displaying a Progress Indicator
	Creating Wizards
	Emulating the MsgBox Function
	A UserForm with Movable Controls
	A UserForm with No Title Bar
	Simulating a Toolbar with a UserForm
	A Resizable UserForm
	Handling Multiple UserForm Controls with One Event Handler
	Selecting a Color in a UserForm
	Displaying a Chart in a UserForm
	Making a UserForm Semitransparent
	An Enhanced Data Form
	A Puzzle on a UserForm
	Video Poker on a UserForm

	Part V: Advanced Programming Techniques
	Chapter 16: Developing Excel Utilities with VBA
	About Excel Utilities
	Using VBA to Develop Utilities
	What Makes a Good Utility?
	Text Tools: The Anatomy of a Utility
	More about Excel Utilities

	Chapter 17: Working with Pivot Tables
	An Introductory Pivot Table Example
	Creating a More Complex Pivot Table
	Creating Multiple Pivot Tables
	Creating a Reverse Pivot Table

	Chapter 18: Working with Charts
	Getting the Inside Scoop on Charts
	Creating an Embedded Chart
	Creating a Chart on a Chart Sheet
	Using VBA to Activate a Chart
	Moving a Chart
	Using VBA to Deactivate a Chart
	Determining Whether a Chart Is Activated
	Deleting from the ChartObjects or Charts Collection
	Looping through All Charts
	Sizing and Aligning ChartObjects
	Exporting a Chart
	Changing the Data Used in a Chart
	Using VBA to Display Arbitrary Data Labels on a Chart
	Displaying a Chart in a UserForm
	Understanding Chart Events
	Discovering VBA Charting Tricks
	Animating Charts
	Creating an Interactive Chart without VBA
	Working with Sparkline Charts

	Chapter 19: Understanding Excel’s Events
	What You Should Know about Events
	Getting Acquainted with Workbook-Level Events
	Examining Worksheet Events
	Checking Out Chart Events
	Monitoring with Application Events
	Using UserForm Events
	Accessing Events Not Associated with an Object

	Chapter 20: Interacting with Other Applications
	Starting an Application from Excel
	Activating an Application with Excel
	Running Control Panel Dialog Boxes
	Using Automation in Excel
	Sending Personalized E-Mail via Outlook
	Sending E-Mail Attachments from Excel
	Using SendKeys

	Chapter 21: Creating and Using Add-Ins
	What Is an Add-In?
	Understanding Excel’s Add-In Manager
	Creating an Add-in
	An Add-In Example
	Comparing XLAM and XLSM Files
	Manipulating Add-Ins with VBA
	Optimizing the Performance of Add-ins
	Special Problems with Add-Ins

	Part VI: Developing Applications
	Chapter 22: Working with the Ribbon
	Ribbon Basics
	Using VBA with the Ribbon
	Customizing the Ribbon
	Creating an Old-Style Toolbar

	Chapter 23: Working with Shortcut Menus
	CommandBar Overview
	Using VBA to Customize Shortcut Menus
	Shortcut Menus and Events

	Chapter 24: Providing Help for Your Applications
	Help for Your Excel Applications
	Help Systems That Use Excel Components
	Displaying Help in a Web Browser
	Using the HTML Help System
	Associating a Help File with Your Application

	Chapter 25: Developing User-Oriented Applications
	What is a User-Oriented Application?
	The Loan Amortization Wizard
	Application Development Concepts

	Part VII: Other Topics
	Chapter 26: Compatibility Issues
	What Is Compatibility?
	Types of Compatibility Problems
	Avoid Using New Features
	But Will It Work on a Mac?
	Dealing with 64-bit Excel
	Creating an International Application

	Chapter 27: Manipulating Files with VBA
	Performing Common File Operations
	Displaying Extended File Information
	Working with Text Files
	Text File Manipulation Examples
	Zipping and Unzipping Files
	Working with ADO

	Chapter 28: Manipulating Visual Basic Components
	Introducing the IDE
	The IDE Object Model
	Displaying All Components in a VBA Project
	Listing All VBA Procedures in a Workbook
	Replacing a Module with an Updated Version
	Using VBA to Write VBA Code
	Adding Controls to a UserForm at Design Time
	Creating UserForms Programmatically

	Chapter 29: Understanding Class Modules
	What is a Class Module?
	Example: Creating a NumLock Class
	More about Class Modules
	Example: A CSV File Class

	Chapter 30: Working with Colors
	Specifying Colors
	Understanding Grayscale
	Experimenting with Colors
	Understanding Document Themes
	Working with Shape Objects
	Modifying Chart Colors

	Chapter 31: Frequently Asked Questions about Excel Programming
	Getting the Scoop on FAQs
	General Excel Questions
	The Visual Basic Editor
	Procedures
	Functions
	Objects, Properties, Methods, and Events
	UserForms
	Add-Ins
	User Interface

	Part VIII: Appendixes
	Appendix A: Excel Resources Online
	The Excel Help System
	Microsoft Technical Support
	Internet Newsgroups
	Internet Web sites

	Appendix B: VBA Statements and Functions Reference
	Invoking Excel functions in VBA instructions

	Appendix C: VBA Error Codes
	Appendix D: What’s on the CD-ROM
	System Requirements
	Using the CD
	Files and Software on the CD
	Troubleshooting

	Index

