

Programming Excel with VBA and .NET
by Jeff Webb and Steve Saunders

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Simon St.Laurent, John Osborn
Production Editor: Sanders Kleinfeld
Copyeditor: Norma Emory
Indexer: Ellen Troutman-Zaig

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano, Jessamyn Read,

and Lesley Borash

Printing History:

April 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Excel with VBA and .NET, the image of a shoveler duck, and related
trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, the .NET logo, Visual Basic .NET, Visual Studio .NET, ADO.NET, Excel, Windows, and
Windows 2000 are registered trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00766-3

[M]

,COPYRIGHT.986 Page iv Thursday, April 20, 2006 10:07 AM

This excerpt is protected by copyright law. It is your
responsibility to obtain permissions necessary for any

proposed use of this material. Please direct your
inquiries to permissions@oreilly.com.

mailto:permissions@oreilly.com

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

199

Chapter 7 CHAPTER 7

Controlling Excel

I talked a little about the Application object back in Chapter 4. Application is where
everything starts in Excel: it’s the grandma of all the other objects. You use the
Application object to:

• Perform top-level actions, such as quitting Excel, showing dialog boxes, or recal-
culating all workbooks

• Control the Excel options, such as the settings on the Tools ➝ Options dialog
box

• Get references to the other objects in Excel

In this chapter, you will learn about those tasks in detail. This chapter includes task-
oriented reference information for the following objects: Application, AutoCorrect,
AutoRecover, ErrorChecking, Windows, and Panes.

Code used in this chapter and additional samples are available in ch07.xls.

Perform Tasks
Use Application object to perform top-level tasks in Excel. The following sections
describe how to:

• Quit the Excel application from code

• Turn user interaction and screen updates off and on

• Open, close, and arrange Excel windows

• Display Excel dialog boxes

These are the most common tasks for the Application object.

,ch07.819 Page 199 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 7: Controlling Excel

Quit Excel
Use the Quit method to quit Excel. If there are any workbooks with unsaved
changes, Excel displays a dialog box asking the user if those changes should be
saved. There are several ways to change that behavior:

• Save all workbooks before quitting.

• Set the all workbooks Saved property to True.

• Set DisplayAlerts to False.

The following code shows how to save all open workbooks before closing without
prompting the user:

Sub QuitSaveAll()
 Dim wb As Workbook
 For Each wb In Workbooks
 wb.Save
 Next
 Application.Quit
End Sub

Conversely, this code quits Excel without saving any of the workbooks:

Sub QuitSaveNone()
 Dim wb As Workbook
 For Each wb In Workbooks
 ' Mark workbook as saved.
 wb.Saved = True
 Next
 Application.Quit
End Sub

Setting the Saved property fools Excel into thinking that it doesn’t need to save
changes and they are lost when Excel quits.

There’s one other handy member to know about when quitting Excel: the
SaveWorkspace method lets you save an .xlw file that you can use to restore the work-
books and windows currently in use. The following code saves those settings as
Resume.xlw:

Sub QuitWithResume()
 Application.SaveWorkspace "Resume.xlw"
 Application.Quit
End Sub

Lock Out User Actions
Sometimes you want to prevent users from interrupting Excel while you perform
some time-consuming task in code. The Application object provides these ways to
limit user interaction:

• Set DisplayAlerts to False to hide standard Excel dialogs while code runs

,ch07.819 Page 200 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Perform Tasks | 201

• Set Interactive to False to lock users out of Excel completely

• Set ScreenUpdating to False to hide changes as they are made by code

Each of these approaches should include some code at the end of the procedure to
change the settings back to their defaults when your code finishes. Otherwise, you
might lock a user out permanently!

The following code demonstrates how to lock out user actions temporarily while a
long task executes:

Sub LockOutUser()
 Dim cel As Range
 ' Show the hourglass cursor.
 Application.Cursor = xlWait
 ' Turn off user interaction, screen updates.
 Application.Interactive = False
 Application.ScreenUpdating = False
 ' Simulate a long task.
 For Each cel In [a1:iv999]
 cel.Select
 Next
 ' Restore default settings.
 Application.Interactive = True
 Application.ScreenUpdating = True
 Application.Cursor = xlDefault
 [a1].Select
End Sub

One of the side benefits of setting ScreenUpdating to False is that the preceding code
executes more quickly since Excel doesn’t have to update the screen or scroll the
worksheet as cells are selected. Again, just be sure to turn screen updates back on
when done.

Open and Close Excel Windows
The Application object provides a Windows collection that lets you open, arrange,
resize, and close Excel’s child windows. For example, the following code opens a
new child window and then cascades the open windows for the active workbook:

Sub OpenCascadeWindows()
 ActiveWindow.NewWindow
 Application.Windows.Arrange xlArrangeStyleCascade, True
End Sub

You close and maximize child windows using methods on the Window object. For
example, the following code closes the window opened in the preceding code and
restores the original window to a maximized state in Excel:

Sub CloseMaximize()
 ActiveWindow.Close
 ActiveWindow.WindowState = xlMaximized
End Sub

,ch07.819 Page 201 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 7: Controlling Excel

Closing the last child window for a workbook also closes the workbook.

Finally, you can control the Excel parent window using the Application object’s
WindowState and DisplayFullScreen properties:

Sub ChangeExcelWindowState()
 Application.WindowState = xlMaximized
 API.Sleep 1000
 Application.WindowState = xlMinimized
 API.Sleep 1000
 Application.WindowState = xlNormal
 API.Sleep 1000
 Application.DisplayFullScreen = True
 API.Sleep 1000
 Application.DisplayFullScreen = False
End Sub

Display Dialogs
The three different sorts of dialog boxes in Excel are built-in dialogs that perform
actions, built-in dialogs that return information, and custom dialogs you build from
Visual Basic forms. The Application object gives you several ways to display the first
two types:

• Use the FindFile method to let the user select a file to open in Excel.

• Use the Dialogs collection to display Excel’s other built-in dialog boxes to per-
form those specific actions.

• Use FileDialog method to get file and folder names from the user.

• Use the InputBox method to get ranges or formulas.

For example, the following code displays Excel’s built-in Open dialog box and then
opens the file selected by the user:

Sub OpenFile1()
 On Error Resume Next
 Application.FindFile
 If Err Then Debug.Print "User cancelled import."
End Sub

You can do the same thing using the Dialogs collection:

Sub OpenFile2()
 On Error Resume Next
 Application.Dialogs(XlBuiltInDialog.xlDialogOpen).Show
 If Err Then Debug.Print "User cancelled import."
End Sub

Both of the preceding samples display the Open dialog box and open the file in
Excel. You have to include error-handling statements in case the user chooses a non-
Excel file then cancels importing the file—otherwise that action halts your code with
an application error.

,ch07.819 Page 202 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Control Excel Options | 203

The Dialogs collection can display any of the Excel dialog boxes. See Appendix A for
a list of those dialogs—about 250 of them! Displaying a dialog that way is just like
displaying it through the user interface: Excel uses its current settings and takes
whatever actions the user chooses from the dialog.

Sometimes you don’t want Excel to perform its standard action after the user closes
the dialog; instead, you’d rather get the information from the dialog and take your
own actions in code. The most common example of this is when you want to get a
file or folder name. In that case, use the FileDialog method.

FileDialog displays the built-in Excel Open dialog box, but doesn’t open the file.
You can change the caption, file filter, and other settings as well. The following code
uses the FileDialog to open a web file in the browser:

Sub OpenWebFile()
 With Application.FileDialog(msoFileDialogFilePicker)
 ' Set dialog box options
 .Title = "Show web file"
 .Filters.Add "Web files (*.htm)", "*.htm;*.html;*.xml", 1
 .FilterIndex = 1
 .AllowMultiSelect = False
 ' If the user chose a file, open it in the browser.
 If .Show = True Then _
 ThisWorkbook.FollowHyperlink .SelectedItems(1)
 End With
End Sub

Finally, the Application object’s InputBox method lets you get Excel ranges and for-
mulas from the user. This method is otherwise identical to the Visual Basic InputBox.
Figure 7-1 shows the Excel InputBox in action.

The Type argument of InputBox determines the kind of data the user can enter. The
most common settings are 0 for a formula, 1 for a number, or 8 for a range. The fol-
lowing code displays the input box shown in Figure 7-1:

Sub GetRange()
 Dim rng As Range
 Set rng = Application.InputBox("Select a range", _
 "Application InputBox", , , , , , 8)
 rng.Select
End Sub

Control Excel Options
All of the Excel settings and options can be controlled in code through Application
object properties. Quite a few of the Application properties are devoted to Excel set-
tings and options, but you only occasionally need to change these settings in code—
it is usually a better idea to let the users maintain their own settings.

,ch07.819 Page 203 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 7: Controlling Excel

If you do change Excel options in code, it is polite to restore the user’s settings when
you are done. To do that, save the original setting in a module-level variable and
restore that setting before exiting.

Set Startup Paths
Excel uses several predefined folders to load workbooks, add-ins, and templates. You
can get or set these folders from code using the properties in Table 7-1.

Figure 7-1. Use Application.InputBox to get ranges and formulas

Table 7-1. Application properties for predefined folders

Property Use to

AltStartupPath Get or set the user folder used to load add-ins and workbooks automatically

DefaultFilePath Get or set the default folder to which workbooks are saved

LibraryPath Get the built-in Excel add-in library folder

NetworkTemplatesPath Get the AltStartupPath if it is a network share

,ch07.819 Page 204 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Get References | 205

You use these properties when installing templates and add-ins, as covered in
Chapter 6, and when your code relies on specific locations. For example you might
want to change the DefaultFilePath to a specific folder while your application runs:

Dim m_originalPath As String
Const APP_PATH = "c:\ExcelDocs"

Sub SetPath()
 ' Store the user settng.
 m_oringalPath = Application.DefaultFilePath
 ' Use this setting while application runs.
 Application.DefaultFilePath = APP_PATH
End Sub

Sub RestorePath()
 ' Restore the user setting before exit.
 Application.DefaultFilePath = m_originalPath
End Sub

View System Settings
There are a great many other settings and options in Excel. Chapter 6 showed how
to find operating system and version information from the Application object. You
can also get and set the options set through the Excel Options dialog box
(Figure 7-2) using individual Application properties.

For example, to select the R1C1 reference style in Figure 7-2, use this code:

Sub SetReferenceStyle()
 Application.ReferenceStyle = xlR1C1
End Sub

Get References
As the top-level object in Excel, Application is the source of all other object refer-
ences. However, the object name Application isn’t always used in code because
Excel includes shortcuts (called global members) that let you omit it. For instance,
the following two lines are equivalent:

Application.Selection.Clear ' Clear selected cells.
Selection.Clear ' Same thing!

Path Get the folder where Excel is installed

StartupPath Get the built-in folder Excel uses to load add-ins and workbooks automatically (XLSTART)

TemplatesPath Get the user folder Excel from which loads templates

Table 7-1. Application properties for predefined folders (continued)

Property Use to

,ch07.819 Page 205 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 7: Controlling Excel

In this case, Selection returns the selected cells on the active worksheet as a Range
object. Table 7-2 lists the Application members that return references to other objects.

Most of the names of the members in Table 7-2 are descriptive of the objects they
return. The exceptions to that rule are the members that can return a mixed collec-

Figure 7-2. Use Application properties to get or set these options

Table 7-2. Application object members that return object references

ActiveCell ActiveChart ActivePrinter

ActiveSheet ActiveWindow ActiveWorkbook

AddIns Assistant AutoCorrect

AutoRecover Cells Charts

Columns COMAddIns CommandBars

Dialogs ErrorCheckingOptions FileDialog

FileFind FileSearch FindFile

FindFormat International Intersect

LanguageSettings Names NewWorkbook

ODBCErrors OLEDBErrors PreviousSelections

Range RecentFiles Rows

RTD Selection Sheets

SmartTagRecognizers Speech SpellingOptions

ThisCell ThisWorkbook Union

UsedObjects Watches Windows

Workbooks WorksheetFunction Worksheets

There is a property
for each of these
settings

,ch07.819 Page 206 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 207

tion of objects, such as Selection, and members that return Range objects:
ActiveCell, Cells, Columns, Range, Rows, and ThisCell.

Application Members
The Application object has the following members. Key members (shown in bold)
are covered in the following reference section:

ActivateMicrosoftApp ActiveCell ActiveChart

ActivePrinter ActiveSheet ActiveWindow

ActiveWorkbook AddChartAutoFormat AddCustomList

AddIns AlertBeforeOverwriting AltStartupPath

Application ArbitraryXMLSupportAvailable AskToUpdateLinks

Assistant AutoCorrect AutoFormatAsYouType
ReplaceHyperlinks

AutomationSecurity AutoPercentEntry AutoRecover

Build Calculate CalculateBeforeSave

CalculateFull CalculateFullRebuild Calculation

CalculationInterruptKey CalculationState CalculationVersion

Caller CanPlaySounds CanRecordSounds

Caption CellDragAndDrop Cells

CentimetersToPoints Charts CheckAbort

CheckSpelling ClipboardFormats ColorButtons

Columns COMAddIns CommandBars

CommandUnderlines ConstrainNumeric ControlCharacters

ConvertFormula CopyObjectsWithCells Creator

Cursor CursorMovement CustomListCount

CutCopyMode DataEntryMode DecimalSeparator

DefaultFilePath DefaultSaveFormat DefaultSheetDirection

DefaultWebOptions DeleteChartAutoFormat DeleteCustomList

Dialogs DisplayAlerts DisplayClipboardWindow

DisplayCommentIndicator DisplayDocumentActionTaskPane DisplayExcel4Menus

DisplayFormulaBar DisplayFullScreen DisplayFunctionToolTips

DisplayInsertOptions DisplayNoteIndicator DisplayPasteOptions

DisplayRecentFiles DisplayScrollBars DisplayStatusBar

DisplayXMLSourcePane DoubleClick EditDirectlyInCell

EnableAnimations EnableAutoComplete EnableCancelKey

EnableEvents EnableSound ErrorCheckingOptions

Evaluate ExtendList FeatureInstall

FileConverters FileDialog FileFind

FileSearch FindFile FindFormat

FixedDecimal FixedDecimalPlaces GenerateGetPivotData

GetCustomListContents GetCustomListNum GetOpenFilename

GetPhonetic GetSaveAsFilename Goto

Height Help Hinstance

Hwnd InchesToPoints InputBox

Interactive International Intersect

,ch07.819 Page 207 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 7: Controlling Excel

[Application.]ActivateMicrosoftApp(XlMSApplication)
Starts or activates another Microsoft Office application. XlMSApplication can be one of the
following settings:

Iteration LanguageSettings LargeButtons

Left LibraryPath MacroOptions

MailLogoff MailLogon MailSession

MailSystem MapPaperSize MaxChange

MaxIterations MoveAfterReturn MoveAfterReturnDirection

Name Names NetworkTemplatesPath

NewWorkbook NextLetter ODBCErrors

ODBCTimeout OLEDBErrors OnKey

OnRepeat OnTime OnUndo

OnWindow OperatingSystem OrganizationName

Parent Path PathSeparator

PivotTableSelection PreviousSelections ProductCode

PromptForSummaryInfo Quit Range

Ready RecentFiles RecordMacro

RecordRelative ReferenceStyle RegisteredFunctions

RegisterXLL Repeat ReplaceFormat

RollZoom Rows RTD

Run SaveWorkspace ScreenUpdating

Selection SendKeys SetDefaultChart

Sheets SheetsInNewWorkbook ShowChartTipNames

ShowChartTipValues ShowStartupDialog ShowToolTips

ShowWindowsInTaskbar SmartTagRecognizers Speech

SpellingOptions StandardFont StandardFontSize

StartupPath StatusBar TemplatesPath

ThisCell ThisWorkbook ThousandsSeparator

Top TransitionMenuKey TransitionMenuKeyAction

TransitionNavigKeys Undo Union

UsableHeight UsableWidth UsedObjects

UserControl UserLibraryPath UserName

UseSystemSeparators Value VBE

Version Visible Volatile

Wait Watches Width

Windows WindowsForPens WindowState

Workbooks WorksheetFunction Worksheets

xlMicrosoftWord

xlMicrosoftPowerPoint

xlMicrosoftMail

xlMicrosoftAccess

xlMicrosoftFoxPro

xlMicrosoftProject

xlMicrosoftSchedulePlus

,ch07.819 Page 208 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 209

This method causes an error if the requested application is not installed. xlMicrosoftMail
activates the user’s default mail application.

[Application.]ActivePrinter [= setting]
Sets or returns the printer that Excel will use. When setting this property, the printer name
must include the port number, for example:

Sub SetPrinter()
 ActivePrinter = "\\wombat2\Lexmark Z52 Color Jetprinter on Ne04:"
End Sub

The preceding code tells Excel to use a shared printer over the network. The port number
used by Excel is Nenn: for virtual ports but is LPTn: or COMn: for physical ports. The
following code gets an array of the available printers in a format that can be used by Excel:

Function GetPrinters() As String()
 ' Use a suitably large array (supports up to 100 printers).
 ReDim result(100) As String
 Dim wshNetwork As Object, oPrinters As Object, temp As String
 ' Get the network object
 Set wshNetwork = CreateObject("WScript.Network")
 Set oPrinters = wshNetwork.EnumPrinterConnections
 ' Get the current active printer
 temp = ActivePrinter
 ' Printers collection has two elements for each printer.
 For i = 0 To oPrinters.Count - 1 Step 2
 ' Set the default printer.
 wshNetwork.SetDefaultPrinter oPrinters.Item(i + 1)
 ' Get what Excel sees.
 result(i \ 2) = ActivePrinter
 ' For debug purposes, show printer.
 Debug.Print ActivePrinter
 Next
 ' Trim empty elements off the array.
 ReDim Preserve result(i \ 2)
 ' Change back to original printer
 ActivePrinter = temp
 ' Return the result.
 GetPrinters = result
End Function

Application.AddChartAutoFormat(Chart, Name, [Description])
Creates a new chart type based on an existing chart.

Argument Setting

Chart A chart object to get formatting from

Name The name to add to the chart autoformat list

Description A description of the chart type

,ch07.819 Page 209 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 7: Controlling Excel

The following code adds a custom chart type to Excel based on an existing chart in the
current workbook:

Sub TestAddChartType()
 Application.AddChartAutoFormat Charts(1), _
 "new custom", "my description"
End Sub

To see the new chart type, select some data on a worksheet and choose Insert ➝ Chart ➝

Custom Types ➝ User Defined.

Application.AddCustomList(ListArray, [ByRow])
Creates a new automatic list based on an array or a range of cells.

The first item in each list must be unique. An error occurs if a list with an identical first
item already exists. The following code creates a new custom list from a range on the active
worksheet:

Sub TestCustomList()
 Application.AddCustomList [a1:a10]
End Sub

To see the new list, choose Tools ➝ Options ➝ Custom Lists.

Application.AlertBeforeOverwriting [= setting]
True displays an alert if a drag-and-drop changes cells that contain data; False does not.
The default is True.

Application.AltStartupPath
Sets or returns the folder from which to automatically load templates and add-ins.

Application.ArbitraryXMLSupportAvailable
Returns True if Excel accepts custom XML schemas. This property is available only in
Excel 2003.

Application.AskToUpdateLinks [= setting]
True asks prompts before updating external links when a workbook is opened; False does
not prompt before updating. The default is True.

Argument Setting

ListArray The array or range of cells containing the items for the list.

ByRow True creates the list from rows in a range; False creates the list from columns in the range. Ignored if
ListArray is a single row or column. Causes an error if ListArray is not a range.

,ch07.819 Page 210 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 211

Application.Assistant
Returns a reference to the annoying Office Assistant character. For example, the following
code displays the assistant and then animates its departure:

Sub TestAssistant()
 Application.Assistant.Visible = True
 With Application.Assistant.NewBalloon
 .Text = "Ciao for now!"
 .Show
 End With
 Application.Assistant.Animation = msoAnimationGetArtsy
 Application.Assistant.Animation = msoAnimationGoodbye
End Sub

As of Office 2003, the assistant is no longer installed by default.

Application.AutoCorrect
Returns a reference to the AutoCorrect object. That object determines how Excel makes
automatic corrections to user data entry.

Application.AutoFormatAsYouTypeReplaceHyperlinks [= setting]
True automatically reformats entries that begin with http://, ftp://, mailto:, and other
protocols as hyperlinks; False does not. The default is True.

Application.AutomationSecurity [=MsoAutomationSecurity]
Set or returns the macro security setting used when opening Office documents in code.
Possible settings are:

msoAutomationSecurityLow
Enable all macros. This is the default.

msoAutomationSecurityByUI
Use the security setting specified in the Security dialog box.

msoAutomationSecurityForceDisable
Disable all without showing any security alerts.

These settings apply only to files opened in code. Files opened by the user apply the
settings in the Security dialog box.

The default setting for this property is a security hole created to provide backward compat-
ibility with multifile macros written for earlier versions of Excel. You should close this hole
in your own code by setting the property to msoAutomationSecurityByUI before opening
files, as shown here:

Sub TestMacroSecurity()
 ' Enable macro security on file to open
 Application.AutomationSecurity = msoAutomationSecurityByUI
 With Application.FileDialog(msoFileDialogOpen)

,ch07.819 Page 211 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 7: Controlling Excel

 .AllowMultiSelect = False
 ' Get a file
 .Show
 ' Open it.
 Application.Workbooks.Open .SelectedItems(1)
 End With
End Sub

Application.AutoPercentEntry [= setting]
True multiplies values formatted as percentage by 100 when displayed (e.g., entering 99
displays 9900%); False does not. Default is True.

Application.AutoRecover
Returns the AutoRecover object, which controls Excel’s automatic file recovery features.

Application.Build
Returns the Excel build number. The following code displays Excel’s version, build
number, and calculation engine version:

Sub ShowVersion()
 Debug.Print Application.Version; Application.Build; _
 Application.CalculationVersion
End Sub

[Application.]Calculate()
Recalculates the formulas in all open workbooks.

Application.CalculateBeforeSave [= setting]
True recalculates workbooks before they are saved; False does not. Default is True.

Application.CalculateFull()
Forces a full recalculation of all formulas in all workbooks.

Application.CalculateFullRebuild()
Forces a full recalculation of all formulas and rebuilds dependencies in all workbooks.

,ch07.819 Page 212 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 213

Application.Calculation [= XlCalculation]
Sets or returns the calculation mode. Can be one of the following settings:

xlCalculationAutomatic
Recalculates cells as data is entered (default)

xlCalculationManual
Recalculates only when the user chooses Calculate Now (F9)

xlCalculationSemiautomatic
Recalculates all cells except data tables automatically

Application.CalculationInterruptKey [= XlCalculationInterruptKey]
Sets or returns which key halts recalculation. Can be one of the following settings:

Application.CalculationState
Sets or returns a constant indicating the state of all open workbooks. Can be one of the
following:

Application.CalculationVersion
Returns the version number of the calculation engine.

Application.Caller
Returns information about how the macro was called, as described in the following table:

xlAnyKey (default)
xlEscKey

xlNoKey

xlCalculating

xlDone

xlPending

When called from Returns

A formula entered in a cell A Range object for the cell

An array formula in a range of cells A Range object for the range of cells

VBA code, the Run Macro dialog box, or anywhere else Error 2023

An Auto_Open, Auto_Close, Auto_Activate, or
Auto_Deactivate macro

The name of the workbook (Obsolete)

A macro set by the OnDoubleClick or OnEntry property The name of the chart or cell to which the macro applies
(Obsolete)

,ch07.819 Page 213 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 7: Controlling Excel

Application.Caption [= setting]
Sets or returns the text displayed in the Excel titlebar. For example, the following code
replaces “Microsoft Excel” with “Funky Monkey” in the titlebar:

Sub TestCaption()
 Application.Caption = "Funky Monkey"
End Sub

Application.CellDragAndDrop [= setting]
True enables drag-and-drop; False disables. Default is true.

[Application.]Cells[(row, column)]
Returns a range of cells on the active worksheet. For example, the following code selects
cell B1 on the active worksheet:

Sub TestCells()
 Cells(1, 2).Select
End Sub

Application.CentimetersToPoints(Centimeters)
Converts centimeters to points. This is the same as multiplying by 0.035.

[Application.]Charts([index])
Returns a reference to the Charts collection.

Application.CheckAbort([KeepAbort])
Aborts recalculation. The argument KeepAbort accepts a Range object to continue recalcu-
lating. This lets you stop recalculation for all but a specific range of cells.

Application.CheckSpelling(Word, [CustomDictionary], [IgnoreUppercase])
Returns True if Word is spelled correctly; False if it is not.

Argument Setting

Word The word to spellcheck.

CustomDictionary The filename of the custom dictionary to use if the word isn’t found in the main dictionary.
Defaults to the user setting.

IgnoreUppercase True excludes words that are all uppercase; False includes them. Defaults to the user setting.

,ch07.819 Page 214 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 215

Application.ClipboardFormats
Returns an array of XlClipboardFormat constants indicating the types of data currently on
the clipboard. Possible array values are:

Use ClipboardFormats to determine the type of data available on the clipboard before taking
other actions, such as Paste. For example, this code copies a chart into the clipboard, then
pastes it into Paint:

Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Sub TestClipBoardFormats()
 Dim fmt, chrt As Chart
 ' Copy a chart image into the clipboard.
 Set chrt = Charts(1)
 chrt.CopyPicture xlScreen, xlBitmap
 For Each fmt In Application.ClipboardFormats
 ' If the bitmap is in the clipboard
 If fmt = xlClipboardFormatBitmap Then
 ' Start Paint
 Shell "mspaint.exe", vbNormalFocus
 ' Wait a half second to catch up.
 Sleep 500
 ' and paste the Chart image.
 SendKeys "%EP", True
 Exit For
 End If
 Next
End SubEnd Sub

xlClipboardFormatBIFF xlClipboardFormatBIFF2

xlClipboardFormatBIFF3 xlClipboardFormatBIFF4

xlClipboardFormatBinary xlClipboardFormatBitmap

xlClipboardFormatCGM xlClipboardFormatCSV

xlClipboardFormatDIF xlClipboardFormatDspText

xlClipboardFormatEmbeddedObject xlClipboardFormatEmbedSource

xlClipboardFormatLink xlClipboardFormatLinkSource

xlClipboardFormatLinkSourceDesc xlClipboardFormatMovie

xlClipboardFormatNative xlClipboardFormatObjectDesc

xlClipboardFormatObjectLink xlClipboardFormatOwnerLink

xlClipboardFormatPICT xlClipboardFormatPrintPICT

xlClipboardFormatRTF xlClipboardFormatScreenPICT

xlClipboardFormatStandardFont xlClipboardFormatStandardScale

xlClipboardFormatSYLK xlClipboardFormatTable

xlClipboardFormatText xlClipboardFormatToolFace

xlClipboardFormatToolFacePICT xlClipboardFormatVALU

xlClipboardFormatWK1

,ch07.819 Page 215 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 7: Controlling Excel

The Sleep API shown in the preceding code is required to wait for focus to change to the
newly opened Paint application.

[Application].Columns([index])
Returns one or more columns on the active worksheet as a Range object. For example, the
following code selects column C on the active worksheet:

Sub TestColumns()
 Columns(3).Select
End Sub

Application.COMAddIns([index])
Returns a collection of the installed COM add-ins. If there are no COM add-ins installed,
causes an error. The following code lists the COM add-ins:

Sub TestCOMAddins()
 Dim c As COMAddIn
 On Error Resume Next
 For Each c In Application.COMAddIns
 If Err Then Debug.Print "No COM addins."
 Debug.Print Join(Array(c.Description, c.progID, c.Application, _
 c.Connect), ", ")
 Next
End Sub

Application.CommandBars([index])
Returns one or more command bars. The following code displays a list of the command
bars with their status:

Sub TestCommandbars()
 Dim cb As CommandBar
 Debug.Print "Name", "Visible?", "BuiltIn?"
 For Each cb In Application.CommandBars
 Debug.Print cb.Name, cb.Visible, cb.BuiltIn
 Next
End Sub

Application.CommandUnderlines [= xlCommandUnderlines]
(Macintosh only.) Sets or returns how commands are highlighted. Can be one of the
following settings:

For Windows, CommandUnderlines always returns xlCommandUnderlinesOn and cannot be set.

xlCommandUnderlinesOn

xlCommandUnderlinesOff

xlCommandUnderlinesAutomatic

,ch07.819 Page 216 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 217

Application.ConstrainNumeric [= setting]
(Windows for Pen only.) True restricts handwriting recognition to numbers and punctua-
tion; False allows the full alphabet.

Application.ControlCharacters [= setting]
(Right-to-left language display only.) True displays control characters for right-to-left
languages; False hides the characters.

Application.ConvertFormula(Formula, FromReferenceStyle,
[ToReferenceStyle], [ToAbsolute], [RelativeTo])
Converts cell references in a formula between the A1 and R1C1 reference styles, between
relative and absolute references, or both.

The following code converts a formula to R1C1 style relative to cell A1:

Sub TestConvertFormula()
 Dim str As String
 str = "=Sum(A1:A20)"
 Debug.Print Application.ConvertFormula(str, xlA1, xlR1C1, _
 xlRelative, [a1])
End Sub

Application.CopyObjectsWithCells [= setting]
True copies objects, such as buttons, with selected cells; False omits objects. Default is
True.

Argument Description Settings

Formula The formula you want to convert. Must be a valid formula beginning with an
equals sign

FromReferenceStyle The XlReferenceStyle of the formula. xlA1
xlR1C1

ToReferenceStyle The XlReferenceStyle style you want
returned. If this argument is omitted, the
reference style isn’t changed; the formula
stays in the style specified by
FromReferenceStyle.

xlA1
xlR1C1

ToAbsolute The converted XlReferenceStyle. If
omitted, the reference type isn’t changed.
Defaults to xlRelative.

xlAbsolute
xlAbsRowRelColumn
xlRelRowAbsColumn
xlRelative

RelativeTo The cell that references are relative to.
Defaults to active cell.

Range object

,ch07.819 Page 217 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 7: Controlling Excel

Application.Cursor [= XlMousePointer]
Sets or returns the mouse pointer image. Can be one of these settings:

Application.CursorMovement [= setting]
Sets or returns whether a visual cursor or a logical cursor is used. Can be one of these
settings:

Application.CustomListCount
Returns the number of custom lists. To view custom lists, select Tools ➝ Options ➝

Custom Lists.

Application.CutCopyMode [= setting]
Sets or returns whether or not the user is currently cutting or copying cells. Return settings are:

Setting CutCopyMode to True or False cancels the current mode.

Application.DataEntryMode [= setting]
Sets or returns whether or not Excel is in data-entry mode. Can be one of these settings:

Data-entry mode restricts users to unlocked cells. By default, cell protection is set to
Locked, so you must unlock a range to demonstrate this feature. The following code

xlDefault

xlIBeam

xlNorthwestArrow

xlWait

xlVisualCursor

xlLogicalCursor

False, Excel is not in either mode
xlCopy

xlCut

xlOn

xlOff

xlStrict, prevents the user from exiting the mode by pressing Esc

,ch07.819 Page 218 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 219

restricts data entry to range A1:D4; the user can return to regular mode by pressing Esc, as
shown by the following code:

Sub TestDataEntryMode()
 Range("a1:d4").Locked = False
 Application.DataEntryMode = xlOn
End Sub

Application.DecimalSeparator [= setting]
Sets or returns the character used as the decimal separator.

Application.DefaultFilePath [= setting]
Sets or returns the path Excel uses by default when opening files.

Application.DefaultSaveFormat [= XlFileFormat]
Sets or returns the file format used by Excel when saving. Can be one of these settings:

Application.DefaultSheetDirection [= setting]
Sets or returns the default reading direction. Can be one of these settings:

xlAddIn xlCSV xlCSVMac

xlCSVMSDOS xlCSVWindows xlCurrentPlatformText

xlDBF2 xlDBF3 xlDBF4

xlDIF xlExcel2 xlExcel2FarEast

xlExcel3 xlExcel4 xlExcel4Workbook

xlExcel5 xlExcel7 xlExcel9795

xlHtml xlIntlAddIn xlIntlMacro

xlSYLK xlTemplate xlTextMac

xlTextMSDOS xlTextPrinter xlTextWindows

xlUnicodeText xlWebArchive xlWJ2WD1

xlWJ3 xlWJ3FJ3 xlWK1

xlWK1ALL xlWK1FMT xlWK3

xlWK3FM3 xlWK4 xlWKS

xlWorkbookNormal xlWorks2FarEast xlWQ1

xlXMLSpreadsheet

xlRTL

xlLTR

,ch07.819 Page 219 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 7: Controlling Excel

Application.DefaultWebOptions
Returns a DefaultWebOptions object that determines how Excel saves workbooks as web
pages.

Application.DeleteChartAutoFormat(Name)
Removes a custom chart type. The following code removes the custom chart type created
earlier in AddChartAutoFormat:

Sub TestDeleteChartType()
 Application.DeleteChartAutoFormat "new custom"
End Sub

[Application.]DeleteCustomList(ListNum)
Removes a custom list. The following code removes the list created earlier in AddCustomList:

Sub TestDeleteCustomList()
 ' Delete the last list.
 Application.DeleteCustomList Application.CustomListCount
End Sub

Application.Dialogs(XlBuiltInDialog)
Returns the collection of Excel’s dialog boxes. Use Dialogs to display any of the Excel
dialog boxes from code. The following code displays the Activate Workbook dialog box:

Sub TestDialogs()
 Application.Dialogs(XlBuiltInDialog.xlDialogActivate).Show
End Sub

Excel has hundreds of dialog boxes. See Appendix A for a list of them.

Application.DisplayAlerts [= setting]
True displays standard Excel dialogs while a macro runs; False hides those dialogs and
automatically uses the default response for each. Default is True.

Set this property to False for batch operations in which you don’t want user intervention;
be sure to reset the property to True when done. For example, the following code closes all
workbooks but the current one without saving or prompting the user:

Sub CloseAllNoSave()
 Dim wb As Workbook
 ' Turn off warnings.
 Application.DisplayAlerts = False
 For Each wb In Workbooks
 ' Close all workbooks but this one.
 If Not (wb Is ThisWorkbook) Then _
 wb.Close

,ch07.819 Page 220 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 221

 Next
 ' Turn warnings back on.
 Application.DisplayAlerts = True
End Sub

Application.DisplayClipboardWindow [= setting]
True displays the Clipboard window; False hides it. For example, the following code copies
a chart and displays the Clipboard window:

Sub TestClipBoardWindow()
 Dim chrt As Chart
 ' Copy a Chart image into the Clipboard.
 Set chrt = Charts(1)
 chrt.CopyPicture xlScreen, xlBitmap
 Application.DisplayClipboardWindow = True
End Sub

Application.DisplayCommentIndicator [=XlCommentDisplayMode]
Sets or returns the icon displayed for comments. Can be one of the following settings:

Application.DisplayDocumentActionTaskPane [= setting]
For Smart documents, True displays the Document Action task pane, and False hides it.
Setting this property causes an error if the workbook is not a Smart document.

Application.DisplayExcel4Menus [= setting]
True uses Excel Version 4.0 menus; False uses the current version menus. Default is False.

Application.DisplayFormulaBar [= setting]
True displays the Formula bar; False hides it. Default is True.

Application.DisplayFullScreen [= setting]
True displays Excel in full-screen mode; False uses the standard window mode. Default is
False.

xlNoIndicator

xlCommentIndicatorOnly (default)
xlCommentAndIndicator

,ch07.819 Page 221 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 7: Controlling Excel

Application.DisplayFunctionToolTips [= setting]
True displays the function tool tips; False does not. Default is True.

Application.DisplayInsertOptions [= setting]
True displays a dialog with special options, such as Clear Formatting, when inserting cells;
False does not display the dialog. Default is True.

Application.DisplayNoteIndicator [= setting]
True displays an icon indicating cells with notes; False hides the icon. Default is True.

Application.DisplayPasteOptions [= setting]
True displays a dialog with special options when pasting cells; False does not display the
dialog. Default is True.

Application.DisplayRecentFiles [= setting]
True displays a list of recently opened files on the File menu; False does not. Default is
True.

Application.DisplayScrollBars [= setting]
True displays scrollbars for workbooks; False does not. Default is True.

Application.DisplayStatusBar [= setting]
True displays application status bar; False does not. Default is True.

Application.DisplayXMLSourcePane([XmlMap])
(Excel 2003 Professional Edition only.) Displays the XML Source task pane.

Application.DoubleClick()
Double-clicks the active cell. This method emulates the user action.

Argument Setting

XmlMap The XmlMap object to display in the task pane

,ch07.819 Page 222 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 223

Application.EditDirectlyInCell [= setting]
True allows editing in cells; False requires edits to be made in the Formula bar. Default is
True.

Application.EnableAnimations [= setting]
True animates insertions and deletions; False does not animate those operations. Default is
True.

[Application.]EnableAutoComplete [= setting]
True automatically completes words; False does not. Default is True.

Application.EnableCancelKey [= XlEnableCancelKey]
Sets or returns how Excel handles the Esc, Ctrl-Break, and Command-Period (Macintosh)
keys. Can be one of these settings:

xlDisabled
Cancel key trapping disabled.

xlErrorHandler
Cancel key causes error 18, which can be trapped by an On Error statement.

xlInterrupt
Cancel interrupts the current procedure, and the user can debug or end it (default).

Application.EnableEvents [= setting]
True turns on Excel events; False turns off Excel events. Default is True. Setting this prop-
erty to False prevents code written for Workbook, Worksheet, and other object events from
running.

Application.EnableSound [= setting]
True allows Excel to play sounds; False disables sounds. Default is True.

Application.ErrorCheckingOptions
Returns the ErrorCheckingOptions object, which controls Excel’s settings for automatic
error checking.

,ch07.819 Page 223 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 7: Controlling Excel

[Application.]Evaluate(Name)
Evaluates an expression and returns the result. Evaluate is equivalent to enclosing the
expression in square brackets ([]).

It is common to use the bracket notation for the Evaluate method since it is shorter. The
following code displays various values from the active sheet:

Sub TestEvaluate()
 ' Show value of cell A1.
 Debug.Print [a1]
 ' Show total of A1:A3.
 Debug.Print [sum(a1:a3)]
 ' Show table of named ranges
 Dim n As Name, str As String
 Debug.Print "Name", "# w/data", "Address"
 For Each n In Names
 str = "Count(" & n.Name & ")"
 Debug.Print n.Name, Evaluate(str), [n]
 Next
End Sub

Using the bracket notation with a Name object returns the address of the name.

Application.ExtendList [= setting]
True extends formatting and formulas to new data added to a custom list; False does not.
Default is True.

Application.FeatureInstall [= MsoFeatureInstall]
Determines how to handle calls to methods and properties that require features that aren’t
yet installed. Can be one of these settings:

msoFeatureInstallNone
Doesn’t install; causes an error when uninstalled features is called (default)

msoFeatureInstallOnDemand
Prompts the user to install feature

msoFeatureInstallOnDemandWithU
Automatically installs the feature; doesn’t prompt the user

Application.FileConverters[(Index1, Index2)]
Returns an array of installed file converters.

Argument Setting

Name A range address, a named range, or a formula

,ch07.819 Page 224 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 225

If arguments are omitted, FileConverters returns Null if there are no converters or a two-
dimensional array containing the name, DLL path, and extension for each converter. The
following code displays a table of the installed converters:

Sub TestFileConverters()
 Dim cnv As Variant, i As Integer
 cnv = Application.FileConverters
 ' Display table columns
 Debug.Print "Name", "DLL", "Extension"
 ' Check if converters are installed
 If Not IsNull(cnv) Then
 For i = 1 To UBound(cnv, 1)
 Debug.Print cnv(i, 1), cnv(i, 2), cnv(i, 3)
 Next
 Else
 Debug.Print "No converters installed."
 End If
End Sub

Application.FileDialog (MsoFileDialogType)
Returns the FileDialog object.

The following code displays the file picker dialog box and lets the user select a text file to
open in Notepad:

Sub TestFileDialog()
 Dim fname As String
 With Application.FileDialog(msoFileDialogFilePicker)
 .AllowMultiSelect = False
 .Filters.Add "Text files (*.txt)", "*.txt", 1
 .FilterIndex = 1
 .Title = "Open text file"
 If .Show = True Then _
 Shell "notepad.exe " & .SelectedItems(1)
 End With
End Sub

Argument Setting

Index1 The full name of the converter including file type

Index2 The path of the converter’s DLL

Argument Description Settings

MsoFileDialogType Determines which Excel dialog to return msoFileDialogFilePicker
msoFileDialogFolderPicker
msoFileDialogOpen
msoFileDialogSaveAs

,ch07.819 Page 225 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 7: Controlling Excel

Application.FileFind
(Macintosh only.) Returns the FileFind object. The following code displays all of the files
by Jeff:

Sub TestFind() ' Macintosh only
 Dim s
 With Application.FileFind
 .Author = "Jeff"
 .Execute
 For Each s In .Results
 Debug.Print s
 Next
 End With
End Sub

Application.FileSearch
(Windows only.) Returns the FileSearch object. The following code displays all of the text
files in the current folder:

Sub TestSearch() ' Windows only
 Dim s
 With Application.FileSearch
 .LookIn = ThisWorkbook.Path
 .Filename = ".txt"
 .Execute
 For Each s In .FoundFiles
 Debug.Print s
 Next
 End With
End Sub

Application.FindFile()
Displays the Open File dialog box and opens the selected file in Excel.

Application.FindFormat
Returns the CellFormat object used by the Find method. For example, the following code
selects the first bold cell on the active worksheet:

Sub TestFindFormat()
 With Application.FindFormat
 .Font.Bold = True
 End With
 Cells.Find("", , , , , , , , True).Select
End Sub

,ch07.819 Page 226 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 227

Application.FixedDecimal [= setting]
True assumes a fixed decimal place for data entries; False assumes each entry has a vari-
able decimal place. Default is False.

Application.FixedDecimalPlaces [= setting]
Sets the placement of the decimal assumed during data entry. Default is 2. The following
code configures Excel to treat the entry 1000 as 0.1, 45000 as 4.5, and so on:

Sub TestDecimal()
 ' Turn on fixed decimal.
 Application.FixedDecimal = True
 ' Set the decimal place.
 Application.FixedDecimalPlaces = 4
End Sub

Application.GenerateGetPivotData [= setting]
True turns the GenerateGetPivotData command on; False turns the command off. The
GenerateGetPivotData command substitutes cell references for GETPIVOTDATA work-
sheet functions in formulas.

Application.GetCustomListContents
Returns an array of items from a custom list. For example, the following code displays all
of the items in each of the custom lists:

Sub TestListContent()
 Dim i As Integer, lst(), str As String, num As Integer
 Debug.Print "List Number", "Contents"
 For i = 1 To Application.CustomListCount
 lst = Application.GetCustomListContents(i)
 str = Join(lst, ", ")
 num = Application.GetCustomListNum(lst)
 Debug.Print num, str
 Next
End Sub

Application.GetCustomListNum(ListArray)
Returns the index of a custom list.

Argument Setting

ListArray The array of custom list items to look up.

,ch07.819 Page 227 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 7: Controlling Excel

Application.GetOpenFilename([FileFilter], [FilterIndex], [Title], [ButtonText],
[MultiSelect])
Displays the Open File dialog box and returns a filename or False if no file is selected. Does
not open the file.

The following code displays the File Open dialog box for web file types; if the user selects a
file, the code opens the file in Notepad:

Sub TestGetOpen()
 Dim fname As String, fltr As String
 fltr = "Web page (*.htm),*.htm,XML data (*.xml),*.xml," & _
 "XML Style Sheet (*.xsl),*.xsl"
 fname = Application.GetOpenFilename(fltr, _
 1, "Open web file", , False)
 If fname <> "False" Then _
 Shell "Notepad.exe " & fname
End Sub

Application.GetPhonetic([Text])
Returns the Japanese phonetic text of a string. Available only with Japanese language
support.

Application.GetSaveAsFilename([InitialFilename], [FileFilter], [FilterIndex],
[Title], [ButtonText])
Displays the Save File As dialog box and returns a filename or False if no file is selected.
Does not save the file.

The following code saves the active workbook as a web page, closes the newly saved file,
and reopens the original workbook in XLS format:

Sub TestGetSaveAs()
 Dim fname1 As String, fname2 As String, fname3 As String

Argument Setting

FileFilter A filter to use in the drop-down list on the dialog box. Each filter is a pair separated by a comma:
DisplayString, Type. See the following example.

FilterIndex The index of the filter to display initially.

Title The caption for the dialog box. Default is Open.

ButtonText (Macintosh only.) The caption to show on the action button. Default is Open.

MultiSelect True allows the user to select multiple files.

Argument Setting

InitialFileName The name to display in the File text box

Other arguments See “Application.GetOpenFilename”

,ch07.819 Page 228 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 229

 Dim fltr As String
 ' Save changes
 ActiveWorkbook.Save
 ' Get current filename.
 fname1 = ActiveWorkbook.Name
 ' Get filename for web page.
 fname2 = Replace(fname1, "xls", "htm")
 fltr = "Web page (*.htm),*.htm,XML data (*.xml),*.xml," & _
 "XML Style Sheet (*.xsl),*.xsl"
 ' Show the Save As dialog.
 fname3 = Application.GetSaveAsFilename(fname2, fltr, _
 1, "Export to web")
 ' If not cancelled, save the file as a web page.
 If fname3 <> "False" Then _
 ActiveWorkbook.SaveAs fname3, xlHtml
 ' Reopen the original file.
 Workbooks.Open fname1
 ' Close the web page file.
 Workbooks(fname2).Close
End Sub

Application.Goto([Reference], [Scroll])
Selects a range of cells and activates the sheet containing the cells.

Goto is similar to Select, except Select does not activate the sheet.

Application.Height
Returns the height of the Excel window in pixels. Use the WindowState property to maxi-
mize window or minimize Excel.

Application.Help([HelpFile], [HelpContextID])
Displays a help topic in Excel’s Help window.

Argument Setting

Reference A range, named range, or string that evaluates to one of those.

Scroll True scrolls the sheet so that the selection is in the upper-left corner.

Argument Setting

HelpFile The file to display. Can be compiled Help (.chm or .hlp) or a web page (.htm). Defaults to the Excel
help file.

HelpContextID For compiled help files, the numeric ID of the topic to display. Ignored for web pages.

,ch07.819 Page 229 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 7: Controlling Excel

See Chapter 6 for details on creating and displaying Help. The following code displays an
error message help page in the Help window:

Sub TestApplicationHelp()
 ' Display Help in Help window.
 Application.Help ("http://excelworkshop.com/Help/error51.htm")
End Sub

Application.Hinstance
Returns a handle to the Excel application instance.

Application.Hwnd
Returns a handle to the top-level Excel window. You use handles with the Windows API to
do low-level tasks not available through Excel objects. For example, the following code
displays the Excel always on top of all other windows, even if Excel doesn’t have focus:

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _
 ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _
 ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long
Const SWP_NOSIZE = &H1
Const SWP_NOMOVE = &H2
Const HWND_TOPMOST = -1
Const HWND_NOTOPMOST = -2

Sub TestShowXLOnTop()
 ' Change to False to return to normal.
 ShowXLOnTop True
End Sub

Public Function ShowXLOnTop(ontop As Boolean)
 Dim hXl As Long, setting As Long
 If ontop Then setting = HWND_TOPMOST _
 Else setting = HWND_NOTOPMOST
 hXl = Application.hwnd
 SetWindowPos hXl, setting, 0, 0, _
 0, 0, SWP_NOSIZE Or SWP_NOMOVE
End Sub

Application.InchesToPoints(Inches)
Converts a measurement from inches to points. This is the same a multiplying the value by 72.

[Application.]InputBox(Prompt, [Title], [Default], [Left], [Top], [HelpFile],
[HelpContextID], [Type])
This is the same as the Visual Basic InputBox method with one addition: Application.InputBox
allows you to get a selected range using the Type argument which accepts the settings in the
following table:

,ch07.819 Page 230 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 231

The following code demonstrates getting a range using InputBox:

Sub TestInputBox()
 Dim rng As Range
 On Error Resume Next
 Set rng = Application.InputBox(_
 "Select a cell", , , , , , , 8)
 If Not (rng Is Nothing) Then
 Debug.Print rng.Count & " cells selected."
 Else
 Debug.Print "Input cancelled."
 End If
End Sub

See Chapter 3 for details on the Visual Basic InputBox method.

Application.Interactive [= setting]
True allows users to interact with Excel; False prevents user actions. Set the Interactive
property to False to prevent user actions while performing time-consuming operations in
code. Be sure to set Interactive back to True when done.

Application.International(XlApplicationInternational)
Returns an array of locale settings. XlApplicationInternational can be one of the settings
from the following table:

Setting Input is

0 A formula

1 A number

2 Text (a string)

4 A logical value (True or False)

8 A cell reference, as a Range object

16 An error value, such as #N/A

64 An array of values

Category Setting Returns

Cell references xlLeftBrace Character used instead of the left brace ({) in array literals.

xlLeftBracket Character used instead of the left bracket ([) in R1C1-style rela-
tive references.

xlLowerCaseColumnLetter Lowercase column letter.

xlLowerCaseRowLetter Lowercase row letter.

xlRightBrace Character used instead of the right brace (}) in array literals.

xlRightBracket Character used instead of the right bracket (]) in R1C1-style ref-
erences.

,ch07.819 Page 231 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 7: Controlling Excel

xlUpperCaseColumnLetter Uppercase column letter.

xlUpperCaseRowLetter Uppercase row letter (for R1C1-style references).

Country/Region xlCountryCode Excel country/region version setting.

xlCountrySetting Windows country/region setting.

xlGeneralFormatName Name of the General number format.

Currency xlCurrencyBefore True if the currency symbol precedes the currency values; False
if it follows them.

xlCurrencyCode Currency symbol.

xlCurrencyDigits Number of decimal digits to be used in currency formats.

xlCurrencyLeadingZeros True if leading zeros are displayed for zero currency values.

xlCurrencyMinusSign True if a minus sign indicates negative numbers; False if using
parentheses.

xlCurrencyNegative Currency format for negative currency values:

• 0, parentheses, ($nnn) or (nnn$)
• 1, minus before, -$nnn or –nnn$
• 2, minus mid, $-nnn or nnn-$
• 3, minus after, $nnn- or nnn$-

xlCurrencySpaceBefore True adds a space before the currency symbol.

xlCurrencyTrailingZeros True displays trailing zeros for zero currency values.

xlNoncurrencyDigits Number of decimal digits to be used in noncurrency formats.

Date and Time xl24HourClock True uses 24-hour time; False uses 12-hour time.

xl4DigitYears True uses four-digit years; False uses two-digit years.

xlDateOrder Order of date elements:

• 0, month-day-year
• 1, day-month-year
• 2, year-month-day

xlDateSeparator Date separator (/).

xlDayCode Day symbol (d).

xlDayLeadingZero True includes leading zero in days.

xlHourCode Hour symbol (h).

xlMDY True orders dates month-day-year in the long form; False
orders dates day-month-year.

xlMinuteCode Minute symbol (m).

xlMonthCode Month symbol (m).

xlMonthLeadingZero True includes leading zero in months displayed as numbers.

xlMonthNameChars Obsolete, always returns 3.

xlSecondCode Second symbol (s).

xlTimeLeadingZero True includes leading zero in times.

Category Setting Returns

,ch07.819 Page 232 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 233

[Application.]Intersect(Arg1, Arg2, [Argn], …)
Returns the Range object containing the overlapping region of the ranges Arg1 through Argn.

Application.Iteration [= setting]
True uses iteration to calculate formulas that refer to themselves (this is called a circular
reference); False causes an error for circular references. Default is False. Use the MaxChange
and MaxIterations properties to control how many calculations are performed during
iteration.

Application.LanguageSettings
Returns a LanguageSettings object containing information about the user’s locale.

Application.LargeButtons [= setting]
True displays large toolbar buttons; False displays regular-size buttons. Default is False.

xlTimeSeparator Time separator (:)

xlWeekdayNameChars Obsolete, always returns 3.

xlYearCode Year symbol in number formats (y).

Measurement xlMetric True is metric system in use; False if the English measurement
system is in use.

xlNonEnglishFunctions True if functions are not displayed in English.

Separators xlAlternateArraySeparator Alternate array item separator to be used if the current array
separator is the same as the decimal separator.

xlColumnSeparator Character used to separate columns in array literals.

xlDecimalSeparator Decimal separator.

xlListSeparator List separator.

xlRowSeparator Character used to separate rows in array literals.

xlThousandsSeparator Zero or thousands separator.

Argument Setting

Arg1 The first Range object to intersect

Arg2 The second Range object to intersect

Argn Any number of additional Range objects to intersect

Category Setting Returns

,ch07.819 Page 233 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 7: Controlling Excel

Application.Left [= setting]
Sets or returns the distance between the left edge of the screen and the left edge of the Excel
window in pixels.

Application.LibraryPath
Returns the path to the Excel add-in library, for example C:\Program Files\Microsoft Office\
OFFICE11\LIBRARY.

Application.MacroOptions([Macro], [Description], [HasMenu], [MenuText],
[HasShortcutKey], [ShortcutKey], [Category], [StatusBar], [HelpContextId],
[HelpFile])
Sets the description and help files displayed for a macro or user-defined function.

The usable arguments are different for macros (Subs) and user-defined functions
(Functions). The Macro dialog box doesn’t use Category, HelpContextId, or HelpFile argu-
ments. The Insert Function dialog box doesn’t use HasShortcutKey or ShortcutKey
arguments.

The following code sets the options for the ShowXlOnTop user-defined function:

Sub TestMacroOptions()
 Application.MacroOptions "ShowXlOnTop", _
 "Set Excel as the top-most window.", , , , , _
 "Windows", "Excel On Top", , _
 "http:\\excelworkshop.com\Help\ch07.htm"
End Sub

After this code runs, Excel displays the options on the Insert Function dialog as shown in
Figure 7-3.

Argument Setting

Macro The name of the macro to set.

Description A description that appears in the Macro or Formula dialog box.

HasMenu Ignored.

MenuText Ignored.

HasShortcutKey True assigns a shortcut key to the macro.

ShortcutKey The shortcut key to assign.

Category The name of a category for the user-defined function. Default is User Defined.

StatusBar Ignored.

HelpContextId The context ID for the help topic within the compiled help file. Ignored for other help file types.

HelpFile The name of the help file to display for user-defined functions.

,ch07.819 Page 234 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 235

Application.MailLogoff()
Ends a MAPI mail session.

Application.MailLogon([Name], [Password], [DownloadNewMail])
Closes any existing MAPI sessions and creates a new one, starting the Microsoft Mail
spooler. Returns True if Mail is started successfully, False if not.

Application.MailSession
Returns the MAPI session number begun by Excel. Returns Null if there is no session.

Application.MailSystem
Returns the XlMailSystem setting indicating the users installed mail system. Can be one of
these settings:

Figure 7-3. How Excel displays macro options for user-defined functions

Argument Setting

Name The username for the mail session.

Password User password.

DownloadNewMail True downloads new mail immediately. Default is False.

xlMAPI

xlNoMailSystem

xlPowerTalk

Category argument

Description argument

Displays HelpFile

,ch07.819 Page 235 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 7: Controlling Excel

Application.MapPaperSize [= setting]
True adjusts printing to map from the standard paper size of one locale to another; False
does not adjust.

Application.MaxChange [= setting]
The maximum amount of change allowed in resolving circular references using iteration.
Once the change is less than this amount, iteration stops.

Application.MaxIterations [= setting]
The maximum number of calculations performed when resolving a circular reference.

Application.MoveAfterReturn [= setting]
True activates the next cell after the user presses Enter; False keeps the current cell active.
Default is True.

Application.MoveAfterReturnDirection [=XlDirection]
Sets or returns which cell is activated after the user presses Enter. Can be one of these
settings:

Application.Names([index])
Returns the collection of named ranges in the active workbook. The following code
displays a table of named ranges:

Sub TestNames()
 Dim n As Name
 Debug.Print "Name", "Address"
 For Each n In Names
 Debug.Print n.Name, n.RefersTo
 Next
End Sub

Application.NetworkTemplatesPath
Returns the AltStartupPath property if that setting is a network share. Otherwise, returns
an empty string.

xlDown (default)
xlToLeft

xlToRight

xlUp

,ch07.819 Page 236 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 237

Application.NewWorkbook
Returns an Office NewFile object that represents an item on the New Workbook task pane.
You can use this object to add or remove items from the task pane. For example, the
following code adds the Invoice template and displays the task pane:

Sub TestNewWorkbook()
 With Application.NewWorkbook
 .Add "Invoice.xlt", _
 MsoFileNewSection.msoNewfromTemplate, _
 "New Invoice", MsoFileNewAction.msoCreateNewFile
 End With
 Application.CommandBars("Task Pane").Visible = True
End Sub

See the Office VBA help file (VBAOF11.CHM) for information about the NewFile object.

Application.NextLetter()
(Macintosh with PowerTalk mail only.) Opens the next unread mail message in the In
Tray.

Application.ODBCErrors
Returns the ODBCErrors collection generated by the most recent query table or PivotTable
report.

Application.ODBCTimeout [= setting]
Sets or returns the time limit for ODBC queries. Default is 45 seconds.

Application.OLEDBErrors
Returns the OLEDBErrors collection generated by the most recent OLE DB query.

Application.OnKey(Key, [Procedure])
Assigns a macro to run when a key is pressed. Can also be used to disable built-in Excel key
combinations.

Argument Setting

Key The key combination to assign. The character codes are the same as for SendKeys. See Chapter 3
for the SendKeys codes.

Procedure The name of the macro to run. Setting to "" disables any built-in action for those keys; omitting
this argument restores the built-in action.

,ch07.819 Page 237 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 7: Controlling Excel

The following code demonstrates how to reassign, disable, and restore a built-in key
assignment:

Sub TestOnKey()
 ' Reassign Ctrl+C
 Application.OnKey "^c", "CopyMsg"
 ' Disable Ctrl+C
 'Application.OnKey "^c", ""
 ' Restore Ctrl+C
 ' Application.OnKey "^c"
End Sub

Sub CopyMsg()
 MsgBox "You can't copy right now."
End Sub

Application.OnRepeat(Text, Procedure)
Reassigns the Repeat item on the Edit menu (Ctrl-Y).

The following code replaces the Repeat item on the Edit menu with the item Do Over and
runs the DoOver procedure with the user selects the item:

Sub TestOnRepeat()
 Application.OnRepeat "Do over", "DoOver"
End Sub

 Application.OnTime(EarliestTime, Procedure, [LatestTime], [Schedule])
Sets the name of a procedure to run at a specified time.

Application.OnUndo(Text, Procedure)
Reassigns the Undo item on the Edit menu (Ctrl-Z). The arguments are the same as for
OnRepeat.

Argument Setting

Text The text to display instead of Repeat…

Procedure The procedure to run when the user chooses Edit ➝ Repeat or presses Ctrl-Y.

Argument Setting

EarliestTime The earliest time you want to run the procedure.

Procedure The name of the procedure to run.

LatestTime The latest time you want to run the procedure. Default is no limit.

Schedule True schedules the procedure to run; False removes the procedure from the schedule to run.
Default is True.

,ch07.819 Page 238 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 239

Application.OnWindow [= setting]
Sets or returns a procedure to run when a window is activated.

Application.OperatingSystem
Returns the name, version, and address model of the operating system. For example,
“Windows (32-bit) NT 5.01” indicates Windows XP Professional.

Application.OrganizationName
Returns the name of the user’s organization as entered during installation.

Application.Path
Returns the path to the folder where Excel is installed.

Application.PathSeparator
Returns "\" in Windows and ":" on the Macintosh.

Application.PivotTableSelection [= setting]
True enables structured selection PivotTable reports; False disables. Default is False.

Application.PreviousSelections([index])
Returns one of the four last-selected ranges entered in the Go To dialog box.

Application.ProductCode
Returns the programmatic ID (ProgId) of Excel. This value is a globally unique identifier
(GUID) used in Windows programming.

Application.PromptForSummaryInfo [= setting]
True prompts the user for the workbook properties when files are first saved; False does
not prompt. Default is False.

,ch07.819 Page 239 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 7: Controlling Excel

Application.Quit()
Exits Excel. Excel prompts to save changes before closing unless DisplayAlerts is set to
False or the workbook’s Saved property is set to True.

[Application.]Range([cell1],[cell2])
Returns a range of cells.

The three ways to specify the Range method are cell references, strings, or brackets. The
following three lines all select the same range:

Range(Cells(1, 1), Cells(3, 3)).Select
Range("A1", "C3").Select
[A1:C3].Select

Application.Ready
Returns True if Excel is ready for input, False otherwise. Excel is not “ready” while a user is
editing a cell (edit mode) or when a dialog box is displayed. In those situations, macros
must wait to run.

Application.RecentFiles([index])
Returns the RecentFiles collection. RecentFiles represents the list of recently used files
displayed at the bottom of the File menu. For example, the following code displays the
path- and filenames for each file in the Recent Files list:

Sub TestRecentFiles()
 Dim f As RecentFile
 For Each f In Application.RecentFiles
 Debug.Print f.Path
 Next
End Sub

Application.RecordMacro([BasicCode], [XlmCode])
Sets the code for Excel to record if the user selects Tools ➝ Macro ➝ Record New Macro
and then performs a task that runs this macro.

Argument Setting

cell1 The upper-left corner of the range

cell2 The lower-right corner of the range

Argument Setting

BasicCode The string to record in place of the default

XlmCode Obsolete

,ch07.819 Page 240 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 241

By default, Excel records Application.Run "workbook!macro" whenever a user runs a macro
while recording. To prevent recording, set BasicCode to "" for the macro:

Sub SecretMacro()
 ' Don't record this!
 Application.RecordMacro ""
 ' Secret stuff...
End Sub

Application.RecordRelative [= setting]
True uses relative references when recording; False uses absolute references. Default is
False.

Application.ReferenceStyle [=XlReferenceStyle]
Sets or returns the style Excel uses to refer to cells. Can be one of these settings:

Application.RegisteredFunctions
Returns an array of DLL functions registered with Excel. The following code displays a list
of the registered functions:

Sub TestRegisteredFunctions()
 Dim i As Integer, func
 func = Application.RegisteredFunctions
 Debug.Print "DLL", "Function", "Arguments/Return type"
 If Not IsNull(func) Then
 For i = 1 To UBound(func, 1)
 Debug.Print func(i, 1), func(i, 2), func(i, 3)
 Next
 Else
 Debug.Print "No functions registered."
 End If
End Sub

Application.RegisterXLL(Filename)
Loads an Excel DLL (XLL) and registers it.

xlA1

xlR1C1

Argument Setting

Filename The name of the file to register

,ch07.819 Page 241 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 7: Controlling Excel

Application.Repeat()
Repeats the last user action.

Application.ReplaceFormat [= setting]
Sets or returns the CellFormat object used when reformatting during search and replace.
For example, the following code replaces all bold with italic:

Sub TestReplaceFormat()
 Dim fBold As CellFormat, fItal As CellFormat
 Set fBold = Application.FindFormat
 Set fItal = Application.ReplaceFormat
 fBold.Font.Bold = True
 fItal.Font.Bold = False
 fItal.Font.Italic = True
 Cells.Replace "", "", , , , , True, True
End Sub

Application.RollZoom [= setting]
True sets the IntelliMouse wheel to zoom the display rather than scroll it; False sets the
wheel to scroll. Default is False.

[Application.]Rows([index])
Returns a range containing the cells in a row on the active worksheet. For example, the
following code selects row 3:

Rows(3).Select

Application.RTD
Returns a real-time data object.

Application.Run([Macro], [Args])
Runs a macro.

This method is mainly used by Excel itself when recording user actions that run macros.
However, you can also use it to run automated tests during development.

Argument Setting

Macro The name of the macro to run

Args Arguments for the macro

,ch07.819 Page 242 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 243

Application.SaveWorkspace([Filename])
Saves the current settings as an Excel workspace file.

Excel workspace files include the open documents, window placement, and other settings
that are restored when the user opens the file. Don’t confuse this with shared workspaces,
which is a way to share a workbook with others through SharePoint.

Application.ScreenUpdating [= setting]
True updates the Excel display as tasks are performed; False hides updates. Default is True.
Setting ScreenUpdating to False speeds up lengthy operations, such as changing all the cells
on a worksheet. Be sure to set this property back to True when done.

Application.Selection
Returns the currently selected objects on the active worksheet. Returns Nothing if no
objects are selected. Use the Select method to set the selection, and use TypeName to
discover the kind of object that is selected. The following code displays information about
the current selection:

Sub TestSelection()
 Dim str As String
 Select Case TypeName(Selection)
 Case "Nothing"
 str = "Please select something."
 Case "Range"
 str = "You selected the range: " & Selection.Address
 Case "Picture"
 str = "You selected a picture."
 Case Else
 str = "You selected a " & TypeName(Selection) & "."
 End Select
 MsgBox str
End Sub

Application.SendKeys(Keys, [Wait])
This method is the same as the Visual Basic SendKeys method. See Chapter 3 for details.

Application.SetDefaultChart([FormatName], [Gallery])
Sets the default chart type used by Excel.

Argument Setting

Filename The name of the file to save. Default is RESUME.XLW.

,ch07.819 Page 243 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 7: Controlling Excel

For example, the following code sets the default chart type to a 3-D style:

Sub TestSetChartType()
 Application.SetDefaultChart XlChartType.xl3DArea
End Sub

[Application.]Sheets([index])
Returns the Worksheet and Chart objects in the active workbook. Sheets is a mixed collec-
tion, so you can’t count on every item being a specific type. Instead, you must test check
the TypeName before calling methods on the object, as shown by the following code:

Sub TestSheet()
 Dim itm As Object, ws As Worksheet, ct As Chart
 For Each itm In Sheets
 Select Case TypeName(itm)
 Case "Worksheet"
 Set ws = itm
 Debug.Print ws.UsedRange.Address
 Case "Chart"
 Set ct = itm
 If ct.HasTitle Then _
 Debug.Print ct.ChartTitle
 Case Else
 Debug.Print TypeName(itm)
 End Select
 Next
End Sub

Use the Worksheets or Charts method to get those specific object types.

Application.SheetsInNewWorkbook [= setting]
Gets or sets the number of worksheets automatically included in new workbooks. Default
is 3.

Application.ShowChartTipNames [= setting]
True shows the names of items on a chart as tool tips; False hides the names. Default is
True.

Application.ShowChartTipValues [= setting]
True includes the values of series points in the tool tips displayed on a chart; False hides
the values. Default is True.

Argument Setting

FormatName Can be one of the XlChartType constants, xlBuiltIn, or the name of a custom chart type

Gallery Not used

,ch07.819 Page 244 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 245

Application.ShowStartupDialog [= setting]
True displays the New Workbook task pane when the user chooses File ➝ New; False
creates the workbook without displaying the task pane. Default is True.

Application.ShowToolTips [= setting]
True displays pop-up tool tips when the mouse pointer pauses over a toolbar button; False
does not display tool tips. Default is True.

Application.ShowWindowsInTaskbar [= setting]
True displays each open workbook as a separate instance of Excel with its own item on the
Windows task bar; False collects all workbooks into a single instance of Excel with only
one task bar item. Default is True.

ShowWindowsInTaskbar affects only how Excel appears in Windows. It doesn’t affect how
much memory it uses or the number of processes running for Excel.

Application.SmartTagRecognizers
Returns a collection of SmartTagRecognizer objects.

Application.Speech
Returns a Speech object that can be used to say words. Using Speech causes an error if the
feature is not installed. The following code tries to say “Hazelnootpasta”:

Sub TestSpeech()
 On Error Resume Next
 Application.Speech.Speak "Hazelnootpasta"
 If Err Then MsgBox "Speech not installed."
End Sub

Application.SpellingOptions
Returns a SpellingOptions object that you can use to control how Excel performs
spellchecking. The following code displays the main spelling option settings:

Sub TestSpellingOptions()
 With Application.SpellingOptions
 Debug.Print .DictLang
 Debug.Print .IgnoreCaps
 Debug.Print .IgnoreMixedDigits
 Debug.Print .IgnoreFileNames
 Debug.Print .SuggestMainOnly
 End With
End Sub

,ch07.819 Page 245 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 7: Controlling Excel

Application.StandardFont [= setting]
Sets or returns the standard font name. For Windows, the default is Arial.

Application.StandardFontSize [= setting]
Sets or returns the standard font point size. For Windows, the default is 10.

Application.StartupPath
Returns the path to the XLSTART directory.

Application.StatusBar [= setting]
Sets or returns the text in the Excel status bar.

Application.TemplatesPath
Returns the path to the user’s Templates folder.

Application.ThisCell
Returns the Range object of the cell calling the current user-defined function.

Application.ThisWorkbook
Returns the Workbook object of the Excel file that contains the current procedure.
ThisWorkbook is different from ActiveWorkbook in that ActiveWorkbook changes based on the
current selection, whereas ThisWorkbook always refers to the file that contains the running
code.

Application.ThousandsSeparator [= setting]
Sets or returns the character used to separate thousands.

Application.Top [= setting]
Sets or returns the distance between the top of the Excel window and the top of the screen.

Application.Undo()
Cancels the last user action.

,ch07.819 Page 246 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 247

[Application.]Union(Arg1, Arg2, [Argn])
Joins two or more Range objects into a single Range.

Application.UsableHeight
Returns the maximum height of the usable area of Excel in points. This is the Height minus
the title, menu, tool, status bars, and column header.

Application.UsableWidth
Returns the maximum width of the usable area of Excel in points. This is the Width minus
the scrollbar and row header.

Application.UsedObjects
Returns a collection of all the objects used in Excel. This code displays the names and types
of all the objects currently in use by Excel:

Sub TestUsedObjects()
 Dim o, name As String
 On Error Resume Next
 Debug.Print "Type", "Name"
 For Each o In Application.UsedObjects
 name = o.name
 Debug.Print TypeName(o), name
 Next
End Sub

Application.UserControl
Returns True if Excel is visible, False if Excel was started programmatically and is not
visible. When UserControl is False, Excel quits if there are no references to it.

Application.UserLibraryPath
Returns the path to the user’s Addins folder.

Argument Setting

Arg1 The first Range object to join

Arg2 The second Range object to join

Argn Any number of additional Range objects to join

,ch07.819 Page 247 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 7: Controlling Excel

Application.UserName [= setting]
Sets or returns the user’s name.

Application.UseSystemSeparators [= setting]
True uses the operating system settings for thousands and decimal separators; False uses
the Excel settings. Default is True.

Application.VBE
Returns the VBE object that represents the Visual Basic Editor. The following code displays
the Visual Basic Editor:

Private Sub cmdViewCode_Click()
 On Error Resume Next
 Application.VBE.MainWindow.Visible = True
 ' An error occurs if security settings prohibit this.
 If Err Then
 MsgBox "You must change Macro security options " & _
 "before you can view code in this way. " & _
 "Choose Tools>Macro>Security>Trusted Publishers and " & _
 "select Trust access to Visual Basic Project."
 End If
End Sub

Application.Version
Returns the Excel version number. For example, Excel 2003 returns 11.0.

Application.Visible [= setting]
True if the Excel window is visible; False if it is hidden. When Excel is not visible, it
doesn’t appear on the task bar, and the only way to close the application may be to use the
Task Manager (Ctrl-Delete) in Windows.

Application.Volatile([Volatile])
Marks a user-defined function for recalculation whenever any cells on the worksheet are
recalculated.

Argument Setting

Volatile True causes the function to recalculate when any cell on the worksheet is recalculated; False recalculates
only when the input values change. Default is True.

,ch07.819 Page 248 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Application Members | 249

Application.Wait(Time)
Pauses Excel.

You can specify an interval of time to wait by incrementing Now. The following code uses
that technique to create a procedure that pauses for an interval specified in milliseconds
(the same as the Windows API Sleep function):

Sub TestSleep()
 ' Wait 5 seconds.
 Sleep 5000
 MsgBox "Time's up!"
End Sub

Sub Sleep(milsecs As Long)
 Dim dt As Date
 ' 0.00001 = 1 second in the Date type.
 dt = Now + (milsecs / 100000000)
 Application.Wait (dt)
End Sub

Application.Watches([index])
Returns a collection of Watch objects that represent items in a Watch window.

Application.Width [= setting]
Sets or returns the width of the Excel window in pixels.

Application.Windows([index])
Returns a collection of Window objects that represent the windows displayed by Excel.

Application.WindowsForPens
Returns True if Excel is running under Windows for Pen Computing, False otherwise.

Application.WindowState [= XlWindowState]
Sets or returns the state of the Excel window. Can be one of these settings:

Argument Setting

Time The time to resume Excel

xlMaximized

xlNormal

xlMinimized

,ch07.819 Page 249 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 7: Controlling Excel

[Application.]Workbooks([index])
Returns a collection of Workbook objects that represent workbooks that are currently open
in Excel.

[Application.]WorksheetFunction
Returns the WorksheetFunction object, which is used to access Excel’s built-in functions.
See Chapter 4 for a description of the available functions.

[Application.]Worksheets([index])
Returns a collection containing the Worksheet objects in the active workbook. This is
different from the Sheets collection, which returns Worksheet, Chart, and other types of
sheet objects.

AutoCorrect Members
The AutoCorrect object has the following members. Key members (shown in bold)
are covered in the following reference section:

The AutoCorrect object provides a set of properties that determine how Excel han-
dles automatic correction. Most of the AutoCorrect members are True/False proper-
ties that enable or disable specific Auto Correct options. The following code displays
a list of the current Auto Correct settings in Excel:

Sub ShowAutoCorrectSettings()
 With Application.AutoCorrect
 Debug.Print .AutoExpandListRange
 Debug.Print .CapitalizeNamesOfDays
 Debug.Print .CorrectCapsLock
 Debug.Print .CorrectSentenceCap
 Debug.Print .DisplayAutoCorrectOptions
 Debug.Print .ReplaceText
 Debug.Print .TwoInitialCapitals
 End With
End Sub

AddReplacement Application

AutoExpandListRange CapitalizeNamesOfDays

CorrectCapsLock CorrectSentenceCap

Creator DeleteReplacement

DisplayAutoCorrectOptions Parent

ReplacementList ReplaceText

TwoInitialCapitals

,ch07.819 Page 250 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

AutoCorrect Members | 251

These properties correspond to the settings on the AutoCorrect dialog box
(Figure 7-4). To see that dialog, choose Tools ➝ AutoCorrect Options.

AutoCorrect.AddReplacement(What, Replacement)
Adds an item to the replacement list shown at the bottom of Figure 7-4.

AutoCorrect.DeleteReplacement(What)
Deletes an item from the replacement list.

Figure 7-4. Displaying the AutoCorrect options

Argument Setting

What The typed sequence to automatically correct

Replacement The correction to use

Argument Setting

What The typed sequence to delete from the replacement list

,ch07.819 Page 251 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 7: Controlling Excel

AutoCorrect.ReplacementList
Returns the replacement list. The following code displays the list of items that Excel will
automatically replace and the replacements that will be used:

Sub ShowReplacementList()
 Dim i As Integer
 With Application.AutoCorrect
 Debug.Print "Replace", "With"
 For i = 1 To UBound(.ReplacementList, 1)
 Debug.Print .ReplacementList(i)(1), _
 .ReplacementList(i)(2)
 Next
 End With
End Sub

AutoRecover Members
The AutoRecover object has the following members. Key members (shown in bold)
are covered in the following reference section:

AutoRecover.Enabled [= setting]
True enables automatic recovery; False disables it.

AutoRecover.Path [= setting]
Sets or returns the path where Excel stores the files used by automatic recovery.

AutoRecover.Time [= setting]
Sets or returns the number of minutes between when automatic recovery files are saved.
Must be between 1 and 120. Default is 10.

Application

Creator

Enabled

Parent

Path

Time

,ch07.819 Page 252 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

SpellingOptions Members | 253

ErrorChecking Members
The ErrorChecking object has the following members:

Most of the ErrorChecking members are True/False properties that enable or disable
specific error-checking options. The following code displays a list of the current
error-checking settings in Excel:

Sub ShowErrorCheckingSettings()
 With Application.ErrorCheckingOptions
 Debug.Print .BackgroundChecking
 Debug.Print .EmptyCellReferences
 Debug.Print .EvaluateToError
 Debug.Print .InconsistentFormula
 Debug.Print .IndicatorColorIndex
 Debug.Print .ListDataValidation
 Debug.Print .NumberAsText
 Debug.Print .OmittedCells
 Debug.Print .TextDate
 Debug.Print .UnlockedFormulaCells
 End With
End Sub

These properties correspond to the settings on the Error Checking dialog box shown
in Figure 7-5. To see the dialog, choose Tools ➝ Error Checking ➝ Options.

SpellingOptions Members
The SpellingOptions object has the following members:

Application BackgroundChecking

Creator EmptyCellReferences

EvaluateToError InconsistentFormula

IndicatorColorIndex ListDataValidation

NumberAsText OmittedCells

Parent TextDate

UnlockedFormulaCells

ArabicModes DictLang

GermanPostReform HebrewModes

IgnoreCaps IgnoreFileNames

IgnoreMixedDigits KoreanCombineAux

KoreanProcessCompound KoreanUseAutoChangeList

SuggestMainOnly UserDict

,ch07.819 Page 253 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 7: Controlling Excel

The SpellingOptions object provides a set of properties that determine how Excel
handles spellchecking. All of the Spelling members are read/write properties that
enable or disable specific options. The following code displays a list of the current
spell-checking settings in Excel:

Sub ShowSpellCheckSettings()
 With Application.SpellingOptions
 Debug.Print .DictLang
 Debug.Print .IgnoreCaps
 Debug.Print .IgnoreMixedDigits
 Debug.Print .SuggestMainOnly
 Debug.Print .UserDict
 End With
End Sub

These properties correspond to the settings on the Spelling tab of the Options dialog
box (Figure 7-6). To see that dialog, choose Tools ➝ Options ➝ Spelling.

Language-specific settings in Figure 7-6 are disabled because my
selected language is English (U.S.). You must install those language
versions of Excel to use those settings.

Figure 7-5. Displaying error-checking options

,ch07.819 Page 254 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Window and Windows Members | 255

Window and Windows Members
The Window object and Windows collection have the following members. Key members
(shown in bold) are covered in the following reference section:

Figure 7-6. Displaying the spellchecking options

Activate ActivateNext ActivatePrevious

ActiveCell ActiveChart ActivePane

ActiveSheet Application2 Arrange1

BreakSideBySide1 Caption Close

CompareSideBySideWith1 Count1 Creator2

DisplayFormulas DisplayGridlines DisplayHeadings

DisplayHorizontalScrollBar DisplayOutline DisplayRightToLeft

DisplayVerticalScrollBar DisplayWorkbookTabs DisplayZeros

EnableResize FreezePanes GridlineColor

GridlineColorIndex Height Index

LargeScroll Left Panes

Parent1 PointsToScreenPixelsX PointsToScreenPixelsY

RangeFromPoint RangeSelection ResetPositionsSideBySide1

ScrollColumn ScrollIntoView ScrollRow

ScrollWorkbookTabs SelectedSheets Selection

SmallScroll Split SplitColumn

,ch07.819 Page 255 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 7: Controlling Excel

1 Collection only
2 Object and collection

Use the Windows collection and Window objects to control which window has focus in
Excel and to open, close, arrange, and control the appearance of Excel windows. Use
the Application object’s ActiveWindow property to get the window that currently has
focus, or use the Windows collection to choose a specific window.

The following code demonstrates the most common window tasks:

Sub TestWindows()
 Dim i As Integer, wnd As Window
 Dim curWnd As Window, curState As XlWindowState
 ' Save the current settings
 Set curWnd = ActiveWindow
 curState = curWnd.WindowState
 ' Create four new windows.
 For i = 1 To 4
 Set wnd = curWnd.NewWindow
 wnd.Caption = "New Window: " & i
 Next
 ' Cascade the windows.
 Application.Windows.Arrange (xlArrangeStyleCascade)
 ' Activate each in turn.
 For Each wnd In Application.Windows
 wnd.Activate
 ' Wait 1 second.
 API.Sleep (1000)
 Next
 ' Close created windows
 For Each wnd In Application.Windows
 If wnd.Caption Like "New Window: ?" Then wnd.Close
 Next
 ' Restore original window and state.
 curWnd.Activate
 curWnd.WindowState = curState
End Sub

window.Activate()
Sets focus on the window, bringing it to the top.

SplitHorizontal SplitRow SplitVertical

SyncScrollingSideBySide1 TabRatio Top

Type UsableHeight UsableWidth

View Visible VisibleRange

Width WindowNumber WindowState

Zoom

,ch07.819 Page 256 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Window and Windows Members | 257

window.ActivateNext()
Sets focus to the next window in the Excel windows list.

window.ActivatePrevious()
Sets focus to the previous window in the Excel windows list.

windows.Arrange([ArrangeStyle], [ActiveWorkbook], [SyncHorizontal],
[SyncVertical])
Arranges the Excel windows.

windows.BreakSideBySide()
Ends the side-by-side comparison of two workbooks. See CompareSideBySideWith for details.

window.Close([SaveChanges], [Filename], [RouteWorkbook])
Close the window. Closing the last open window for a workbook closes the workbook, so
Close has these arguments in the following table that determine what to do in that case:

Argument Setting

ArrangeStyle Can be one of these XlArrangeStyle settings: xlArrangeStyleCascade,
xlArrangeStyleTiled (default), xlArrangeStyleHorizontal,
xlArrangeStyleVertical.

ActiveWorkbook True arranges only the windows of the active workbook; False arranges all workbooks. Default is False.

SyncHorizontal True links the windows so that they scroll together horizontally; False allows independent scrolling.
Default is False. Ignored if ActiveWorkbook is not True.

SyncVertical True links the windows so that they scroll together vertically; False allows independent scrolling.
Default is False. Ignored if ActiveWorkbook is not True.

Argument Setting

SaveChanges True saves changes to the workbook; False abandons changes. Prompts the user if omitted.

Filename The name of the file to save the workbook as; default is the current filename.

RouteWorkbook If the workbook has a routing slip attached, True routes the workbook to the next recipient; False
does not route. Prompts the user if omitted.

,ch07.819 Page 257 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 7: Controlling Excel

windows.CompareSideBySideWith(WindowName)
Starts side-by-side comparison between the active window and another window. Side-by-
side comparison links the scrolling of the two windows so that you can more easily
compare different versions of a workbook. Use BreakSideBySide to turn off this comparison.

The following code demonstrates turning side-by-side comparison on and off. Ordinarily,
you would open two existing versions of a workbook, but I create the second version here
so that the demonstration is self-contained:

Sub TestBeginSideBySide()
 Dim fpath As String, wnd As Window
 ' Get the window for active workbook.
 Set wnd = Application.ActiveWindow
 ' Get the workbook's full filename.
 fname = ActiveWorkbook.Path & "\" & ActiveWorkbook.name
 ' Change it to a new filename.
 fname = VBA.Replace(fname, ".xls", "_v2.xls")
 ' Save a copy of the workbook.
 ActiveWorkbook.SaveCopyAs fpath
 ' Open the copy (makes the copy the active window).
 Application.Workbooks.Open fname
 ' Turn on side-by-side comparision.
 Application.Windows.CompareSideBySideWith wnd.Caption
End Sub

Sub TestEndSideBySide()
 ' Turn off side-by-side comparision.
 Application.Windows.BreakSideBySide
End Sub

window.DisplayFormulas [= setting]
True displays formulas in cells; False displays result of formulas (values). Default is False.

window.DisplayGridlines [= setting]
True displays gridlines showing cell boundaries; False hides gridlines. Default is True.

window.DisplayHeadings [= setting]
True displays column headings (A, B, C, …); False hides headings. Default is True.

window.DisplayHorizontalScrollBar [= setting]
True displays the horizontal scrollbar; False hides it. Default is True.

,ch07.819 Page 258 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Window and Windows Members | 259

window.DisplayOutline [= setting]
True displays outlining symbols; False hides them. Default is True. To outline a work-
sheet, choose Data ➝ Group and Outline ➝ Auto Outline. The outlining symbols appear to
the left of the row numbers.

window.DisplayRightToLeft [= setting]
True displays Excel in right-to-left fashion; False displays Excel left-to-right.
DisplayRightToLeft is used for locales with left-to-right languages, such as Saudi Arabia.

window.DisplayVerticalScrollBar [= setting]
True displays the vertical scrollbar; False hides it. Default is True.

window.DisplayWorkbookTabs [= setting]
True displays the sheet tabs at the bottom of the workbook; False hides them. Default is
True.

window.DisplayZeros [= setting]
True displays zero values as 0 in cells; False hides zero values. Default is True.

window.EnableResize [= setting]
True allows the user to resize the window; False prohibits resizing. Default is True.
Accessing this property causes an error if WindowState is not xlNormal. The following code
prevents the user from changing the active window’s size:

Sub TestDisableResize()
 If ActiveWindow.WindowState = xlNormal Then _
 ActiveWindow.EnableResize = False
End Sub

window.FreezePanes [= setting]
True locks panes to prevent horizontal and vertical scrolling; False allows panes to scroll.
Default is False.

,ch07.819 Page 259 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 7: Controlling Excel

window.GridlineColor [= setting]
Sets or returns the color of gridlines as an RGB color. RGB colors are long integers that you
can create using the RGB function or (commonly) by specifying a value in hexadecimal. The
following code changes the grid color to red, green, blue, and back to normal:

Sub TestGridlineColor()
 ' Change grid color using hexidecimal values.
 ActiveWindow.GridlineColor = &HFF ' Red
 ' Wait 1 second.
 API.Sleep (1000)
 ActiveWindow.GridlineColor = &HFF00 ' Green
 API.Sleep (1000)
 ActiveWindow.GridlineColor = &HFF0000 ' Blue
 API.Sleep (1000)
 ' Restore the default.
 ActiveWindow.GridlineColorIndex = xlColorIndexAutomatic
End Sub

window.GridlineColorIndex [=xlColorIndexAutomatic]
Sets or returns the color of the gridlines based on the index into the color palette. Default is
xlColorIndexAutomatic.

window.LargeScroll([Down], [Up], [ToRight], [ToLeft])
Scrolls the window a number of pages in a given direction. You can combine arguments to
scroll diagonally.

window.Panes
Returns the collection of Panes objects for the window. Windows that are not split return
one pane.

window.PointsToScreenPixelsX(Points)
Converts an application width measurement of points to a screen measurement in pixels.
The following code displays the screen dimensions in pixels:

Sub TestPointsToPixels()
 Application.DisplayFullScreen = True

Argument Setting

Down Number of pages to scroll down

Up Number of pages to scroll up

ToRight Number of pages to scroll right

ToLeft Number of pages to scroll left

,ch07.819 Page 260 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Window and Windows Members | 261

 Debug.Print Application.Windows(1).PointsToScreenPixelsX(Application.Width)
 Debug.Print Application.Windows(1).PointsToScreenPixelsX(Application.Height)
 Application.DisplayFullScreen = False
End Sub

window.PointsToScreenPixelsY(Points)
Converts the application height measurement of points to a screen measurement in pixels.

window.RangeFromPoint(x, y)
Returns the Range object at the specified x and y coordinates. Coordinates are in pixels, not
points.

window.RangeSelection
Returns a Range object containing the selected cells on the window. RangeSelection is
slightly different from Selection, since Selection can include drawing objects as well as
ranges.

windows.ResetPositionsSideBySide()
Restores the side-by-side comparison display after one of the windows is maximized or
minimized while the user is doing a comparison.

window.ScrollColumn [= setting]
Sets or returns the column number displayed in the leftmost side of the Excel window.

window.ScrollIntoView(Left, Top, Width, Height, [Start])
Scrolls the window to a rectangular region on the worksheet.

Argument Setting

Left The left edge of the rectangle in points.

Top The top edge of the rectangle in points.

Width The width of the rectangle in points.

Height The height of the rectangle in points.

Start True scrolls the upper-left corner of the rectangle to the upper-left corner of the window; False scrolls
the lower-right corner of the rectangle to the lower-right corner of the window. Default value is True.

,ch07.819 Page 261 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 7: Controlling Excel

window.ScrollRow [= setting]
Sets or returns the row number displayed at the top of the Excel window.

window.ScrollWorkbookTabs([Sheets], [Position])
Scrolls the worksheet tabs displayed at the bottom of a workbook.

window.SelectedSheets
Returns the collection of worksheets and charts selected in the window. More than one
sheet can be selected by multiselecting the sheet tabs at the bottom of the window.

window.Selection
Returns the objects selected on the window.

window.SmallScroll([Down], [Up], [ToRight], [ToLeft])
Scrolls the window a number of rows or columns in a given direction. You can combine
arguments to scroll diagonally.

window.Split [= setting]
True splits the window into panes; False displays the window as a single pane. Default is
False. Use Split in combination with the following properties to divide a window into
panes. For example, the following code splits the active window vertically at column C:

Sub TestSplitVertically()
 With ActiveWindow
 .SplitColumn = 3
 .SplitRow = 0
 .Split = True
 End With
End Sub

Argument Setting

Sheets The number of tabs to scroll in either direction. Positive values scroll to the right; negative values scroll left.

Position Can be one of the following settings: xlFirst, xlLast.

Argument Setting

Down Number of rows to scroll down

Up Number of rows to scroll up

ToRight Number of columns to scroll right

ToLeft Number of columns to scroll left

,ch07.819 Page 262 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Window and Windows Members | 263

window.SplitColumn [= setting]
Sets or returns the column number at which to split a window vertically.

window.SplitHorizontal [= setting]
Sets or returns the location in points at which to split a window horizontally.

window.SplitRow [= setting]
Sets or returns the row number at which to split a window horizontally.

window.SplitVertical [= setting]
Sets or returns the location in points at which to split a window vertically.

windows.SyncScrollingSideBySide [= setting]
True synchronizes the two windows displayed during side-by-side comparison so that
scrolling one window scrolls the other window an equal amount; False allows the windows
to scroll independently.

window.TabRatio [= setting]
Sets or returns the ratio between the width of the tab area and the width of the window’s
horizontal scrollbar. Default is 0.6.

window.View [= XlWindowView]
Sets or returns whether page breaks are displayed. Can be one of these settings:

window.VisibleRange
Returns the Range object that is visible on the window.

window.WindowNumber [= setting]
Returns the number portion of the window caption. For example, the window captioned
ch07.xls:2 returns 2.

xlNormalView

xlPageBreakView

,ch07.819 Page 263 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 7: Controlling Excel

window.WindowState [= XlWindowState]
Sets or returns the state of the window. Can be one of these settings:

window.Zoom [= setting]
Sets or returns a percentage by which to magnify the window.

Pane and Panes Members
The Pane object and Panes collection have the following members. These members
are the same as the Window members of the same name.

1 Collection only
2 Object and collection

Pane objects represent the regions of a window. By default, Excel windows have one
pane; additional panes are created when the user or code splits the window into two
or four regions.

The following code demonstrates splitting the active window into four panes, then
scrolling each of those panes:

Sub TestPanes()
 Dim pn As Pane, down As Integer, right As Integer
 Dim i As Integer
 With ActiveWindow
 ' Set the location for the split.
 .SplitColumn = 10
 .SplitRow = 16
 ' Split into four panes.
 .Split = True
 For i = 1 To .Panes.Count
 down = i * 2
 right = i + 3

xlMaximized

xlNormal

xlMinimized

Activate Application2

Count1 Creator2

Index LargeScroll

Parent2 ScrollColumn

ScrollIntoView ScrollRow

SmallScroll VisibleRange

,ch07.819 Page 264 Thursday, April 20, 2006 10:03 AM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Pane and Panes Members | 265

 ' Scroll each pane.
 .Panes(i).SmallScroll down, , right
 Next
 End With
End Sub

The preceding code demonstrates two key things:

• The Panes collection can’t be used in a For Each statement. Instead, you must use
For Next.

• Scrolling is cumulative for pairs of panes. In other words, the horizontal pairs of
panes are always on the same row and the vertical pairs are always on the same
column.

To close panes, set the Window object’s Split property to False:

Sub TestClosePanes()
 ActiveWindow.Split = False
End Sub

,ch07.819 Page 265 Thursday, April 20, 2006 10:03 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

